
Intuitionistic
Propositional Logic
CIS700 — Fall 2023
Kris Micinski

Natural Deduction is a logical reasoning system which defines
an explicit syntactic notion of proofs at the same time as the
propositions they inhabit (prove).

This mindset is closely related to the notion of type-checking a
program, wherein subexpressions types are surmised and
compositional rules allow you to combine subexpressions in a
well-typed manner.

In natural deduction, we say “the following rules are the only
ways in which a proof of a logical statement may be built.”

To say something is true is the same as having a syntactic,
materialized proof for it

2

My lecture very closely follows Frank Pfenning’s notes from his
various classes, I will link these notes in the Google Group.

I am not a researcher in type theory (not my branch of PL!), so I
will defer to expert expositions when necessary.

3

“Intuitionistic logic, sometimes more generally called constructive logic, refers to
systems of symbolic logic that differ from the systems used for classical logic by
more closely mirroring the notion of constructive proof. — Wikipedia”

Intuitionism is the notion of identifying a true statement with a symbolic proof of
that statement

Last lecture, we talked about a model (i.e., set)-theoretic perspective, mapping
variables to values. This has issues in handling higher-order objects (Russel’s
paradox) which do not crop up in the propositional setting—but the study of
higher-order logic (wherein one can quantify over propositions) motivated the
study of intuitionistic type theory

4

Introduction and Elimination Forms

I will present what Pfenning’s notes call the “verificationalist” approach (Gentzen-style
systems), which define the meaning of each connective in the logic via orthogonal
rules. In classical logic, we typically construe connectives as encodings into a minimal
form (e.g., CNF/DNF). This pushes reasoning into a set-theoretic interpretation.

Specifically problematic for computers: explicitly representing an interpretation (e.g.,
as a set) may be either (a) intractable or (b) impossible due to infiniteness.

By contrast, Gentzen-style intuitionism dictates that when we discuss the meaning of a
connective, we completely define a set of formation rules.
These rules break down into two broad categories:

Introduction Forms — a connective appears new in a conclusion
Elimination Forms — a connective is consumed and disappears in the conclusion

5

The introduction form for and (∧) is a proof schema which tells us how
we can introduce ∧ s into a conclusion.

6

∧I
P True Q True

P ∧ Q True

There are two elimination forms for ∧: the first eliminator selects the
left item (discarding the second), and the second eliminator selects
the right (discarding the left)

∧E1
P ∧ Q True

P True
∧E2

P ∧ Q True

Q True

A crucial problem — the need for premises

7

Let’s say we want to write proofs of true statements involving ∧. This is the
kind of thing we should be able to do now that we’ve defined the
introduction and elimination forms for ∧.

Unfortunately, this doesn’t work. Look at this:

A ∧ (B ∧ C) True
(B ∧ C) True

B True

∧E2

∧E1

The reasoning here works, but following this
reasoning allows us to conclude that an
arbitrary proposition is true. Obviously, there
are some false statements (A ∧ ¬A), so there
must be a problem!

A crucial problem — the need for premises

8

This is not a proof, it is a suppositional line of reasoning! We have assumed
that A ∧ (B ∧ C) True, and used that to derive B True

Intuitionistic logic gives names to assumptions. We will reject this as a
“proof” because the hypothesis is not explicitly introduced. We will do this
by introducing them into an environment, which allows naming hypotheses

9

Hypotheses get introduced (and named) by the introduction of ⇒.

To prove A ⇒ B, we assume A (by introducing it as a named hypothesis,

which may then be referenced) and showing B:

A True
…

B True

u
Named hypothesis u

A ⇒ B True
⇒Iᵘ

10

A True
…

B True

A ⇒ B True
⇒Iᵘ

Intuitively, if nothing is above the line, then the previous proposition is taken
as an axiom (i.e., assumed true).

Thus, this incorrect proof is broken because it assumes A, without correctly
accounting for how doing so is justified!

