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Questions to start us off:
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What is reasoning?

How can we rigorously define it

Can we systematically understand, represent, and 
implement reasoning procedures?



Example Narrative
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Handsome is a dog

Handsome lives in Syracuse

All dogs which live in Syracuse must be vaccinated

Therefore, Handsome must be vaccinated



Handsome is a dog

dog(andy).

Handsome lives in Syracuse

lives(andy, syracuse).

All dogs which live in Syracuse must be vaccinated

∀x. dog(x) ∧ lives(x, syracuse) ⟹ requires_vaccination(x)


Therefore, Handsome must be vaccinated:

Instantiate the quantified formula with handsome:

dog(andy) ∧ lives(andy, syracuse) 

  ⟹ requires_vaccination(x)

Both of the antecedents (things before arrow) are true, thus:

requires_vaccination(andy)

How can we formalize this?
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Question: how could a computer represent this proof?


First, we need to ask ourselves: what’s the logic? 

  Broadly, logics formalize (i.e., specify algebraic 
representation of) formulas, truths, and proofs.


- Our last example used first-order logic (FOL) over atoms

- FOL allows universal (∀) and existential (∃) quantifiers


- Can also include function symbols: ∀x. x > 1 ⟹ x > 0


- But also propositional logic (no quantifiers)

- Even things like temporal logics, which include 

quantifiers to say things like “in the future, the stock price 
will be higher than it is now.”
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Now that we picked first-order logic w/ quantifiers, we need 
to understand how to represent a proof of our supposition 

For example, we might write a list of valid statements, each 
either (a) assumptions or (b) statements following from all 
higher-up statements:

(A₀) dog(andy).

(A₁) lives(andy,syracuse).

(A₂) ∀x. dog(x) ∧ lives(x,syracuse) 

         ⟹ requires_vaccination(x)

(Instantiate A₂, [x ↦ handsome])

dog(andy) ∧ lives(andy,syracuse) 

         ⟹ requires_vaccination(andy)


(⟹, A₀ A₁) requires_vaccination(andy)
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This style of proof uses a sequent calculus formulation

Each line follows from (is conditional upon) all previous lines

There are a variety of sequent-style calculi for various logics


(A₀) dog(andy).

(A₁) lives(andy,syracuse).

(A₂) ∀x. dog(x) ∧ lives(x,syracuse) 

         ⟹ requires_vaccination(x)

(Instantiate A₂, [x ↦ andy])

dog(andy) ∧ lives(andy,syracuse) 

         ⟹ requires_vaccination(andy)


(⟹, A₀ A₁) requires_vaccination(andy)
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The precise formalization of this matters a lot, in terms of 
reasoning about expressivity, correctness, and 
completeness (can everything true be proven?) for a given 
logical system.


In this class, we will detail these philosophical issues, but 
largely in the context of understanding their impacts on 
building programs which perform automated reasoning.


E.g., propositional logic is easy (enumerable), but first-order 
logic (quantifier instantiation) is harder and, in general, 
requires symbolic search.

8



We will ask questions such as:

How to represent (proofs of) knowledge symbolically?

How can we build proof checkers, which increase our 
confidence the proof (system) is meaningful?

How do you efficiently search for proofs of true 
statements (or refutations of false statements)?
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We will also cover rigorous formal systems necessary to 
understand these, to the degree necessary to 
understand the correct design of automated reasoning 
systems.
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P1 — SAT Solvers (MiniSat)

P2 — Query languages and Datalog (e.g., Soufflé)

P3 — Constraint solvers and Satisfiability-Modulo Theory 
Solvers (e.g., Z3, CVC5, etc…)

P4 — Interactive Theorem Provers (Lean) 

Some Tools we will cover
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P1 — Reachability-Based Verification

P2 — Bounded Model Checking w/ SAT

P3 — Symbolic execution with Z3

P4 — Interactive Theorem Provers (Lean) 

Projects (in Python)
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We use writing to help ourselves structure our thoughts—
revising, editing, restarting along the way

 
This class examines the process of writing and understand 
programs using a systematic, iterative approach

