
Conflict-Directed
Clause Learning
CIS700 (Fall ’24)
Kristopher Micinski

2

Previous classes: the DPLL algorithm

Issues with DPLL
• DPLL incorporates unit propagation and the pure literal rule

• However, there is a better algorithm, which we’ll explore today:

• Conflict-Directed Clause Learning (CDCL)

• CDCL learns from its mistakes (learned clauses), and
incorporates non-chronological backtracking.

• Compared to DPLL, CDCL analyzes conflicts to help prune the
search space, leading to significant benefits in practice

• Most modern SAT solvers based on CDCL

• CDCL is so common that some books refer to CDCL as DPLL!

3

Implication Graph

4

A key conceptual data structure in CDCL is the implication graph
(Note: many solvers don’t explicitly build the implication graph!)

The implication graph is a graph where:
Vertices are of the form l@d where l is a literal, d a decision level

Examples include ¬x₀@5, x₇@3, and ¬x₁₅@0
These vertices represent the current partial assignment

Labeled edges connect vertices when

Intuitively: when forces unit propagation of via the clause
Notice that is not just a literal, it’s a literal at a decision level

v0
c v1 ¬v0 ∈ Antecedent(v1)

v0 v1 c
v0

5

c1 = ¬x1 ∨ x2
c2 = ¬x1 ∨ x3 ∨ x5
c3 = ¬x2 ∨ x4
c4 = ¬x3 ∨ ¬x4
c5 = x1 ∨ x5 ∨ ¬x2
c6 = x2 ∨ x3
c7 = x2 ∨ ¬x3
c8 = x6 ∨ ¬x5

Example from the “Decision Procedures” book (Chap 2)

Assume that at decision level 3, the decision is ¬x6@3

¬x6@3

¬x5@3

Due to clause , unit propagation forces
Notice: still at level 3, because unit propagation is a
consequence of a decision, not a new decision level

c8 ¬x5@3

c8

Edge labeled with the antecedent of ¬x5

Clauses

Roots in the graph correspond to decisions
(Why? Because any incoming edge emanates from an
antecedent. A decision can’t have any antecedents!)

6

c1 = ¬x1 ∨ x2
c2 = ¬x1 ∨ x3 ∨ x5
c3 = ¬x2 ∨ x4
c4 = ¬x3 ∨ ¬x4
c5 = x1 ∨ x5 ∨ ¬x2
c6 = x2 ∨ x3
c7 = x2 ∨ ¬x3
c8 = x6 ∨ ¬x5

Example from the “Decision Procedures” book (Chap 2)

Now let’s say we keep going, we made a few more
decisions and the decision level is now 6

(Decisions 4/5 made choices that won’t impact us here)

¬x6@3

¬x5@3
c8

Clauses

x1@6

x2@6

x3@6

x4@6

κc3

c3

c1 c3

c4

c4

Unit propagating leads to a conflictx1@6

7

c1 = ¬x1 ∨ x2
c2 = ¬x1 ∨ x3 ∨ x5
c3 = ¬x2 ∨ x4
c4 = ¬x3 ∨ ¬x4
c5 = x1 ∨ x5 ∨ ¬x2
c6 = x2 ∨ x3
c7 = x2 ∨ ¬x3
c8 = x6 ∨ ¬x5

Example from the “Decision Procedures” book (Chap 2)

Now, some key observations:
Backtracking to change x4, x2, or x3 won’t help
By picking , we are destined to reach a conflict!
The roots of the graph represent a sufficient condition for the conflict
Therefore, we can safely add a learned clause (such as)

x1@6

x5 ∨ ¬x1

¬x6@3

¬x5@3
c8

Clauses

x1@6

x2@6

x3@6

x4@6

κc3

c3

c1 c3

c4

c4

8

c1 = ¬x1 ∨ x2
c2 = ¬x1 ∨ x3 ∨ x5
c3 = ¬x2 ∨ x4
c4 = ¬x3 ∨ ¬x4
c5 = x1 ∨ x5 ∨ ¬x2
c6 = x2 ∨ x3
c7 = x2 ∨ ¬x3
c8 = x6 ∨ ¬x5

Example from the “Decision Procedures” book (Chap 2)

A learned clause is any clause implied by the original set of clauses (you
can’t change the meaning!)
As an example, we might negate the entire current assignment. The
current assignment is a cube (conjunction of literals) and we know that
the current assignment must result in failure! So we could add…
¬(x1 ∧ x2 ∧ x4 ∧ x3 ∧ ¬x5 ∧ ¬x6) ≡ ¬x1 ∨ ¬x2 ∨ ¬x4 ∨ ¬x3 ∨ x5 ∨ x6

¬x6@3

¬x5@3
c8

Clauses

x1@6

x2@6

x3@6

x4@6

κc3

c3

c1 c3

c4

c4

9

c1 = ¬x1 ∨ x2
c2 = ¬x1 ∨ x3 ∨ x5
c3 = ¬x2 ∨ x4
c4 = ¬x3 ∨ ¬x4
c5 = x1 ∨ x5 ∨ ¬x2
c6 = x2 ∨ x3
c7 = x2 ∨ ¬x3
c8 = x6 ∨ ¬x5

Example from the “Decision Procedures” book (Chap 2)

In essence, this is what DPLL already does!

