
Project 1 — 
DPLL/SAT
CIS700 — Fall 2023

Kris Micinski



2

This project has a fairly short specification.


Your job is to build a SAT solver.

- Your SAT solver should be invoked on the command line. You 
may write in any language you want: Python, C++, Racket, 
Haskell, etc…

- Your SAT solver should take a single argument, which is a file 

in DIMACS CNF input format. The format is very simple—it 
should be possible to parse it by reading each line and using 
a string split operation


- Your program should write an output to the console of either:

- (a) the string “UNSAT” or (b) a satisfying assignment to the 

formula.



3

Read the following short guide:


https://jix.github.io/varisat/manual/0.2.0/formats/dimacs.html


Example (from that site): encode (x ∨ y ∨ ¬z) ∧ (¬y ∨ z) as 

p cnf 3 2

1 2 -3 0

-2 3 0

First line specifies number of propositions (sequentially 
numbered), followed by number of clauses

Each subsequent line gives a clause, consisting of whitespace-
separated literals (either l, positive l or -l, not l), ending in 0 (end 
of line sentinel)

DIMACS CNF Input Format

https://jix.github.io/varisat/manual/0.2.0/formats/dimacs.html


4

Projects are due on the 28th, anywhere on earth (so, 7am on 
the 29th in syracuse).


You may work in groups of up to three. If you are relatively more 
advanced, please try to work in a group of students which is less 
confident.


If you are less interested in dedicating time to the class, it is 
acceptable to do the baseline of simply enumerating the SAT 
instances and checking all of them.


If you are feeling you seriously want to learn this material 
implement either (a) DPLL or (c) CDCL



5

Please email me submissions, kkmicins@syr.edu, CCing all of 
your group mates.


I will test your submissions with a variety of DIMACS inputs, 
e.g., the ones from this page. https://people.sc.fsu.edu/
~jburkardt/data/cnf/cnf.html


Please tell me how to invoke and run your program when you 
email me. Ensure that it can run on either a Mac or Linux 
machine (I have both of these)—give me sources and 
instructions to build your project.

Submissions and Grading

mailto:kkmicins@syr.edu
https://people.sc.fsu.edu/~jburkardt/data/cnf/cnf.html
https://people.sc.fsu.edu/~jburkardt/data/cnf/cnf.html


6

- I will give you a 95% if your project is a good-faith attempt that is a working 
solution for small CNF instances. If you get occasional hiccups, I am fine with 
that. If you get a substantial number of instances incorrect (i.e., wrong model/
unsat) I will consider taking off some points. Ensure that your implementation is 
correct—I will grade whether or not you have tests for your project. I expect 
some testing infrastructure, even if it is relatively basic—I am not expecting 
production quality, but a convincing argument that it was constructed with an 
eye to correctness


- I will give you +5% if you implement more than enumerate-and-check, i.e., if you 
implement DPLL or something similar


- I will give you +5% *bonus* (so, 105%) if you implement CDCL (which we will 
discuss next week) as well. And I will be very impressed.

Grading / Rubric


