
Modern Symbolic AI

& Automated Reasoning
Instructor: Kris Micinski

https://kmicinski.com/automated-reasoning

Course Website:

https://kmicinski.com/cis352-s23

Questions to start us off:

2

What is reasoning?

How can we rigorously define it

Can we systematically understand, represent, and
implement reasoning procedures?

Example Narrative

3

Handsome is a dog

Handsome lives in Syracuse

All dogs which live in Syracuse must be vaccinated

Therefore, Handsome must be vaccinated

Handsome is a dog

dog(andy).

Handsome lives in Syracuse

lives(andy, syracuse).

All dogs which live in Syracuse must be vaccinated

∀x. dog(x) ∧ lives(x, syracuse) ⟹ requires_vaccination(x)

Therefore, Handsome must be vaccinated:

Instantiate the quantified formula with handsome:

dog(andy) ∧ lives(andy, syracuse)

 ⟹ requires_vaccination(x)

Both of the antecedents (things before arrow) are true, thus:

requires_vaccination(andy)

How can we formalize this?

4

Question: how could a computer represent this proof?

First, we need to ask ourselves: what’s the logic?

 Broadly, logics formalize (i.e., specify algebraic
representation of) formulas, truths, and proofs.

- Our last example used first-order logic (FOL) over atoms

- FOL allows universal (∀) and existential (∃) quantifiers

- Can also include function symbols: ∀x. x > 1 ⟹ x > 0

- But also propositional logic (no quantifiers)

- Even things like temporal logics, which include

quantifiers to say things like “in the future, the stock price
will be higher than it is now.”

5

Now that we picked first-order logic w/ quantifiers, we need
to understand how to represent a proof of our supposition 

For example, we might write a list of valid statements, each
either (a) assumptions or (b) statements following from all
higher-up statements:

(A₀) dog(andy).

(A₁) lives(andy,syracuse).

(A₂) ∀x. dog(x) ∧ lives(x,syracuse)

 ⟹ requires_vaccination(x)

(Instantiate A₂, [x ↦ handsome])

dog(andy) ∧ lives(andy,syracuse)

 ⟹ requires_vaccination(andy)

(⟹, A₀ A₁) requires_vaccination(andy)

6

This style of proof uses a sequent calculus formulation

Each line follows from (is conditional upon) all previous lines

There are a variety of sequent-style calculi for various logics

(A₀) dog(andy).

(A₁) lives(andy,syracuse).

(A₂) ∀x. dog(x) ∧ lives(x,syracuse)

 ⟹ requires_vaccination(x)

(Instantiate A₂, [x ↦ andy])

dog(andy) ∧ lives(andy,syracuse)

 ⟹ requires_vaccination(andy)

(⟹, A₀ A₁) requires_vaccination(andy)

7

The precise formalization of this matters a lot, in terms of
reasoning about expressivity, correctness, and
completeness (can everything true be proven?) for a given
logical system.

In this class, we will detail these philosophical issues, but
largely in the context of understanding their impacts on
building programs which perform automated reasoning.

E.g., propositional logic is easy (enumerable), but first-order
logic (quantifier instantiation) is harder and, in general,
requires symbolic search.

8

We will ask questions such as:

How to represent (proofs of) knowledge symbolically?

How can we build proof checkers, which increase our
confidence the proof (system) is meaningful?

How do you efficiently search for proofs of true
statements (or refutations of false statements)?

9

We will also cover rigorous formal systems necessary to
understand these, to the degree necessary to
understand the correct design of automated reasoning
systems.