 
Want to learn “how to think” about programming



Propositional 
Logic and SAT
CIS700 — Fall 2023

Kris Micinski



Today we’ll look at our first logic: propositional logic


Propositional logic consists of formulas built via connectives 
applied to atomic propositions


The following are propositional formulas:

P (“P holds”), every atomic proposition is trivially a formula

P ∧ (Q ∨ ¬P) (“P holds and (Q or P) also holds”) 
¬P ∧ Q ⟹  Q ∧ ¬P (“Not P and Q implies Q and not P”)


True (⊤) and False (⊥), but these symbols have many meanings
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Let’s consider a universe of four propositional variables:

DoorOpen, DoorClosed, MachineOn, MachineOff


How would you express the following:

“The machine may not be both on and off.”

(Notice that this is xor, even though we excluded it…)


“If the door is open, the machine may not be on.”
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Let’s consider a universe of four propositional variables:

DoorOpen, DoorClosed, MachineOn, MachineOff


How would you express the following:

“The machine may not be both on and off.”

(Notice that this is xor, even though we excluded it…)

¬(MachineOn ∧ MachineOff)

“If the door is open, the machine may not be on.”

Open ⇒  ¬MachineOn
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Propositional formulas are (structurally) recursive structures. All 
formulas have an implicit recursive structure with constants / 
propositional variables at their leaves
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(ϕ₀ ∧ ϕ₁) ∨ ψ ∨

ψ∧

ϕ₀ ϕ₁

‘((ϕ₀ ∧ ϕ₁) ∨ ψ)≡ ≡



Scheme’s S-expressions (structured expressions) systematize 
this notion. S-expressions are symbolic representations, 
implemented under the hood via pointers to subtrees
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(ϕ₀ ∧ ϕ₁) ∨ ψ ∨

ψ∧

ϕ₀ ϕ₁

‘((ϕ₀ ∧ ϕ₁) ∨ ψ)≡ ≡



We formalize our expressions as a Racket predicate
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(define (prop-formula? ϕ)

  (match ϕ
    [(? symbol? x) #t]

    ['T #t] ;; for "true"

    ['F #t] ;; for "false"

    [`(¬ ,ϕ) #t]

    [`(,ϕ0 ∧ ,ϕ1) #t]

    [`(,ϕ0 ∨ ,ϕ1) #t]

    [`(,ϕ0 ⇒ ,ϕ1) #t]

    [`(,ϕ0 ⇔ ,ϕ1) #t]

    [_ #f]))



We formalize our expressions as a Racket predicate
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(define (prop-formula? ϕ)

  (match ϕ
    [(? symbol? x) #t]

    ['T #t] ;; for "true"

    ['F #t] ;; for "false"

    [`(¬ ,ϕ) #t]

    [`(,ϕ0 ∧ ,ϕ1) #t]

    [`(,ϕ0 ∨ ,ϕ1) #t]

    [`(,ϕ0 ⇒ ,ϕ1) #t]

    [`(,ϕ0 ⇔ ,ϕ1) #t]

    [_ #f]))

;; Test…

(prop-formula? 

  ‘(ϕ₀∧ ϕ₁) ∧ ψ))

;; #t



A formula is just a statement. To speak of a statement’s veracity, 
we need to rigorously define the notion of a “true” statement.


There are differing perspectives on this:

A statement is true precisely when I can materialize a 
symbolic proof for it


This is the constructive view, every statement demands 
evidence represented as data


Everything is either true or false, the classical view

¬¬P ⟹ P (excluded middle)
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Interpretations



We will start by looking at a classical, model-theoretic 
interpretation in which interpretations are mappings of variables 
to booleans.


Later, we will consider the importance of proof theory, which 
deals with proofs as materialized objects which may be used to 
formally derive knowledge.


These two perspectives are different sides of the same coin, but 
it is important to be mindful of their differences
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Propositional logic has a simple notion for classical 
interpretations: sets. If there are a finite number of atoms under 
consideration (say 𝒜), the finite sets are enumerable and every 
subset I of 𝒫(𝒜) forms a partition, such that atoms in I are 
considered “true” and atoms not in I are “false.”


