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Previous classes: the DPLL algorithm



Issues with DPLL
• DPLL incorporates unit propagation and the pure literal rule 

• However, there is a better algorithm, which we’ll explore today: 

• Conflict-Directed Clause Learning (CDCL)  

• CDCL learns from its mistakes (learned clauses), and 
incorporates non-chronological backtracking. 

• Compared to DPLL, CDCL analyzes conflicts to help prune the 
search space, leading to significant benefits in practice 

• Most modern SAT solvers based on CDCL 

• CDCL is so common that some books refer to CDCL as DPLL!
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Implication Graph
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A key conceptual data structure in CDCL is the implication graph 
(Note: many solvers don’t explicitly build the implication graph!)

The implication graph is a graph where: 
Vertices are of the form l@d where l is a literal, d a decision level 

Examples include ¬x₀@5, x₇@3, and ¬x₁₅@0 
These vertices represent the current partial assignment 

Labeled edges  connect vertices when  

Intuitively: when  forces unit propagation of  via the clause  
Notice that  is not just a literal, it’s a literal at a decision level

v0
c v1 ¬v0 ∈ Antecedent(v1)

v0 v1 c
v0
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c1 = ¬x1 ∨ x2
c2 = ¬x1 ∨ x3 ∨ x5
c3 = ¬x2 ∨ x4
c4 = ¬x3 ∨ ¬x4
c5 = x1 ∨ x5 ∨ ¬x2
c6 = x2 ∨ x3
c7 = x2 ∨ ¬x3
c8 = x6 ∨ ¬x5

Example from the “Decision Procedures” book (Chap 2)

Assume that at decision level 3, the decision is ¬x6@3

¬x6@3

¬x5@3

Due to clause , unit propagation forces  
Notice: still at level 3, because unit propagation is a 
consequence of a decision, not a new decision level

c8 ¬x5@3

c8

Edge labeled with the antecedent of ¬x5

Clauses 

Roots in the graph correspond to decisions 
(Why? Because any incoming edge emanates from an 
antecedent. A decision can’t have any antecedents!)
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c1 = ¬x1 ∨ x2
c2 = ¬x1 ∨ x3 ∨ x5
c3 = ¬x2 ∨ x4
c4 = ¬x3 ∨ ¬x4
c5 = x1 ∨ x5 ∨ ¬x2
c6 = x2 ∨ x3
c7 = x2 ∨ ¬x3
c8 = x6 ∨ ¬x5

Example from the “Decision Procedures” book (Chap 2)

Now let’s say we keep going, we made a few more 
decisions and the decision level is now 6 

(Decisions 4/5 made choices that won’t impact us here)

¬x6@3

¬x5@3
c8

Clauses 

x1@6

x2@6

x3@6

x4@6

κc3

c3

c1 c3

c4

c4

Unit propagating  leads to a conflictx1@6
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c1 = ¬x1 ∨ x2
c2 = ¬x1 ∨ x3 ∨ x5
c3 = ¬x2 ∨ x4
c4 = ¬x3 ∨ ¬x4
c5 = x1 ∨ x5 ∨ ¬x2
c6 = x2 ∨ x3
c7 = x2 ∨ ¬x3
c8 = x6 ∨ ¬x5

Example from the “Decision Procedures” book (Chap 2)

Now, some key observations:  
Backtracking to change x4, x2, or x3 won’t help 
By picking , we are destined to reach a conflict! 
The roots of the graph represent a sufficient condition for the conflict 
Therefore, we can safely add a learned clause (such as )

x1@6

x5 ∨ ¬x1

¬x6@3

¬x5@3
c8

Clauses 

x1@6

x2@6

x3@6

x4@6

κc3

c3

c1 c3

c4

c4
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c1 = ¬x1 ∨ x2
c2 = ¬x1 ∨ x3 ∨ x5
c3 = ¬x2 ∨ x4
c4 = ¬x3 ∨ ¬x4
c5 = x1 ∨ x5 ∨ ¬x2
c6 = x2 ∨ x3
c7 = x2 ∨ ¬x3
c8 = x6 ∨ ¬x5