However, this clause doesn’t help prune the search space! We’ll never
be back in this state again (DPLL backtracks and tries another
assignment), and thus this clause will never actually be useful!

¬(x1 ∧ x2 ∧ x4 ∧ x3 ∧ ¬x5 ∧ ¬x6) ≡ ¬x1 ∨ ¬x2 ∨ ¬x4 ∨ ¬x3 ∨ x5 ∨ x6

¬x6@3

¬x5@3
c8

Clauses

x1@6

x2@6

x3@6

x4@6

κc3

c3

c1 c3

c4

c4

10

c1 = ¬x1 ∨ x2
c2 = ¬x1 ∨ x3 ∨ x5
c3 = ¬x2 ∨ x4
c4 = ¬x3 ∨ ¬x4
c5 = x1 ∨ x5 ∨ ¬x2
c6 = x2 ∨ x3
c7 = x2 ∨ ¬x3
c8 = x6 ∨ ¬x5

Example from the “Decision Procedures” book (Chap 2)

Instead, CDCL attempts to learn smaller clauses, which represent the
“root cause” of the conflict while eliding irrelevant literals

¬x6@3

¬x5@3
c8

Clauses

x1@6

x2@6

x3@6

x4@6

κc3

c3

c1 c3

c4

c4

11

c1 = ¬x1 ∨ x2
c2 = ¬x1 ∨ x3 ∨ x5
c3 = ¬x2 ∨ x4
c4 = ¬x3 ∨ ¬x4
c5 = x1 ∨ x5 ∨ ¬x2
c6 = x2 ∨ x3
c7 = x2 ∨ ¬x3
c8 = x6 ∨ ¬x5

Example from the “Decision Procedures” book (Chap 2)

The procedure AnalyzeConflict is triggered upon a conflict, it analyzes
the implication graph to (a) produce a learned clause and (b) compute
the backtracking level
In this case, the learned clause will be (we will see why)x5 ∨ ¬x1

¬x6@3

¬x5@3
c8

Clauses

x1@6

x2@6

x3@6

x4@6

κc3

c3

c1 c3

c4

c4

12

¬x6@3

¬x5@3
c8

x1@6

x2@6

x3@6

x4@6

κc3

c3

c1 c3

c4

c4

Separating Cuts

A separating cut in a conflict graph is a minimal set
of edges C where—if you remove every edge in C
from the graph—you break all paths from root notes
to the conflict nodes

A cut partitions nodes into the reason side and the
conflict side. The set of nodes on the reason side
immediately “to the left” of the cut constitute a
sufficient condition for the conflict. Thus, their
negation constitutes a conflict clause

Three example separating cuts

¬x1 ∨ x6

¬x1 ∨ x5

¬x3 ∨ ¬x2

And associated conflict clauses

13

¬x6@3

¬x5@3
c8

x1@6

x2@6

x3@6

x4@6

κc3

c3

c1 c3

c4

c4

Any (or all) of these separating cuts could be used to
generate a conflict clause, which may or may not be
useful to prune the search space in subsequent decisions

¬x1 ∨ x6

¬x1 ∨ x5

¬x3 ∨ ¬x2

In practice, many modern solvers add a single clause
which is an asserting clause, whose purpose is to force
unit propagation

In this case, the conflict clause will be , choosing
the center cut (we’ll see why). Backtracking will occur
based on the asserting clause chosen

x5 ∨ ¬x1

14

Example from the “Decision Procedures” book (Chap 2)

CDCL will typically backtrack to the second most recent decision level
in the conflict clause. In the case of , this is level 3.x5 ∨ ¬x1

¬x6@3

¬x5@3
c8

x1@6

x2@6

x3@6

x4@6

κc3

c3

c1 c3

c4

c4

c1 = ¬x1 ∨ x2
c2 = ¬x1 ∨ x3 ∨ x5
c3 = ¬x2 ∨ x4
c4 = ¬x3 ∨ ¬x4
c5 = x1 ∨ x5 ∨ ¬x2
c6 = x2 ∨ x3
c7 = x2 ∨ ¬x3
c8 = x6 ∨ ¬x5

Clauses

This portion of the implication graph
is erased, because backtracking
“undoes” the implication graph back
up until decision level 3

c9 = x5 ∨ ¬x1

15

Example from the “Decision Procedures” book (Chap 2)

Now, the newly-learned clause forces unit propagation of
This is not a coincidence, it is by construction!

c9 ¬x1

¬x6@3

¬x5@3
c8

x1@6

x2@6

x3@6

x4@6

κc3

c3

c1 c3

c4

c4

c1 = ¬x1 ∨ x2
c2 = ¬x1 ∨ x3 ∨ x5
c3 = ¬x2 ∨ x4
c4 = ¬x3 ∨ ¬x4
c5 = x1 ∨ x5 ∨ ¬x2
c6 = x2 ∨ x3
c7 = x2 ∨ ¬x3
c8 = x6 ∨ ¬x5