Example: 𝒜 = {On, Off}, 𝒫(𝒜) = {{}, {On}, {Off}, {On, Off}}

Each set in the power set is an interpretation

We apply interpretations to formulas to determine their truth
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Model Theoretic Interpretations



Given an interpretation (i.e., set of atoms which are to be 
construed as “true”), we can recursively define veracity 

Exercise:

Say I = {On, Off}. What should the truth value (“true” or “false”) 
be for each of these formulas ϕ when…

ϕ is “On”

ϕ is “On ∧ ¬Off”

ϕ is “On ⟹ Off”

ϕ is “On ∧ (¬On ∨ Off)”
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From Interpretations to Valuaations



In Scheme (Racket), we can represent an interpretation as a 
dictionary (hash):


(define (interpretation? I)

  (and (hash? I)

       (andmap symbol? (hash-keys I))

       (andmap boolean? (hash-values I))))

26

Interpretations in code



These hashes are implemented efficiently via a data structure 
which allows persistent ~O(1) lookup / insertion


This is a variation of the mutable hash tables generally shown in 
intro DS classes, consider looking up HAMT
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These hashes are implemented efficiently via a data structure 
which allows persistent ~O(1) lookup / insertion


This is a variation of the mutable hash tables generally shown in 
intro DS classes, consider looking up HAMT


(hash-ref (hash-set (hash 'x 3) 'x 5) 'x)
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We can now define (interp-formula ϕ I), i.e., !"#which 
considers several different cases based on the structure of ϕ: 

If ϕ is literally true or false, the answer is #t / #f (Racket’s “true”)

If ϕ has the form ϕ₀⊕ϕ₁, then!"# is (⊕!"$# !"%#)

Where we assume there is a Racket version of ⊕


If ϕ has the form ¬ϕ then!"# is (not!"#)
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When the interpretation I results in ϕ being true, we say that I 
satisfies ϕ, often written using the notation I ⊨ ϕ.


In this case, we will call I a “model” of the propositional 
statement ϕ.


Propositional logic is decidable: the set of possible interpretations 
is finite (assuming formula size is finite) and you can check each 
interpretation
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A formula is valid if it is true in every interpretation: ⊨ ϕ, notice 
that there is nothing to the left of ⊨, suggesting that every I will 
suffice to satisfy ϕ


These statements are called tautologies. Which of the following 
are tautologies?


(I) ¬P ∨ P ∨ (¬P ∧ P),  (II) P ⟹ P ∧ Q,  (III) P ∧ Q  ⟹ P
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Proof Theory 

32

Logics are described in different ways. We have seen a model 
theoretic description of propositional logic, which appeals to a 
semantics (formalized as interpretations).


By contrast, proof theory describes syntactic objects (proofs) which 
represent valid derivations of new knowledge from old knowledge


We will study several proof systems throughout the course: natural 
deduction, resolution, sequent calculus, and analytic tableaux



Normal Forms
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Working with arbitrarily-structured formulas means that we need 
to deal with a bunch of different specific forms (∨, ∧, ⟹, ⇔, …)


This is messy, since there is a much smaller basis. It is possible to 
encode all formulas in terms of just ¬ and ∧, for example.


There are a variety of normal forms for propositional logic, i.e., 
syntactic restrictions on formulas which do not inhibit expressivity


There are conversion algorithms into these normal forms



NNF, CNF, and DNF
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Negation Normal Form (NNF): All negations have been pushed 
as far down as possible. ¬(P ∧ Q) ❌, (¬P ∨ ¬Q) ✅

Conversion algorithm: first expand P⟹Q into ¬P ∨ Q (etc…), 

next repeatedly apply De-Morgan’s laws and cancel ¬¬P to P

Conjunctive Normal Form (CNF): A big conjunction of 
disjunctions (“clauses”): (A ∨ ¬B ∨ C) ∧ (B ∨ ¬C) ∧ (¬A ∨ ¬B)