10

P1 — SAT Solvers (MiniSat)

P2 — Query languages and Datalog (e.g., Soufflé)

P3 — Constraint solvers and Satisfiability-Modulo Theory
Solvers (e.g., Z3, CVC5, etc…)

P4 — Interactive Theorem Provers (Lean)

Some Tools we will cover

11

P1 — Reachability-Based Verification

P2 — Bounded Model Checking w/ SAT

P3 — Symbolic execution with Z3

P4 — Interactive Theorem Provers (Lean)

Projects (in Python)

12

13

We use writing to help ourselves structure our thoughts—
revising, editing, restarting along the way

 
This class examines the process of writing and understand
programs using a systematic, iterative approach

 
Want to learn “how to think” about programming

Propositional
Logic and SAT
CIS700 — Fall 2023

Kris Micinski

Today we’ll look at our first logic: propositional logic

Propositional logic consists of formulas built via connectives
applied to atomic propositions

The following are propositional formulas:

P (“P holds”), every atomic proposition is trivially a formula

P ∧ (Q ∨ ¬P) (“P holds and (Q or P) also holds”) 
¬P ∧ Q ⟹ Q ∧ ¬P (“Not P and Q implies Q and not P”)

True (⊤) and False (⊥), but these symbols have many meanings

15

Let’s consider a universe of four propositional variables:

DoorOpen, DoorClosed, MachineOn, MachineOff

How would you express the following:

“The machine may not be both on and off.”

(Notice that this is xor, even though we excluded it…)

“If the door is open, the machine may not be on.”

16

Let’s consider a universe of four propositional variables:

DoorOpen, DoorClosed, MachineOn, MachineOff

How would you express the following:

“The machine may not be both on and off.”

(Notice that this is xor, even though we excluded it…)

¬(MachineOn ∧ MachineOff)

“If the door is open, the machine may not be on.”

Open ⇒ ¬MachineOn

17

Propositional formulas are (structurally) recursive structures. All
formulas have an implicit recursive structure with constants /
propositional variables at their leaves

18

(ϕ₀ ∧ ϕ₁) ∨ ψ ∨

ψ∧

ϕ₀ ϕ₁

‘((ϕ₀ ∧ ϕ₁) ∨ ψ)≡ ≡

Scheme’s S-expressions (structured expressions) systematize
this notion. S-expressions are symbolic representations,
implemented under the hood via pointers to subtrees

19

(ϕ₀ ∧ ϕ₁) ∨ ψ ∨

ψ∧

ϕ₀ ϕ₁

‘((ϕ₀ ∧ ϕ₁) ∨ ψ)≡ ≡

We formalize our expressions as a Racket predicate

20

(define (prop-formula? ϕ)

 (match ϕ
 [(? symbol? x) #t]

 ['T #t] ;; for "true"

 ['F #t] ;; for "false"

 [`(¬ ,ϕ) #t]

 [`(,ϕ0 ∧ ,ϕ1) #t]

 [`(,ϕ0 ∨ ,ϕ1) #t]

 [`(,ϕ0 ⇒ ,ϕ1) #t]

 [`(,ϕ0 ⇔ ,ϕ1) #t]

 [_ #f]))

We formalize our expressions as a Racket predicate

21

(define (prop-formula? ϕ)

 (match ϕ
 [(? symbol? x) #t]

 ['T #t] ;; for "true"

 ['F #t] ;; for "false"

 [`(¬ ,ϕ) #t]

 [`(,ϕ0 ∧ ,ϕ1) #t]

 [`(,ϕ0 ∨ ,ϕ1) #t]

 [`(,ϕ0 ⇒ ,ϕ1) #t]

 [`(,ϕ0 ⇔ ,ϕ1) #t]

 [_ #f]))

;; Test…

(prop-formula?

 ‘(ϕ₀∧ ϕ₁) ∧ ψ))

;; #t

A formula is just a statement. To speak of a statement’s veracity,
we need to rigorously define the notion of a “true” statement.

There are differing perspectives on this:

A statement is true precisely when I can materialize a
symbolic proof for it

This is the constructive view, every statement demands
evidence represented as data

Everything is either true or false, the classical view

¬¬P ⟹ P (excluded middle)

22

Interpretations

We will start by looking at a classical, model-theoretic
interpretation in which interpretations are mappings of variables
to booleans.

Later, we will consider the importance of proof theory, which
deals with proofs as materialized objects which may be used to
formally derive knowledge.