Example from the “Decision Procedures” book (Chap 2)

A learned clause is any clause implied by the original set of clauses (you 
can’t change the meaning!) 
As an example, we might negate the entire current assignment. The 
current assignment is a cube (conjunction of literals) and we know that 
the current assignment must result in failure! So we could add… 
¬(x1 ∧ x2 ∧ x4 ∧ x3 ∧ ¬x5 ∧ ¬x6) ≡ ¬x1 ∨ ¬x2 ∨ ¬x4 ∨ ¬x3 ∨ x5 ∨ x6

¬x6@3

¬x5@3
c8

Clauses 

x1@6

x2@6

x3@6

x4@6

κc3

c3

c1 c3

c4

c4
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c1 = ¬x1 ∨ x2
c2 = ¬x1 ∨ x3 ∨ x5
c3 = ¬x2 ∨ x4
c4 = ¬x3 ∨ ¬x4
c5 = x1 ∨ x5 ∨ ¬x2
c6 = x2 ∨ x3
c7 = x2 ∨ ¬x3
c8 = x6 ∨ ¬x5

Example from the “Decision Procedures” book (Chap 2)

In essence, this is what DPLL already does! 
 

However, this clause doesn’t help prune the search space! We’ll never 
be back in this state again (DPLL backtracks and tries another 
assignment), and thus this clause will never actually be useful!

¬(x1 ∧ x2 ∧ x4 ∧ x3 ∧ ¬x5 ∧ ¬x6) ≡ ¬x1 ∨ ¬x2 ∨ ¬x4 ∨ ¬x3 ∨ x5 ∨ x6

¬x6@3

¬x5@3
c8

Clauses 

x1@6

x2@6

x3@6

x4@6

κc3

c3

c1 c3

c4

c4
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c1 = ¬x1 ∨ x2
c2 = ¬x1 ∨ x3 ∨ x5
c3 = ¬x2 ∨ x4
c4 = ¬x3 ∨ ¬x4
c5 = x1 ∨ x5 ∨ ¬x2
c6 = x2 ∨ x3
c7 = x2 ∨ ¬x3
c8 = x6 ∨ ¬x5

Example from the “Decision Procedures” book (Chap 2)

Instead, CDCL attempts to learn smaller clauses, which represent the 
“root cause” of the conflict while eliding irrelevant literals

¬x6@3

¬x5@3
c8

Clauses 

x1@6

x2@6

x3@6

x4@6

κc3

c3

c1 c3

c4

c4
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c1 = ¬x1 ∨ x2
c2 = ¬x1 ∨ x3 ∨ x5
c3 = ¬x2 ∨ x4
c4 = ¬x3 ∨ ¬x4
c5 = x1 ∨ x5 ∨ ¬x2
c6 = x2 ∨ x3
c7 = x2 ∨ ¬x3
c8 = x6 ∨ ¬x5

Example from the “Decision Procedures” book (Chap 2)

The procedure AnalyzeConflict is triggered upon a conflict, it analyzes 
the implication graph to (a) produce a learned clause and (b) compute 
the backtracking level 
In this case, the learned clause will be  (we will see why)x5 ∨ ¬x1

¬x6@3

¬x5@3
c8

Clauses 

x1@6

x2@6

x3@6

x4@6

κc3

c3

c1 c3

c4

c4
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¬x6@3

¬x5@3
c8

x1@6

x2@6

x3@6

x4@6

κc3

c3

c1 c3

c4

c4

Separating Cuts

A separating cut  in a conflict graph is a minimal set 
of edges C where—if you remove every edge in C 
from the graph—you break all paths from root notes 
to the conflict nodes

A cut partitions nodes into the reason side and the 
conflict side. The set of nodes on the reason side 
immediately “to the left” of the cut constitute a 
sufficient condition for the conflict. Thus, their 
negation constitutes a conflict clause