To obtain: Start with DNF, then distribute over ∧

Disjunctive Normal Form (DNF): A big disjunction of 
conjunctions: (A ∧ B ∧ C) ∨ (A ∧ ¬B ∧ ¬C) ∨ ...
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Let’s convert the following to NNF: 

(A ∧ (B ⇔ A)) ⟹ B


¬(A ∧ (B ⇔ A)) ∨ B (encoding ⟹)


¬(A ∧ ((B ⟹ A) ∧ (A ⟹ B))) ∨ B, (encoding ⇔)


¬(A ∧ ((¬B ∨ A) ∧ (¬A ∨ B))) ∨ B, (encoding ⟹) Now De Morgan’s


A ∨ ¬((¬B ∨ A) ∧ (¬A ∨ B))) ∨ B, continue De Morgan’s 

A ∨ (¬(¬B ∨ A) ∨ ¬(¬A ∨ B))) ∨ B, and continue…

A ∨ ((¬¬B ∧ ¬A) ∨ (¬¬A ∧ ¬B))) ∨ B, now cancel ¬¬

A ∨ (B ∧ ¬ A) ∨ (A ∧ ¬B) ∨ B (NNF, also in DNF)
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Starting from here, how do we get to CNF? Naively: use distributivity, 

A ∨ (B ∧ ¬ A) ∨ (A ∧ ¬B) ∨ B 

Group everything as binary so that we can distribute:

(B ∧ ¬ A) ∨ (A ∨ ((A ∧ ¬B) ∨ B)))

Exercise: use distributivity, cancel double negation, to achieve CNF


(B ∨ (A ∨ ((A ∧ ¬B) ∨ B))) ∧ (¬ A ∨ (A ∨ ((A ∧ ¬B) ∨ B)), and then…

(B ∨ (A ∨ ((A ∨ B) ∧ (¬B ∨ B))) ∧ (¬ A ∨ (A ∨ ((A ∧ ¬B) ∨ B)), 

(B ∨ (A ∨ ((A ∨ B) ∧ (¬B ∨ B))) ∧ (¬ A ∨ (A ∨ ((A ∨ B) ∧ (¬B ∨ B)))), 

…

(A ∨ B) 




CNF vs. DNF, Digital Logic
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In general, we will work with CNF, because it allows a more 
“dense” representation of formulas. Translation into DNF often 
results in large (super linear) encoding overhead. Hence, modern 
solvers often consume input in CNF format.

You may recall this material from a digital logic 
class—there is serious overlap with minterms/
maxterms/karnaugh maps, worth looking into



Tseitin’s transformation 
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The distributivity law induces super-linear encoding blowup for 
formulas—this leads to slowdown of tools which check satisfi 
ability / validity of these formulas


We often want a better transformation from formulas into CNF


A popular transformation is Tseitin’s transformation. Intuitively, it 
assigns each sub-formula a new propositional atom and asserts a 
suitable bi-implication



Tseitin’s transformation 
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∨

ψ∧

ϕ₀ ϕ₁

(ϕ₀ ∧ ϕ₁) ∨ ψ

- Assign non-literal formulas a new variable

- Add definitions for each, recursively

P₀ =

P₁ =

P₁ ⇔ P₀ ∨ ψ


P₀ ⇔ ϕ₀ ∧ ϕ₁

Assert each definition, plus P₁, 
via a big conjunction:

(P₁ ⇔ P₀∨ψ) ∧ (P₀ ⇔ ϕ₀∧ϕ₁) ∧ P₁
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(ϕ₀ ∧ ϕ₁) ∨ ψ

∨

ψ∧

ϕ₀ ϕ₁

P₀ =

P₁ =

P₁ ⇔ P₀ ∨ ψ


P₀ ⇔ ϕ₀ ∧ ϕ₁

(P₁ ⇔ P₀∨ψ) ∧ (P₀ ⇔ ϕ₀∧ϕ₁) ∧ P₁
Convert each definition to CNF:

Which forms…

Tseitin’s transformation 

(¬P₁ ∨ P₀ ∨ Ψ) ∧ (¬P₀ ∨ P₁) ∧ (¬Ψ ∨ P₁)The first …

(¬P₀ ∨ ϕ₀) ∧ (¬P₀ ∨ ϕ₁) ∧ (¬ϕ₀ ∨ P₀) ∧ (¬ϕ₁ ∨ P₀)Then…



Why Tseitin’s transformation?
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Tseitin’s transformation converts to CNF without the super 
linear blowup of naive distributivity


Output is a set of definitions (defined via bi-implication), 
where the set size is linear in the size of the input formula 
(one new var for each node in the formula)


Each of these definitions is of constant depth (either an 
atom or an application of a connective to atoms; then apply 
distributivity to obtain CNF (constant factor blowup)



SAT Solving
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Checking whether a formula is satisfiable is called 
SAT(isfiability) solving. Propositional logic is decidable, via 
truth tables—but what is the complexity of checking via 
truth tables? Answer: O(2^n)


Does a better solution exist? In practice yes, but only for 
formulas which obey “typical” structure



Notice that whenever ϕ is a validity (i.e., ⊨ ϕ), ¬ϕ is UNSAT

To see why: consider ¬ϕ is SAT, then it has some model I such 
that I ⊨ ¬ϕ. By assumption ϕ is a validity, so I ⊨ ϕ as well. This 
gives us a contradiction, since I ⊨¬ϕ∧ϕ
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Validity solving via SAT?



k-SAT
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To simplify the core machinery of SAT solving, most solvers 
operate over CNF, a SAT instance given in CNF is k-SAT if 
the largest clause consists of k literals


Popular instances include 2-SAT and 3-SAT

2-SAT: (P ∨ ¬Q) ∧ (¬P ∨ Q) ∧ (¬Q ∨ ¬P)

3-SAT: (¬R ∨ P ∨ ¬Q) ∧ (¬P ∨ Q ∨ R) ∧ …



2-SAT is polynomial time (complete for NL)
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2-SAT is a restricted form of k-SAT. Solving 2-SAT can be done 
in polynomial time and 2-SAT is complete for the class NL 
(Nondeterministic Logarithm, i.e., Turing machine w/ log 
memory space)


Algorithm: Start by building a graph of each literal in the 
program, then for each clause ϕ₀ ∨ ϕ₁ add an edge between 
¬ϕ₀  and ϕ₁ and ¬ϕ₁ and ϕ₀, obtaining a graph G


Last, calculate strongly-connected components of G and 
check if there is any P such that P and ¬ are in the same SCC



2-SAT Algorithm: Intuition
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Algorithm intuition: every clause has the form ϕ₀ ∨ ϕ₁: if ¬ϕ₁ 
holds, then the only thing that can make the clause true (and it 
must be true in any satisfying assignment!) will be ϕ₀. Thus, 
¬ϕ₁ “forces” ϕ₀ (unit propagation).


Knowing this, we (a) assemble a “forced-implication” graph 
and then (b) find its strongly-connected components, finally (c) 
checking if there are any literals P such that P and ¬P are in 
the same SCC

 (P ∨ ¬Q) ∧ (¬P ∨ Q) ∧ (¬Q ∨ ¬P)



Solving 2-SAT via forced implication
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 (P ∨ ¬Q) ∧ (¬P ∨ Q) ∧ (¬Q ∨ ¬P)

First, build a graph of literals…

P ¬P

Q ¬Q



Building forced implication graph
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 (P ∨ ¬Q) ∧ (¬P ∨ Q) ∧ (¬Q ∨ ¬P)

Now, add edges for each clause—start w/ left one…

(Stay in NNF: cancel ¬¬Q to Q!)

P ¬P

Q ¬Q



Calculate SCCs and check
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 (P ∨ ¬Q) ∧ (¬P ∨ Q) ∧ (¬Q ∨ ¬P)

Now, add edges for each clause—start w/ left one…

(Stay in NNF: cancel ¬¬Q to Q!)

P ¬P

Q ¬Q

This is one big SCC—thus, the formula is unsatisfiable

(E.g., see the path from P to ¬P through ¬Q!)