11

Intuitively, if nothing is above the line, then the previous proposition is taken
as an axiom (i.e., assumed true).

Thus, this incorrect proof is broken because it assumes A, without correctly
accounting for how doing so is justified!

A True
…

B True

A ⇒ B True
⇒Iᵘ

u
The fix is to ensure the
introduction point is
explicitly named

12

Notice that implicitly, we are assuming that, in checking a valid proof, the
assumption truly is in scope, by looking higher up in the term

A True
…

B True

A ⇒ B True
⇒Iᵘ

u

13

The eliminator for ⇒ is modus ponens

A ⇒ B True

B True
⇒E

A True

“If I have a proof of A ⇒ B, and a proof of A, I can apply ⇒E

to obtain a proof of B.”

So far, we have defined a set of rules, or proof schemas, which tell us
how to construct each intermediate step of the proof. To actually build
proofs, we have to chain these rules together.

14

∧I
P True Q True

P ∧ Q True
∧E1

P ∧ Q True

P True
∧E2

P ∧ Q True

Q True

A True
…

B True

A ⇒ B True
⇒Iᵘ

u A ⇒ B True

B True
⇒E

A True

You can build proofs by either:
Forward reasoning — start at the assumptions, grow to conclusion
Backward reasoning — start by writing a statement, build the
proof from the bottom to the top

15

∧I
P True Q True

P ∧ Q True
∧E1

P ∧ Q True

P True
∧E2

P ∧ Q True

Q True

A True
…

B True

A ⇒ B True
⇒Iᵘ

u A ⇒ B True

B True
⇒E

A True

It is more natural to employ backwards (suppositional) reasoning, and
eventually “closing off” each branch of the proof with an assumption.

Let’s try some examples

16

∧I
P True Q True

P ∧ Q True
∧E1

P ∧ Q True

P True
∧E2

P ∧ Q True

Q True

A True
…

B True

A ⇒ B True
⇒Iᵘ

u A ⇒ B True

B True
⇒E

A True

17

∧I
P True Q True

P ∧ Q True

∧E1
P ∧ Q True

P True

∧E2
P ∧ Q True

Q True

A True
…

B True

A ⇒ B True
⇒Iᵘ

u

A ⇒ B True

B True
⇒E

A True

(A ⇒ B ∧ C) ⇒ ((A ⇒ B) ∧ (A ⇒ C))
…

Step 1: write statement below line

18

∧I
P True Q True

P ∧ Q True

∧E1
P ∧ Q True

P True

∧E2
P ∧ Q True

Q True

A True
…

B True

A ⇒ B True
⇒Iᵘ

u

A ⇒ B True

B True
⇒E

A True

…

Step 2: in this case, we must apply the ⇒Iᵘ rule—

no other rule will “fit”

⇒Iᵘ

u

(A ⇒ B ∧ C) ⇒ ((A ⇒ B) ∧ (A ⇒ C))
((A ⇒ B) ∧ (A ⇒ C))

(A ⇒ B ∧ C)

19

∧I
P True Q True

P ∧ Q True

∧E1
P ∧ Q True

P True

∧E2
P ∧ Q True

Q True

A True
…

B True

A ⇒ B True
⇒Iᵘ

u

A ⇒ B True

B True
⇒E

A True

…

Step 2: now what do we apply? The “…” is the
unfinished portion of the proof, so we make progress
on the proximate proposition before it—in this case,
we need ∧ in the conclusion, so we apply ∧I

Notice how ∧I “splits” the proof, forcing us to prove
two “subgoals” — u factors across subgoals

((A ⇒ B) ∧ (A ⇒ C))
⇒Iᵘ

u

A ⇒ B A ⇒ C
…

A ⇒ B ∧ C
u

∧I

(A ⇒ B ∧ C) ⇒ ((A ⇒ B) ∧ (A ⇒ C))

A ⇒ B ∧ C

Subgoal 2Subgoal 1

20

∧I
P True Q True

P ∧ Q True

∧E1
P ∧ Q True

P True

∧E2
P ∧ Q True

Q True

A True
…

B True

A ⇒ B True
⇒Iᵘ

u

A ⇒ B True

B True
⇒E

A True

Let’s focus in on just subgoal 1 for a bit—subgoal
2 is symmetric, so once we’ve proven subgoal 1
we can use similar reasoning to solve subgoal 2

This subgoal says: “Assuming A ⇒ B ∧ C, show A ⇒ B.”