Clauses
 is called an asserting clause because,

post-backtracking, it becomes unit and
forces propagation

Many modern solvers exclusively learn
such asserting clauses, which tend to
discover conflicts quickly

c9

c9 = x5 ∨ ¬x1

CDCL Algorithm

16

Iteratively perform the following
Apply unit propagation

Unit propagation must be fast! Modern solvers use the two-watched
literal trick / data structure, which enables efficient indexing based on
the current (partial) assignment

Decide variable air cheap (to maintain) decision heuristic
E.g., Variable State Independent Decay Sum (VSIDS)

Both of these are fast (good data structures), but dominate the work
Reasoning kicks in at conflict analysis, which analyzes a conflict state to
learn a conflict clause and restart the search (at a lower decision level)

CDCL Algorithm

17

Iteratively perform the following
Apply unit propagation

Unit propagation must be fast! Modern solvers use the two-watched
literal trick / data structure, which enables efficient indexing based on
the current (partial) assignment

Decide variable air cheap (to maintain) decision heuristic
E.g., Variable State Independent Decay Sum (VSIDS)

Both of these are fast (good data structures), but dominate the work
Reasoning kicks in at conflict analysis, which analyzes a conflict state to
learn a conflict clause and restart the search (at a lower decision level)

18

Algorithm: Analyze-Conflict
Input: A conflict graph (implication graph ending in conflict)
Output: Backtracking decision level and a new conflict clause

1. If current-decision-level = 0 then return UNSAT
2. cl := current-conflicting-clause
3. while (¬stop-criterion-met(cl)) do
4. lit := Last-Assigned-Literal(cl);
5. var := Variable-Of-Literal(lit);
6. ante := Antecedent(lit);
7. cl := Resolve(cl, ante, var);
8. Add-Clause-To-Database(cl);
9. return Clause-Asserting-Level (cl); // 2nd highest decision level in cl

Unique Implication Points (UIPs)

• A vertex l in the implication graph is a unique implication
point (UIP) if all paths from the latest decision literal vertex
that reach the conflict node go through l

• In graph theory terms, a UIP is a dominator

• If l is a UIP, then a UIP cut is a cut (A,B) such that:

• B (the “right” side of the cut) contains all the successors
of l such that there is a from that successor to the conflict

• A is everything else

• The first UIP is the UIP that is closest to the conflict node

19

20

¬x6@3

¬x5@3
c8

x1@6

x2@6

x3@6

x4@6

κc3

c3

c1 c3

c4

c4

¬x1 ∨ x5

Here, the UIP is just the decision literal. The UIP cut is a
separating cut, and leads to a learned clause which is
implied by the original formula, in this case ¬x1 ∨ x5

https://users.aalto.fi/~tjunttil/2020-DP-AUT/notes-sat/cdcl.html

Some more great example of UIP cuts are here

• Most CDCL implementations generate the learned clause C by
using the first UIP cut

• Then they perform non-chronological backtracking

• Let m be the second-largest decision level of of C, the learned
clause

• Remove all literals with decision level greater than m from the
trail (assignment queue)

• Because C is derived from a UIP cut, by construction, it contains
exactly one literal in the latest decision level before buckjumping

• Thus, after buckjumping, C necessarily forces unit propagation

• (Again, we say that C is an “asserting clause.”)

21

Exit Conditions for CDCL

• If the formula is satisfiable, CDCL will eventually find the satisfying
truth assignment

• Learned clauses preserve satisfiability

• For unsatisfiable formulas, the algorithm eventually derives
UNSAT because each conflict results in a new learned clause

• Eventually, we derive a conflict at level 0

• Only finitely many clauses, thus at some point we’ll produce
enough unit clauses at level 0 to hit UNSAT

22

Two-Watched Literals
• We need assignment to be blazing fast

• When we assign some literal (say), we need to be able
to quickly identify which clauses should be considered

• Naively, we would have to look through all the clauses

• But, there’s an insight: we only need to detect when a clause
becomes unit!

• Thus, only need to watch two (unassigned) lits in each clause

• This yields the two watched literals approach:

• For each variable, we keep a linked list of watched clauses

¬x1

23

c1 = ¬x1 ∨ x2
c2 = ¬x1 ∨ x3 ∨ x5
c3 = ¬x2 ∨ x4
c4 = ¬x3 ∨ ¬x4
c5 = x1 ∨ x5 ∨ ¬x2
c6 = x2 ∨ x3
c7 = x2 ∨ ¬x3
c8 = x6 ∨ ¬x5

• For example, we might say…

• x1 -> {c1, c2, c5}

• x2 -> {c1, c3, c6, c7}

• x3 -> {c2, c4, c6, c7}

• …

• When x3 is assigned, we look only at {c2, c4, c6, c7}

• We discuss some more details in our discussion on MiniSAT

24

c1 = ¬x1 ∨ x2
c2 = ¬x1 ∨ x3 ∨ x5
c3 = ¬x2 ∨ x4
c4 = ¬x3 ∨ ¬x4
c5 = x1 ∨ x5 ∨ ¬x2
c6 = x2 ∨ x3
c7 = x2 ∨ ¬x3
c8 = x6 ∨ ¬x5