These two perspectives are different sides of the same coin, but
it is important to be mindful of their differences

23

Propositional logic has a simple notion for classical
interpretations: sets. If there are a finite number of atoms under
consideration (say 𝒜), the finite sets are enumerable and every
subset I of 𝒫(𝒜) forms a partition, such that atoms in I are
considered “true” and atoms not in I are “false.”

Example: 𝒜 = {On, Off}, 𝒫(𝒜) = {{}, {On}, {Off}, {On, Off}}

Each set in the power set is an interpretation

We apply interpretations to formulas to determine their truth

24

Model Theoretic Interpretations

Given an interpretation (i.e., set of atoms which are to be
construed as “true”), we can recursively define veracity 

Exercise:

Say I = {On, Off}. What should the truth value (“true” or “false”)
be for each of these formulas ϕ when…

ϕ is “On”

ϕ is “On ∧ ¬Off”

ϕ is “On ⟹ Off”

ϕ is “On ∧ (¬On ∨ Off)”

25

From Interpretations to Valuaations

In Scheme (Racket), we can represent an interpretation as a
dictionary (hash):

(define (interpretation? I)

 (and (hash? I)

 (andmap symbol? (hash-keys I))

 (andmap boolean? (hash-values I))))

26

Interpretations in code

These hashes are implemented efficiently via a data structure
which allows persistent ~O(1) lookup / insertion

This is a variation of the mutable hash tables generally shown in
intro DS classes, consider looking up HAMT

27

These hashes are implemented efficiently via a data structure
which allows persistent ~O(1) lookup / insertion

This is a variation of the mutable hash tables generally shown in
intro DS classes, consider looking up HAMT

(hash-ref (hash-set (hash 'x 3) 'x 5) 'x)

28

We can now define (interp-formula ϕ I), i.e., !"#which
considers several different cases based on the structure of ϕ: 

If ϕ is literally true or false, the answer is #t / #f (Racket’s “true”)

If ϕ has the form ϕ₀⊕ϕ₁, then!"# is (⊕!"$# !"%#)

Where we assume there is a Racket version of ⊕

If ϕ has the form ¬ϕ then!"# is (not!"#)

29

When the interpretation I results in ϕ being true, we say that I
satisfies ϕ, often written using the notation I ⊨ ϕ.

In this case, we will call I a “model” of the propositional
statement ϕ.

Propositional logic is decidable: the set of possible interpretations
is finite (assuming formula size is finite) and you can check each
interpretation

30

A formula is valid if it is true in every interpretation: ⊨ ϕ, notice
that there is nothing to the left of ⊨, suggesting that every I will
suffice to satisfy ϕ

These statements are called tautologies. Which of the following
are tautologies?

(I) ¬P ∨ P ∨ (¬P ∧ P), (II) P ⟹ P ∧ Q, (III) P ∧ Q ⟹ P

31

Proof Theory

32

Logics are described in different ways. We have seen a model
theoretic description of propositional logic, which appeals to a
semantics (formalized as interpretations).

By contrast, proof theory describes syntactic objects (proofs) which
represent valid derivations of new knowledge from old knowledge

We will study several proof systems throughout the course: natural
deduction, resolution, sequent calculus, and analytic tableaux

Normal Forms

33

Working with arbitrarily-structured formulas means that we need
to deal with a bunch of different specific forms (∨, ∧, ⟹, ⇔, …)

This is messy, since there is a much smaller basis. It is possible to
encode all formulas in terms of just ¬ and ∧, for example.

There are a variety of normal forms for propositional logic, i.e.,
syntactic restrictions on formulas which do not inhibit expressivity

There are conversion algorithms into these normal forms

NNF, CNF, and DNF

34

Negation Normal Form (NNF): All negations have been pushed
as far down as possible. ¬(P ∧ Q) ❌, (¬P ∨ ¬Q) ✅

Conversion algorithm: first expand P⟹Q into ¬P ∨ Q (etc…),

next repeatedly apply De-Morgan’s laws and cancel ¬¬P to P

Conjunctive Normal Form (CNF): A big conjunction of
disjunctions (“clauses”): (A ∨ ¬B ∨ C) ∧ (B ∨ ¬C) ∧ (¬A ∨ ¬B)

To obtain: Start with DNF, then distribute over ∧

Disjunctive Normal Form (DNF): A big disjunction of
conjunctions: (A ∧ B ∧ C) ∨ (A ∧ ¬B ∧ ¬C) ∨ ...