Again, we need to introduce ⇒, so we assume A

(introducing a new assumption w) and prove B

A ⇒ B

…
A ⇒ B ∧ C

Subgoal 1
u

21

∧I
P True Q True

P ∧ Q True

∧E1
P ∧ Q True

P True

∧E2
P ∧ Q True

Q True

A True
…

B True

A ⇒ B True
⇒Iᵘ

u

A ⇒ B True

B True
⇒E

A True

A ⇒ B

…

A ⇒ B ∧ C

So we apply ⇒E to obtain B ∧ C…

B

A

⇒Iw

u
w

B ∧ C ⇒E

22

∧I
P True Q True

P ∧ Q True

∧E1
P ∧ Q True

P True

∧E2
P ∧ Q True

Q True

A True
…

B True

A ⇒ B True
⇒Iᵘ

u

A ⇒ B True

B True
⇒E

A True

A ⇒ B

…

A ⇒ B ∧ C

Note, I am taking a shortcut, really it is more like…

B

A

⇒Iw

u
w

B ∧ C ⇒E

A ⇒ B ∧ C
A

u
w

A ⇒ B ∧ C A

23

∧I
P True Q True

P ∧ Q True

∧E1
P ∧ Q True

P True

∧E2
P ∧ Q True

Q True

A True
…

B True

A ⇒ B True
⇒Iᵘ

u

A ⇒ B True

B True
⇒E

A True

A ⇒ B

…

A ⇒ B ∧ C

Next, we can use the ∧E1 eliminator to obtain just B

B

A

⇒Iw

u
w

B ∧ C ⇒E

B ∧E1

24

∧I
P True Q True

P ∧ Q True

∧E1
P ∧ Q True

P True

∧E2
P ∧ Q True

Q True

A True
…

B True

A ⇒ B True
⇒Iᵘ

u

A ⇒ B True

B True
⇒E

A True

A ⇒ B

A ⇒ B ∧ C

Indeed, now we are done with this subgoal

B

A

⇒Iw

u
w

B ∧ C ⇒E

∧E1

25

∧I
P True Q True

P ∧ Q True

∧E1
P ∧ Q True

P True
∧E2

P ∧ Q True

Q True

A True
…

B True

A ⇒ B True
⇒Iᵘ

u

A ⇒ B True

B True
⇒E

A True

A ⇒ B

A ⇒ B ∧ C

Now, we substitute our proof of the subgoal into the larger proof
we’re working on…

B

A

⇒Iw

u
w

B ∧ C ⇒E

∧E1 …

((A ⇒ B) ∧ (A ⇒ C))
⇒Iᵘ

u

A ⇒ C
∧I

(A ⇒ B ∧ C) ⇒ ((A ⇒ B) ∧ (A ⇒ C))

A ⇒ B ∧ C

Subgoal 2

Subgoal 1

26

∧I
P True Q True

P ∧ Q True

∧E1
P ∧ Q True

P True
∧E2

P ∧ Q True

Q True

A True
…

B True

A ⇒ B True
⇒Iᵘ

u

A ⇒ B True

B True
⇒E

A True

A ⇒ B

A ⇒ B ∧ C

To get the proof of the second, we use the eliminator ∧E2 instead

B

A

⇒Iw

u
w

B ∧ C ⇒E

∧E1

((A ⇒ B) ∧ (A ⇒ C))
⇒Iᵘ

∧I

(A ⇒ B ∧ C) ⇒ ((A ⇒ B) ∧ (A ⇒ C))

