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In this lecture, we’ll discuss Satisfiability Modulo Theories 

SMT solving is one of the most successful results in formal 
methods, from both practical and theoretical perspectives 

SMT solvers enrich SAT to encompass first-order theories, but 
the restriction to satisfiability excludes true first order reasoning. 
Supported theories include uninterpreted functions, linear 
arithmetic, arrays, datatypes, etc… 

SMT: x * 2 + 3 ∧ (y < x + 2 ∨ p[x] > 3) ⇒ p[x+1] > 2 

Not SMT: ∀x. ∃y. ∀z. x > 0 ⇒ (x * 2 + y) * z > (x * 2 + y - 1) * z
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SMT is both a kind of extension (axioms for logical theories) and 
restriction (only SAT, no proper quantifiers) of FOL, so we will 
begin with a short discussion of FOL and its use to us as 
computer scientists hoping to use programs to prove theorems. 

In practice, SMT solvers offer you a “library” of theories. The 
goal is to encode application-specific information in terms of 
these theories without too much encoding overhead.
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Digression: First-Order Logic

We have discussed FOL briefly, but have not formally defined it 
in slides. First-Order Logic is an extension (syntactic and 
semantic) to propositional logic. 

Syntactically: 
- Terms include not simple propositional atoms, but also 

functions applied to other terms, and also variables 
- There are also predicates, which can be applied to some 

arity of terms (e.g., GreaterThan(x,y), Includes(S,T), …) 
- Propositions are extended to include the quantifiers “for all” 

written ∀, and “there exists,” written ∃ and bind terms
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Example: Group Theory

For example, the theory of groups can be axiomatized via a set 
of first-order statements as follows: 

∀a, b ∈ G, (a * b) ∈ G 
∀a, b, c ∈ G, (a * b) * c = a * (b * c) 
∃e ∈ G ∀a ∈ G, (e * a = a * e = a) 
∀a ∈ G ∃a⁻¹ ∈ G, (a * a⁻¹ = a⁻¹ * a = e) 

Notice that * and ⁻¹ are functions, and = is a proposition
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Examples of Groups 

- The integers, with + for * and - for ⁻¹ 
- E.g., -((a + -b) + b) + -b= -(a + b) 

- Non-zero integers with multiplicative identity:  
- * (times) is * and 1/x is ⁻¹. The idea is that 1/x is a symbolic 

representation of the reciprocal; “/“ is not computational. 
(The group theory axioms define / (via ⁻¹)!) 

- E.g., “(1/a * 1/b) = 1/(a * b)” 
- Cyclic groups: integers mod n with addition, ⁻¹ is - mod n 
- Multiplicative groups over the real numbers 
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The idea is that you can take the axioms of group theory and 
then some statement you want to test. Add its negation and 
prove unsat—if you can do so, you have done a proof 

“Prove this (UNSAT):” 
∀a, b ∈ G, (a * b) ∈ G 
∧ ∀a, b, c ∈ G, (a * b) * c = a * (b * c) 
∧ ∃e ∈ G ∀a ∈ G, (e * a = a * e = a) 
∧ ∀a ∈ G ∃a⁻¹ ∈ G, (a * a⁻¹ = a⁻¹ * a = e) 
∧ ¬(∀a, b (a * b) * (-b * -a) = e) (Statement to prove) 

So: how do we prove the big conjunction is UNSAT?
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So: how do we prove the big conjunction is UNSAT? 

Basic idea: extend a complete proof system from propositional 
logic (resolution, natural deduction, etc…) to first-order logic. 

Problem: a proof system gives us the ability to give evidence to 
check that a certain thing is a valid proof; still doesn’t give us an 
algorithm to prove things. 

Propositional logic is “easy” (2^n) because the relevant domain 
is always finite, and thus everything can be (in principle) decided
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So: how do we prove the big conjunction is UNSAT? 

Most basic idea: ask a first-order theorem prover (e.g., Vampire).

In the case of Vampire (and similar tools), you will 
get back a proof as something akin to a big 
resolution-based certificate which can be checked
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Practical (UN)SAT solvers (used in verification, bounded model checking, etc…) 
have not been based on natural deduction, tableaux, Hilbert systems, etc… 

Instead, they have been based on DPLL/CDCL, i.e., the “decide then 
propagate then backtrack/learn” algorithms to materialize an assignment 

Unfortunately, extending these methods to FOL is hard, because: 
- First order logic is undecidable (Godel’s incompleteness theorem) 
- Quantifiers are hard, pose practical difficulty 
- Equality tends to blow up, massively 
- Decision also blows up…
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First-order theorem provers use an advanced mix of techniques 
to balance these issues. Undecidable does not pose serious 
issues in practice for many theories, but = is generally 
ubiquitous—handling equality is a serious issue. 