35

Let’s convert the following to NNF:

(A ∧ (B ⇔ A)) ⟹ B

¬(A ∧ (B ⇔ A)) ∨ B (encoding ⟹)

¬(A ∧ ((B ⟹ A) ∧ (A ⟹ B))) ∨ B, (encoding ⇔)

¬(A ∧ ((¬B ∨ A) ∧ (¬A ∨ B))) ∨ B, (encoding ⟹) Now De Morgan’s

A ∨ ¬((¬B ∨ A) ∧ (¬A ∨ B))) ∨ B, continue De Morgan’s

A ∨ (¬(¬B ∨ A) ∨ ¬(¬A ∨ B))) ∨ B, and continue…

A ∨ ((¬¬B ∧ ¬A) ∨ (¬¬A ∧ ¬B))) ∨ B, now cancel ¬¬

A ∨ (B ∧ ¬ A) ∨ (A ∧ ¬B) ∨ B (NNF, also in DNF)

36

Starting from here, how do we get to CNF? Naively: use distributivity,

A ∨ (B ∧ ¬ A) ∨ (A ∧ ¬B) ∨ B

Group everything as binary so that we can distribute:

(B ∧ ¬ A) ∨ (A ∨ ((A ∧ ¬B) ∨ B)))

Exercise: use distributivity, cancel double negation, to achieve CNF

(B ∨ (A ∨ ((A ∧ ¬B) ∨ B))) ∧ (¬ A ∨ (A ∨ ((A ∧ ¬B) ∨ B)), and then…

(B ∨ (A ∨ ((A ∨ B) ∧ (¬B ∨ B))) ∧ (¬ A ∨ (A ∨ ((A ∧ ¬B) ∨ B)),

(B ∨ (A ∨ ((A ∨ B) ∧ (¬B ∨ B))) ∧ (¬ A ∨ (A ∨ ((A ∨ B) ∧ (¬B ∨ B)))),

…

(A ∨ B)

CNF vs. DNF, Digital Logic

37

In general, we will work with CNF, because it allows a more
“dense” representation of formulas. Translation into DNF often
results in large (super linear) encoding overhead. Hence, modern
solvers often consume input in CNF format.

You may recall this material from a digital logic
class—there is serious overlap with minterms/
maxterms/karnaugh maps, worth looking into

Tseitin’s transformation

38

The distributivity law induces super-linear encoding blowup for
formulas—this leads to slowdown of tools which check satisfi
ability / validity of these formulas

We often want a better transformation from formulas into CNF

A popular transformation is Tseitin’s transformation. Intuitively, it
assigns each sub-formula a new propositional atom and asserts a
suitable bi-implication

Tseitin’s transformation

39

∨

ψ∧

ϕ₀ ϕ₁

(ϕ₀ ∧ ϕ₁) ∨ ψ

- Assign non-literal formulas a new variable

- Add definitions for each, recursively

P₀ =

P₁ =

P₁ ⇔ P₀ ∨ ψ

P₀ ⇔ ϕ₀ ∧ ϕ₁

Assert each definition, plus P₁,
via a big conjunction:

(P₁ ⇔ P₀∨ψ) ∧ (P₀ ⇔ ϕ₀∧ϕ₁) ∧ P₁

40

(ϕ₀ ∧ ϕ₁) ∨ ψ

∨

ψ∧

ϕ₀ ϕ₁

P₀ =

P₁ =

P₁ ⇔ P₀ ∨ ψ

P₀ ⇔ ϕ₀ ∧ ϕ₁

(P₁ ⇔ P₀∨ψ) ∧ (P₀ ⇔ ϕ₀∧ϕ₁) ∧ P₁
Convert each definition to CNF:

Which forms…

Tseitin’s transformation

(¬P₁ ∨ P₀ ∨ Ψ) ∧ (¬P₀ ∨ P₁) ∧ (¬Ψ ∨ P₁)The first …

(¬P₀ ∨ ϕ₀) ∧ (¬P₀ ∨ ϕ₁) ∧ (¬ϕ₀ ∨ P₀) ∧ (¬ϕ₁ ∨ P₀)Then…

Why Tseitin’s transformation?