Subgoal 1

A ⇒ C

A ⇒ B ∧ C

C

A

⇒Iw

u
w

B ∧ C ⇒E

∧E2

Subgoal 2

27

∧I
P True Q True

P ∧ Q True

∧E1
P ∧ Q True

P True
∧E2

P ∧ Q True

Q True

A True
…

B True

A ⇒ B True
⇒Iᵘ

u

A ⇒ B True

B True
⇒E

A True

A ⇒ B

A ⇒ B ∧ C

Both of our subgoals are done—our proof is complete

B

A

⇒Iw

u
w

B ∧ C ⇒E

∧E1

((A ⇒ B) ∧ (A ⇒ C))
⇒Iᵘ

∧I

(A ⇒ B ∧ C) ⇒ ((A ⇒ B) ∧ (A ⇒ C))

Subgoal 1

A ⇒ C

A ⇒ B ∧ C

C

A

⇒Iw

u
w

B ∧ C ⇒E

∧E2

Subgoal 2

So far, we’ve seen conjunction and implication. Adding disjunction is
not too hard. If you have A, you can prove A ∨ B (and similar for B),
leading to two natural introduction rules

28

∧E1
P ∧ Q True

P True
∧E2

P ∧ Q True

Q True

∨I1
P True

P ∨ Q True
∨I2

Q True

P ∨ Q True

Notice how the introduction rules for ∨ mirror the elimination rules for ∧

To eliminate an ∨ is roughly analogous to reasoning suppositionally
by cases. If we have A ∨ B, we can use it to prove C by (a) assuming A
and proving C and (b) assuming B and proving C

29

∨Eᵘʷ
A ∨ B True

C True

Notice that u is available only in the first subgoal, and w is only available in
the right. Intuitively, this is because we know that either A or B is true—but

not (necessarily) both. If we assume A, we do not get B, and vice-versa

C True C True

A True
⋯⋯

B True
u w

30

∧I
P True Q True

P ∧ Q True
∧E1

P ∧ Q True

P True
∧E2

P ∧ Q True

Q True

A True
…

B True

A ⇒ B True
⇒Iᵘ

u
A ⇒ B True

B True
⇒E

A True

∨I1
P True

P ∨ Q True
∨I2

Q True

P ∨ Q True ∨Eᵘʷ
A ∨ B True

C True

C True C True

A True
⋯⋯

B True
u w

So far, we've done nearly everything, the only remaining rules handle
negation…

31

In classical logic, we admit the excluded middle: everything is either true or
false. In intuitionistic logic, “being true” means “having a proof.”

Thus, for a proposition to be false (⊥), it must have no proof.

To implement this we (a) provide no introduction forms for ⊥ and (b)
provide a single elimination rule

The elimination rule for ⊥ says that if we assume ⊥, we can prove anything

⊥

P True
⊥E

32

This rule is justified because we can’t actually construct ⊥ without
assuming a contradiction. But if we can show that our assumptions lead to
a contradiction, we can prove anything.

Q: If we can’t construct ⊥, how is it possibly of any use to us? A: The
elimination rule for ⊥ allows us to show that our assumptions lead to a
contradiction (in latin, reductio ad absurdum), and can then be used to
prove anything.

Also: intuitionism regards ¬P as P ⇒ ⊥. Intuitively this means: if we want to

prove ¬P, we must assume P and then show that anything can be proven

⊥

P True
⊥E ¬P is sugar for P ⇒ ⊥

33

Let’s see how ⊥ and ¬ show up in intuitionistic logic by looking at a proof of
a theorem we all intuitively know must be a contradiction:

¬(P ∧ ¬P)

Intuitively, this says: “If we assume P ∧ ¬P, we can prove anything.”