Three example separating cuts

¬x1 ∨ x6

¬x1 ∨ x5

¬x3 ∨ ¬x2

And associated conflict clauses



13

¬x6@3

¬x5@3
c8

x1@6

x2@6

x3@6

x4@6

κc3

c3

c1 c3

c4

c4

Any (or all) of these separating cuts could be used to 
generate a conflict clause, which may or may not be 
useful to prune the search space in subsequent decisions

¬x1 ∨ x6

¬x1 ∨ x5

¬x3 ∨ ¬x2

In practice, many modern solvers add a single clause 
which is an asserting clause, whose purpose is to force 
unit propagation

In this case, the conflict clause will be , choosing 
the center cut (we’ll see why). Backtracking will occur 
based on the asserting clause chosen

x5 ∨ ¬x1
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Example from the “Decision Procedures” book (Chap 2)

CDCL will typically backtrack to the second most recent decision level 
in the conflict clause. In the case of , this is level 3.x5 ∨ ¬x1

¬x6@3

¬x5@3
c8

x1@6

x2@6

x3@6

x4@6

κc3

c3

c1 c3

c4

c4

c1 = ¬x1 ∨ x2
c2 = ¬x1 ∨ x3 ∨ x5
c3 = ¬x2 ∨ x4
c4 = ¬x3 ∨ ¬x4
c5 = x1 ∨ x5 ∨ ¬x2
c6 = x2 ∨ x3
c7 = x2 ∨ ¬x3
c8 = x6 ∨ ¬x5

Clauses 

This portion of the implication graph 
is erased, because backtracking 
“undoes” the implication graph back 
up until decision level 3

c9 = x5 ∨ ¬x1
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Example from the “Decision Procedures” book (Chap 2)

Now, the newly-learned clause  forces unit propagation of  
This is not a coincidence, it is by construction!

c9 ¬x1

¬x6@3

¬x5@3
c8

x1@6

x2@6

x3@6

x4@6

κc3

c3

c1 c3

c4

c4

c1 = ¬x1 ∨ x2
c2 = ¬x1 ∨ x3 ∨ x5
c3 = ¬x2 ∨ x4
c4 = ¬x3 ∨ ¬x4
c5 = x1 ∨ x5 ∨ ¬x2
c6 = x2 ∨ x3
c7 = x2 ∨ ¬x3
c8 = x6 ∨ ¬x5

Clauses 
 is called an asserting clause because, 

post-backtracking, it becomes unit and 
forces propagation 

Many modern solvers exclusively learn 
such asserting clauses, which tend to 
discover conflicts quickly

c9

c9 = x5 ∨ ¬x1



CDCL Algorithm
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Iteratively perform the following 
Apply unit propagation 

Unit propagation must be fast! Modern solvers use the two-watched 
literal trick / data structure, which enables efficient indexing based on 
the current (partial) assignment 

Decide variable air cheap (to maintain) decision heuristic 
E.g., Variable State Independent Decay Sum (VSIDS) 

Both of these are fast (good data structures), but dominate the work 
Reasoning kicks in at conflict analysis, which analyzes a conflict state to 
learn a conflict clause and restart the search (at a lower decision level)



CDCL Algorithm
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Iteratively perform the following 
Apply unit propagation 

Unit propagation must be fast! Modern solvers use the two-watched 
literal trick / data structure, which enables efficient indexing based on 
the current (partial) assignment 

Decide variable air cheap (to maintain) decision heuristic 
E.g., Variable State Independent Decay Sum (VSIDS) 

Both of these are fast (good data structures), but dominate the work 
Reasoning kicks in at conflict analysis, which analyzes a conflict state to 
learn a conflict clause and restart the search (at a lower decision level)
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Algorithm: Analyze-Conflict
Input: A conflict graph (implication graph ending in conflict)
Output: Backtracking decision level and a new conflict clause