41

Tseitin’s transformation converts to CNF without the super
linear blowup of naive distributivity

Output is a set of definitions (defined via bi-implication),
where the set size is linear in the size of the input formula
(one new var for each node in the formula)

Each of these definitions is of constant depth (either an
atom or an application of a connective to atoms; then apply
distributivity to obtain CNF (constant factor blowup)

SAT Solving

42

Checking whether a formula is satisfiable is called
SAT(isfiability) solving. Propositional logic is decidable, via
truth tables—but what is the complexity of checking via
truth tables? Answer: O(2^n)

Does a better solution exist? In practice yes, but only for
formulas which obey “typical” structure

Notice that whenever ϕ is a validity (i.e., ⊨ ϕ), ¬ϕ is UNSAT

To see why: consider ¬ϕ is SAT, then it has some model I such
that I ⊨ ¬ϕ. By assumption ϕ is a validity, so I ⊨ ϕ as well. This
gives us a contradiction, since I ⊨¬ϕ∧ϕ

43

Validity solving via SAT?

k-SAT

44

To simplify the core machinery of SAT solving, most solvers
operate over CNF, a SAT instance given in CNF is k-SAT if
the largest clause consists of k literals

Popular instances include 2-SAT and 3-SAT

2-SAT: (P ∨ ¬Q) ∧ (¬P ∨ Q) ∧ (¬Q ∨ ¬P)

3-SAT: (¬R ∨ P ∨ ¬Q) ∧ (¬P ∨ Q ∨ R) ∧ …

2-SAT is polynomial time (complete for NL)

45

2-SAT is a restricted form of k-SAT. Solving 2-SAT can be done
in polynomial time and 2-SAT is complete for the class NL
(Nondeterministic Logarithm, i.e., Turing machine w/ log
memory space)

Algorithm: Start by building a graph of each literal in the
program, then for each clause ϕ₀ ∨ ϕ₁ add an edge between
¬ϕ₀ and ϕ₁ and ¬ϕ₁ and ϕ₀, obtaining a graph G

Last, calculate strongly-connected components of G and
check if there is any P such that P and ¬ are in the same SCC

2-SAT Algorithm: Intuition

46

Algorithm intuition: every clause has the form ϕ₀ ∨ ϕ₁: if ¬ϕ₁
holds, then the only thing that can make the clause true (and it
must be true in any satisfying assignment!) will be ϕ₀. Thus,
¬ϕ₁ “forces” ϕ₀ (unit propagation).

Knowing this, we (a) assemble a “forced-implication” graph
and then (b) find its strongly-connected components, finally (c)
checking if there are any literals P such that P and ¬P are in
the same SCC

 (P ∨ ¬Q) ∧ (¬P ∨ Q) ∧ (¬Q ∨ ¬P)

Solving 2-SAT via forced implication

47

 (P ∨ ¬Q) ∧ (¬P ∨ Q) ∧ (¬Q ∨ ¬P)

First, build a graph of literals…

P ¬P

Q ¬Q

Building forced implication graph

48

 (P ∨ ¬Q) ∧ (¬P ∨ Q) ∧ (¬Q ∨ ¬P)

Now, add edges for each clause—start w/ left one…

(Stay in NNF: cancel ¬¬Q to Q!)

P ¬P

Q ¬Q

Calculate SCCs and check

49

 (P ∨ ¬Q) ∧ (¬P ∨ Q) ∧ (¬Q ∨ ¬P)

Now, add edges for each clause—start w/ left one…

(Stay in NNF: cancel ¬¬Q to Q!)

P ¬P

Q ¬Q

This is one big SCC—thus, the formula is unsatisfiable

(E.g., see the path from P to ¬P through ¬Q!)

