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Natural Deduction is a logical reasoning system which defines 
an explicit syntactic notion of proofs at the same time as the 
propositions they inhabit. 

This mindset is closely related to the notion of type-checking a 
program, wherein subexpressions types are surmised and 
compositional rules allow you to combine subexpressions in a 
well-typed manner. 

In natural deduction, we say “the follow rules are the only ways 
in which a proof of a logical statement is built.” 

To say something is true is the same as having a syntactic, 
materialized proof for it
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My lecture very closely follows Frank Pfenning’s notes from his 
various classes, I will link these notes in the Google Group. 

I am not a researcher in type theory (not my branch of PL!), so I 
will defer to expert expositions when necessary.
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“Intuitionistic logic, sometimes more generally called constructive logic, refers to 
systems of symbolic logic that differ from the systems used for classical logic by 
more closely mirroring the notion of constructive proof. — Wikipedia” 

Intuitionism is the notion of identifying a true statement with a symbolic proof of 
that statement 

Last lecture, we talked about a model (i.e., set)-theoretic perspective, mapping 
variables to values. This has issues in handling higher-order objects (Russel’s 
paradox) which do not crop up in the propositional setting—but the study of 
higher-order logic (wherein one can quantify over propositions) motivated the 
study of intuitionistic type theory
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Introduction and Elimination Forms 

Proofs of statements in intuitionistic logic discuss the formation of connectives. In 
classical logic, we typically construe connectives as encodings into a minimal form 
(e.g., CNF/DNF). This pushes reasoning into a set-theoretic interpretation. 

Specifically problematic for computers: explicitly representing an interpretation (e.g., 
as a set) may be either (a) intractable or (b) impossible due to infiniteness. 

By contrast, intuitionism dictates that when we discuss the meaning of a connective, 
we completely define a set of formation rules which break down into two broad 
categories: 

Introduction Forms — a connective appears new in a conclusion 
Elimination Forms — a connective is consumed and disappears in the conclusion
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The introduction form for and (∧) is a proof schema which tells us how 
we can introduce ∧ s into a conclusion.
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∧I 
P True Q True

P ∧ Q True

There are two elimination forms for ∧: the first eliminator selects the 
left item (discarding the second), and the second eliminator selects 
the right (discarding the left)

∧E1 
P ∧ Q True

P True
∧E2 

P ∧ Q True

Q True



A crucial problem — the need for premises
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Let’s say we want to write proofs of true statements involving ∧. This is the 
kind of thing we should be able to do now that we’ve defined the 
introduction and elimination forms for ∧. 
 
Unfortunately, this doesn’t work. Look at this: 

A ∧ (B ∧ C) True
(B ∧ C) True

B True

∧E2 

∧E1 

The reasoning here works, but following this 
reasoning allows us to conclude that an 
arbitrary proposition is true. Obviously, there 
are some false statements (A ∧ ¬A), so there 
must be a problem!



A crucial problem — the need for premises
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This is not a proof, it is a suppositional line of reasoning! We have assumed 
that A ∧ (B ∧ C) True, and used that to derive B True 

Intuitionistic logic gives names to assumptions. We will reject this as a 
“proof” because the hypothesis is not explicitly introduced. We will do this 
by introducing them into an environment, which allows naming hypotheses



9

Hypotheses get introduced (and named) by the introduction of ⇒.  

To prove A ⇒ B, we assume A (by introducing it as a named hypothesis, 

which may then be referenced) and showing B: 

A True
…

B True

u
Named hypothesis

A ⇒ B True
⇒I



(End of IPL, day 1)
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We will cover more intuitionistic logic next week