1. If current-decision-level = 0 then return UNSAT 
2. cl := current-conflicting-clause 
3. while (¬stop-criterion-met(cl)) do
4.   lit := Last-Assigned-Literal(cl);
5.   var := Variable-Of-Literal(lit);
6.   ante := Antecedent(lit);
7.   cl := Resolve(cl, ante, var); 
8. Add-Clause-To-Database(cl);
9. return Clause-Asserting-Level (cl); // 2nd highest decision level in cl



Unique Implication Points (UIPs)

• A vertex l in the implication graph is a unique implication 
point (UIP) if all paths from the latest decision literal vertex 
that reach the conflict node go through l 

• In graph theory terms, a UIP is a dominator 

• If l is a UIP, then a UIP cut is a cut (A,B) such that: 

• B (the “right” side of the cut) contains all the successors 
of l such that there is a from that successor to the conflict 

• A is everything else 

•  The first UIP is the UIP that is closest to the conflict node

19
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¬x6@3

¬x5@3
c8

x1@6

x2@6

x3@6

x4@6

κc3

c3

c1 c3

c4

c4

¬x1 ∨ x5

Here, the UIP is just the decision literal. The UIP cut  is a 
separating cut, and leads to a learned clause which is 
implied by the original formula, in this case ¬x1 ∨ x5

https://users.aalto.fi/~tjunttil/2020-DP-AUT/notes-sat/cdcl.html

Some more great example of UIP cuts are here



• Most CDCL implementations generate the learned clause C by 
using the first UIP cut 

• Then they perform non-chronological backtracking 

• Let m be the second-largest decision level of of C, the learned 
clause 

• Remove all literals with decision level greater than m from the 
trail (assignment queue) 

• Because C is derived from a UIP cut, by construction, it contains 
exactly one literal in the latest decision level before buckjumping 

• Thus, after buckjumping, C necessarily forces unit propagation 

• (Again, we say that C is an “asserting clause.”)
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Exit Conditions for CDCL

• If the formula is satisfiable, CDCL will eventually find the satisfying 
truth assignment 

• Learned clauses preserve satisfiability 

• For unsatisfiable formulas, the algorithm eventually derives 
UNSAT because each conflict results in a new learned clause 

• Eventually, we derive a conflict at level 0 

• Only finitely many clauses, thus at some point we’ll produce 
enough unit clauses at level 0 to hit UNSAT
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Two-Watched Literals
• We need assignment to be blazing fast 

• When we assign some literal (say ), we need to be able 
to quickly identify which clauses should be considered 

• Naively, we would have to look through all the clauses 

• But, there’s an insight: we only need to detect when a clause 
becomes unit! 

• Thus, only need to watch two (unassigned) lits in each clause 

• This yields the two watched literals approach: 

• For each variable, we keep a linked list of watched clauses

¬x1

23

c1 = ¬x1 ∨ x2
c2 = ¬x1 ∨ x3 ∨ x5
c3 = ¬x2 ∨ x4
c4 = ¬x3 ∨ ¬x4
c5 = x1 ∨ x5 ∨ ¬x2
c6 = x2 ∨ x3
c7 = x2 ∨ ¬x3
c8 = x6 ∨ ¬x5



• For example, we might say… 

• x1 -> {c1, c2, c5} 

• x2 -> {c1, c3, c6, c7} 

• x3 -> {c2, c4, c6, c7} 

• … 

• When x3 is assigned, we look only at {c2, c4, c6, c7} 

• We discuss some more details in our discussion on MiniSAT
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c1 = ¬x1 ∨ x2
c2 = ¬x1 ∨ x3 ∨ x5
c3 = ¬x2 ∨ x4
c4 = ¬x3 ∨ ¬x4
c5 = x1 ∨ x5 ∨ ¬x2
c6 = x2 ∨ x3
c7 = x2 ∨ ¬x3
c8 = x6 ∨ ¬x5