34

(P ∧ (P ⇒ ⊥)) ⇒ ⊥

⊥

(P ∧ (P ⇒ ⊥))
u

⇒Iᵘ

Intuitively, we can make progress by forward reasoning, harvesting the data
from ∧

P
∧E1

(P ⇒ ⊥)
∧E2

…

35

(P ∧ (P ⇒ ⊥)) ⇒ ⊥

⊥

(P ∧ (P ⇒ ⊥))
u

⇒Iᵘ

To finish the proof, we just use the eliminator for ⇒ with our assumption P

Now our proof is complete!

P
∧E1

(P ⇒ ⊥)
∧E2

⇒E

36

∧I
P True Q True

P ∧ Q True
∧E1

P ∧ Q True

P True
∧E2

P ∧ Q True

Q True

A True
…

B True

A ⇒ B True
⇒Iᵘ

uA ⇒ B True

B True
⇒E

A True

∨I1
P True

P ∨ Q True
∨I2

Q True

P ∨ Q True ∨Eᵘʷ
A ∨ B True

C True

C True C True

A True
⋯⋯

B True
u w

Our complete set of rules for IPL (intuitionistic propositional logic)

⊥

P True
⊥E ¬P is sugar for P ⇒ ⊥

37

Now we will ask ourselves: how do convince ourselves that our proofs are
“correct?” In our setting, this reduces to checking that all usages of
assumptions are in scope at the point they are used

A ⇒ B

A ⇒ B ∧ C

B

A

⇒Iw

u
w

B ∧ C ⇒E

∧E1

((A ⇒ B) ∧ (A ⇒ C))
⇒Iᵘ

∧I

(A ⇒ B ∧ C) ⇒ ((A ⇒ B) ∧ (A ⇒ C))

A ⇒ C

A ⇒ B ∧ C

C

A

⇒Iw

u
w

B ∧ C ⇒E

∧E2

38

Now we will ask ourselves: how do convince ourselves that our proofs are
“correct?” In our setting, this reduces to checking that all usages of
assumptions are in scope at the point they are used

A ⇒ B

A ⇒ B ∧ C

B

A

⇒Iw

u
w

B ∧ C ⇒E

∧E1

((A ⇒ B) ∧ (A ⇒ C))
⇒Iᵘ

∧I

(A ⇒ B ∧ C) ⇒ ((A ⇒ B) ∧ (A ⇒ C))

A ⇒ C

A ⇒ B ∧ C

C

A

⇒Iw

u
w

B ∧ C ⇒E

∧E2

Essentially, this means that our proof checking is reduced to reachability

39

We can only call something a “proof” if we check that every assumption is
introduced correctly.

A True

The following example (from Pfenning) illustrates why we must do this
“scope checking” for assumptions

(A ⇒ A) ∧ A True

A True(A ⇒ A) True

A True
⇒Iᵘ

u

u

u is referenced incorrectly
here, is not in scope

40

The “turnstile” syntax

This “scope checking” is something that we require as a last step to deem
a proof acceptable. We have been implicitly doing it throughout lecture.
There is an alternative presentation which allows us to materialize a set of
assumptions via an algebraically-constructed “environment”

We will modify our system to allow judgements to be conditional
tautologies (often called “sequents”) and written like so:

Γ ⊢ P
Which reads “under the assumptions Γ, we may derive P.”

41

∧I
Γ ⊢ Q

Γ ⊢ P ∧ Q∧E1
Γ ⊢ P ∧ Q

Γ ⊢ P
∧E2

Γ ⊢ P ∧ Q

Γ ⊢ Q

Γ, A ⊢ B

Γ, A ⇒ B
⇒I

Γ ⊢ A ⇒ B

Γ ⊢ B
⇒E

Γ ⊢ A

∨I1
Γ ⊢ P

Γ ⊢ P ∨ Q
∨I2

Γ ⊢ Q
Γ ⊢ P ∨ Q ∨E

Γ ⊢ A ∨ B

Γ ⊢ C

Γ, A ⊢ C

Porting our old rules into this new sequent style

⊥E ¬P is sugar for P ⇒ ⊥

Γ ⊢ P

Γ, B ⊢ C

Γ ⊢ P

Γ ⊢ ⊥

42

Γ, A ⊢ B

Γ, A ⇒ B
⇒I

∨E
Γ ⊢ A ∨ B

Γ ⊢ C

Γ, A ⊢ C

Many of the rules simply propagate the environment, however it is worth
focusing in on the rules where the environment is extended—these are rules
where new assumptions are introduced into scope