Resolution

50

This intuition is closely related to an inference rule
named resolution, which is stated as follows:

P ∨ Q ¬Q ∨ R

P ∨ R

Here we use the natural deduction style (we’ll discuss soon); if
everything above the line holds, the thing below holds too

“If we know P ∨ Q and we know ¬Q ∨ R, then we know P ∨ R“

Refutation

51

We can use resolution to derive that a collection of
clauses cannot hold simultaneously

P ∨ ¬Q Q ¬P ∨ ¬R ¬R

Notice that the following cannot hold together:

P

¬P

1 2 3 4

1,25

1,26

⊥

Refutation

52

Refutation can be used to prove validities: if you want to
prove ϕ, build a CNF version of ¬ϕ, then derive ⊥

Example: say we want to prove P ⟹ P ∨ Q

First we build

¬(P ⟹ P ∨ Q)

= ¬(¬P ∨ (P ∨ Q))

= ¬¬P ∧ ¬(P ∨ Q)

= P ∧ ¬P ∧ Q

 P ¬P

⊥

Resolution on first two (single-literal)
clauses gives us ⊥

Refutation in practice

53

Refutation offers a general strategy to prove validities that is
(potentially) much cheaper than enumerating truth tables

Resolution-based solving is quite popular, in a variety of logics.
Examples we will see include DPLL and SLD resolution

However, real problem instances may involve (hundreds of)
thousands of clauses—resolution generates new clauses and
may not be productive, and there is no easy way to check in
advance whether a resolution will be “worth it.”

3-SAT (and all k > 2) is NP complete

54

2-SAT is polynomial time because SCC computation can be done
in polynomial time—we will soon see another restricted form of
logic (Datalog) which shares similar decidability properties

3-SAT is much harder—3-SAT is one of Karp’s 21 reductions. E.g.,
reduce 3-coloring to SAT, various reductions exist

MiniSAT

55

Very small, well-written SAT solver—utilizes a combination of
approaches which we will discuss later

Accepts input in DIMACS format:

- comment lines begin c My comment here

- Problem line begins p cnf V C for V variables and C clauses

- Rest of the file is clauses, written as whitespace-separated

sequences of integers: N is a positive occurrence, -N is a
negative (negated) occurrence

DIMACS Exercise

56

Convert the following CNF formula to DIMACS input:

(P ∨ ¬Q ∨ ¬R) ∧ (Q ∨ R ∨ ¬P) ∧ (¬R ∨ ¬Q ∨ ¬P)

c Solution…

c P=1, Q=2, R=3

p cnf 3 3

1 -2 -3 0

2 3 -1 0

-3 -2 -1 0

The lack of quantifiers or structured values is a significant
expressivity issue. Propositional logic lacks a notion of
functions or their application

What about statements like: ∀ x ∀ y. y > 0 ⟹ x+y > x

These are first order, and require formalizing a domain of
discourse (things quantifiers may bind), function symbols, …

FOL is much more powerful, but commensurately more
challenging to formalize

57

Limits of Propositional Logic; Looking Ahead

Q0 (easy): What is the difference between constructive logic
and classical logic? (We will learn more about constructive
logic soon!)

Q1 (harder): Show that ¬ and ∧ form a minimal basis for
propositional logic. Do this by expressing the other
operators in terms of these

Q2 (harder): Do ¬ and ∨ also form a minimal basis for
propositional logic? Any others…?

58

Questions and exercises

Put this into NNF:  
 ¬(P ∧ ¬(Q ∨ P)) ∧ (P ⟹ Q)

Take the output of that question, now further
convert to CNF and DNF

Use Tseitin‘s transformation on the above
formula to convert it to CNF

59

Questions and exercises

(Optional) Download and install MiniSAT; read
about the DIMACS input format and translate
the examples from today’s class

60

Questions and exercises

Model bits via logical propositions. Consider a
two-element bitvector of two bits: B0 and B1

Design a two-bit adder, which takes two inputs,
B10/B00 and B11/B01, and produces three
outputs: the sum bits S0/S1 and a carry C

61

Designing an Adder

62

63