Equality may be handled by adding axioms: 
∀x∀y. x=y ⇒ y=x 

∀x₀∀x₁…∀y₀∀y₁… x₀ = y₀ ∧ … ⇒ f(x₀,x₁,…) = f(y₀,y₁…) 

Unfortunately, this approach can materialize a ton of data if an 
explicit term / formula representation is used. A key goal of 
SMT/first-order solvers is in efficiently handling equality

Space-efficient representation of equality is key
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To rigorously discuss properties of first-order logic, we should 
also mention a few words about its semantics. 

In propositional logic, interpretations are sets of “true” atoms 

In predicate (first-order) logic, there is quite a bit more to define. 
A “first order structure” is a pair 〈D,I〉of a “domain of 
discourse” and an interpretation I which maps non-logical 
(variables, functions, constants, predicates) to an interpretation as 
functions over sets 

The field of model theory studies first-order structures and their 
properties. I will not much model theory here but will describe 
symbolic proof systems (without their proofs).

Semantics of First-Order Logic
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A few slides ago, we presented a general idea for proving things 
in first-order theories: axiomatize them via a set of axioms and 
then use a reasoning system / prover / etc… to prove UNSAT 

Unfortunately, this approach is often inefficient in practice. 
Theory-specific solvers can exploit application-specific 
knowledge, representations (data structures), heuristics, etc… 

Modern solvers eschew first-order axiomatization and instead use 
an application specific solver, backed by a SAT solver.  

Such solvers are based on satisfiability modulo theories (SMT) 

These solvers don’t handle arbitrary quantifiers. Instead, free 
variables are interpreted existentially (with respect to the theory)

From first-order logic to satisfiability modulo theories
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I.e., satisfiability with respect to the theory used in the formula 

f(x*2) = g(x) ∧ e = g(x) ⇒ f(x+x) = e 

The above formula is an “SMT formula,” but this is insufficiently 
specific, we must say the theor(ies) being used to ensure we are 
rigorous about the interpretation for *, +, and function application.  

E.g., we may construe this as both: 
- Linear integer arithmetic (LIA), for * and + 
- Uninterpreted functions (UF), for reasoning over g and f while 

reasoning over them purely symbolically (“uninterpreted”) 
Also, we assume all theories demand at least equality

Why “modulo theories?”
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We can see even now that it is practically useful to mix multiple 
theories. There is a fairly systematic approach to combining SAT 
and a variety of theory-specific solvers via APIs. This is the DPLL(T) 
approach, and we will cover it later in the class. 

The SMTLIB standard defines a variety of theories, along with a 
dependency graph of how they may be used.

A wide array of first-order theories, and their combinations
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The key idea in using an SMT solver is to be able to leverage 
efficient solvers for a combination of theories to model properties 
of interest relevant to your domain. 

The precise choice of theory, and whether to use an SMT solver at 
all, will be heavily application-dependent. It is important to ensure 
that there is minimal “encoding overhead.” 

Example: the symbolic executor KLEE uses bit vectors (BV) along 
with array logic (A) and uninterpreted functions (UF)

Which theories do I choose!?
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In subsequent classes, we will discuss theory-specific solvers for 
uninterpreted functions (via congruence closure), bit vectors (bit 
blasting), and several other theories.
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To demonstrate the power of SMT, we will see how we can use 
SMT to model the correctness of a small algorithm: 

// input x, a bit vector of length N
i = 0;
r = 0;
while(i < N) {
  if (x & 1<<i) {
    r += 1<<i;
  }
  i++;
}
assert( r == x );

Worked Example: Bounded Model Checking
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We will employ bounded model checking to check the 
correctness of the program. Basically, we will let inputs be 
symbolic, and we will unroll loops up to some depth: 
// input x, a bit vector of length N
i_0 = 0;
r = 0;
if (i_0 < N) {
  if (x & 1<<i_0) {
    r += 1<<i_0;
  }
  i++;
}
i_1 = i_0 + 1;
if (i_1 < N) {
  if (x & 1<<i_1) {
    r += 1<<i_1;
  }
  i++;
}
i_2 = i_1 + 1
…
assert( r == x );