Resolution
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This intuition is closely related to an inference rule 
named resolution, which is stated as follows:

P ∨ Q ¬Q ∨ R

P ∨ R

Here we use the natural deduction style (we’ll discuss soon); if 
everything above the line holds, the thing below holds too

“If we know P ∨ Q and we know ¬Q ∨ R, then we know P ∨ R“



Refutation
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We can use resolution to derive that a collection of 
clauses cannot hold simultaneously

P ∨ ¬Q Q ¬P ∨ ¬R ¬R

Notice that the following cannot hold together:

P

¬P

1 2 3 4

1,25

1,26

⊥



Refutation
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Refutation can be used to prove validities: if you want to 
prove ϕ, build a CNF version of ¬ϕ, then derive ⊥

Example: say we want to prove P ⟹ P ∨ Q

First we build 

¬(P ⟹ P ∨ Q) 


= ¬(¬P ∨ (P ∨ Q)) 

= ¬¬P ∧ ¬(P ∨ Q) 

= P ∧ ¬P ∧ Q

 P          ¬P           

⊥

Resolution on first two (single-literal) 
clauses gives us ⊥



Refutation in practice
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Refutation offers a general strategy to prove validities that is 
(potentially) much cheaper than enumerating truth tables


Resolution-based solving is quite popular, in a variety of logics. 
Examples we will see include DPLL and SLD resolution


However, real problem instances may involve (hundreds of) 
thousands of clauses—resolution generates new clauses and 
may not be productive, and there is no easy way to check in 
advance whether a resolution will be “worth it.”



3-SAT (and all k > 2) is NP complete
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2-SAT is polynomial time because SCC computation can be done 
in polynomial time—we will soon see another restricted form of 
logic (Datalog) which shares similar decidability properties


3-SAT is much harder—3-SAT is one of Karp’s 21 reductions. E.g., 
reduce 3-coloring to SAT, various reductions exist



MiniSAT
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Very small, well-written SAT solver—utilizes a combination of 
approaches which we will discuss later


Accepts input in DIMACS format:


- comment lines begin c My comment here

- Problem line begins p cnf V C for V variables and C clauses

- Rest of the file is clauses, written as whitespace-separated 

sequences of integers: N is a positive occurrence, -N is a 
negative (negated) occurrence



DIMACS Exercise
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Convert the following CNF formula to DIMACS input:

(P ∨ ¬Q ∨ ¬R) ∧ (Q ∨ R ∨ ¬P) ∧ (¬R ∨ ¬Q ∨ ¬P)


c Solution…

c P=1, Q=2, R=3

p cnf 3 3

1 -2 -3 0

2 3 -1 0

-3 -2 -1 0



The lack of quantifiers or structured values is a significant 
expressivity issue. Propositional logic lacks a notion of 
functions or their application

What about statements like: ∀ x ∀ y. y > 0 ⟹ x+y > x


These are first order, and require formalizing a domain of 
discourse (things quantifiers may bind), function symbols, …

FOL is much more powerful, but commensurately more 
challenging to formalize 
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Limits of Propositional Logic; Looking Ahead



Q0 (easy): What is the difference between constructive logic 
and classical logic? (We will learn more about constructive 
logic soon!)

Q1 (harder): Show that ¬ and ∧ form a minimal basis for 
propositional logic. Do this by expressing the other 
operators in terms of these

Q2 (harder): Do ¬ and ∨ also form a minimal basis for 
propositional logic? Any others…?
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Questions and exercises



Put this into NNF:  
    ¬(P ∧ ¬(Q ∨ P)) ∧ (P ⟹ Q)


Take the output of that question, now further 
convert to CNF and DNF

Use Tseitin‘s transformation on the above 
formula to convert it to CNF

59

Questions and exercises



(Optional) Download and install MiniSAT; read 
about the DIMACS input format and translate 
the examples from today’s class
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Questions and exercises



Model bits via logical propositions. Consider a 
two-element bitvector of two bits: B0 and B1

Design a two-bit adder, which takes two inputs, 
B10/B00 and B11/B01, and produces three 
outputs: the sum bits S0/S1 and a carry C

61

Designing an Adder
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