Worked Example: Bounded Model Checking
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The idea is to unroll loops and convert to static single assignment (SSA) 
which involves “phi” nodes ϕ which are roughly “if then else” 

(assert (= N_0 (_ bv4 4)))
(assert (= i_0 (_ bv0 4)))
(assert (= r_0 (_ bv0 4)))
(assert (= r_1 (bvadd r_0 (bvshl #x1 i_0))))
(assert
 (=
  r_2
  (ite
   (and (bvult i_0 N_0) (not (= (_ bv0 4) (bvand x (bvshl #x1 i_0)))))
   r_1
   r_0)))
(assert (= i_1 (bvadd i_0 (_ bv1 4))))
(assert (= i_2 (ite (bvult i_0 N_0) i_1 i_0)))
…

Worked Example: Bounded Model Checking
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https://gist.github.com/kmicinski/f583dd4ed99d71dd04184f5ce806348b

Full example…
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On BMC, in this case discussing a SAT-based encoding… 

https://courses.cs.washington.edu/courses/cse507/21au/doc/
L05.pdf

More Info
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Z3’s Python-based API enables us to use it without manually writing 
code that generates SMTLIB, it is much friendlier to use and enables 
high-level programming constructs like list comprehensions. 

For example, I will show an implementation of sudoku taken from 
Leonardo de Moura’s Python Z3 tutorial. 

In sudoku, every number on the board has to be distinct.

Z3’s Python API
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# 9x9 matrix of integer variables
X = [ [ Int("x_%s_%s" % (i+1, j+1)) for j in range(9) ]
      for i in range(9) ]

# each cell contains a value in {1, ..., 9}
cells_c  = [ And(1 <= X[i][j], X[i][j] <= 9)
             for i in range(9) for j in range(9) ]

# each row contains a digit at most once
rows_c   = [ Distinct(X[i]) for i in range(9) ]

# each column contains a digit at most once
cols_c   = [ Distinct([ X[i][j] for i in range(9) ])
             for j in range(9) ]

# each 3x3 square contains a digit at most once
sq_c     = [ Distinct([ X[3*i0 + i][3*j0 + j]
                        for i in range(3) for j in range(3) ])
             for i0 in range(3) for j0 in range(3) ]

sudoku_c = cells_c + rows_c + cols_c + sq_c

# sudoku instance, we use '0' for empty cells
instance = ((0,0,0,0,9,4,0,3,0),
            (0,0,0,5,1,0,0,0,7),
            (0,8,9,0,0,0,0,4,0),
            (0,0,0,0,0,0,2,0,8),
            (0,6,0,2,0,1,0,5,0),
            (1,0,2,0,0,0,0,0,0),
            (0,7,0,0,0,0,5,2,0),
            (9,0,0,0,6,5,0,0,0),
            (0,4,0,9,7,0,0,0,0))

instance_c = [ If(instance[i][j] == 0,
                  True,
                  X[i][j] == instance[i][j])
               for i in range(9) for j in range(9) ]

s = Solver()
s.add(sudoku_c + instance_c)
if s.check() == sat:
    m = s.model()
    r = [ [ m.evaluate(X[i][j]) for j in range(9) ]
          for i in range(9) ]
    print_matrix(r)
else:
    print ("failed to solve")
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Place N queens on an N*N chessboard such that no two queens can 
attack each other. No two queens can share a row, column, or diagonal

N-Queens (also from PyZ3 tutorial)
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# We know each queen must be in a different row.
# So, we represent each queen by a single integer: the column position
Q = [ Int('Q_%i' % (i + 1)) for i in range(8) ]

# Each queen is in a column {1, ... 8 }
val_c = [ And(1 <= Q[i], Q[i] <= 8) for i in range(8) ]

# At most one queen per column
col_c = [ Distinct(Q) ]

# Diagonal constraint
diag_c = [ If(i == j,
              True,
              And(Q[i] - Q[j] != i - j, Q[i] - Q[j] != j - i))
           for i in range(8) for j in range(i) ]

solve(val_c + col_c + diag_c)

N-Queens code (from PyZ3 tutorial)
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Using the Python-based API provides an intuitive programmatic 
interface and provides many high-level niceties and abstracts around 
some of the ugliness of manually calling Z3 and parsing its output, 
generating SMTLIB, etc…

In project three of the course, you’ll implement a symbolic executor. In 
that project, I suggest you use Python and Z3’s API