Γ, B ⊢ C

A True
…

B True

A ⇒ B True
⇒Iᵘ

u

∨Eᵘʷ
A ∨ B True

C True

C True C True

A True
⋯⋯

B True
u w

The sequent style allows us to make a local
change to the set of assumptions, rather than
delaying “scope checking” to the end

Sequent Style Rules
Previous Formulation…

43

∧I
Γ ⊢ Q

Γ ⊢ P ∧ Q∧E1
Γ ⊢ P ∧ Q

Γ ⊢ P
∧E2

Γ ⊢ P ∧ Q

Γ ⊢ Q

Γ, A ⊢ B

Γ, A ⇒ B
⇒I

Γ ⊢ A ⇒ B

Γ ⊢ B
⇒E

Γ ⊢ A

∨I1
Γ ⊢ P

Γ ⊢ P ∨ Q
∨I2

Γ ⊢ Q
Γ ⊢ P ∨ Q ∨E

Γ ⊢ A ∨ B

Γ ⊢ C

Γ, A ⊢ C

We also need an assumption rule (which lets us find assumptions in Γ)

⊥E ¬P is sugar for P ⇒ ⊥

Γ ⊢ P

Γ, B ⊢ C

Γ ⊢ P

Γ ⊢ ⊥

Assumption
Γ, P ⊢ P

44

∧I
Γ ⊢ Q

Γ ⊢ P ∧ Q∧E1
Γ ⊢ P ∧ Q

Γ ⊢ P
∧E2

Γ ⊢ P ∧ Q

Γ ⊢ Q

Γ, A ⊢ B

Γ, A ⇒ B
⇒I

Γ ⊢ A ⇒ B

Γ ⊢ B
⇒E

Γ ⊢ A

∨I1
Γ ⊢ P

Γ ⊢ P ∨ Q
∨I2

Γ ⊢ Q
Γ ⊢ P ∨ Q ∨E

Γ ⊢ A ∨ B

Γ ⊢ C

Γ, A ⊢ C

Also, the order of assumptions in Γ is irrelevant—this seems obvious to
humans, but formally we also need structural rules which enable reordering

⊥E ¬P is sugar for P ⇒ ⊥

Γ ⊢ P

Γ, B ⊢ C

Γ ⊢ P

Γ ⊢ ⊥

Assumption
Γ, P ⊢ P

45

(A ⇒ B ∧ C) ⊢ A ⇒ B

(A ⇒ B ∧ C), A ⊢ A ⇒ B ∧ C

(A ⇒ B ∧ C), A ⊢ B

(A ⇒ B ∧ C), A ⊢ A

⇒I

(A ⇒ B ∧ C), A ⊢ B ∧ C
⇒E

∧E1

(A ⇒ B ∧ C) ⊢ ((A ⇒ B) ∧ (A ⇒ C)) ⇒I

∧I

⊢ (A ⇒ B ∧ C) ⇒ ((A ⇒ B) ∧ (A ⇒ C))

(A ⇒ B ∧ C), A ⊢ A ⇒ B ∧ C

(A ⇒ B ∧ C), A ⊢ C

(A ⇒ B ∧ C), A ⊢ A

⇒I

(A ⇒ B ∧ C), A ⊢ B ∧ C
⇒E

∧E2

(A ⇒ B ∧ C) ⊢ A ⇒ C

Assm

AssmAssm

Assm

Let’s redo our previous proof in this new sequent-based style

(The previous style and the sequent style are isomorphic)

46

(A ⇒ B ∧ C) ⊢ A ⇒ B

(A ⇒ B ∧ C), A ⊢ A ⇒ B ∧ C

(A ⇒ B ∧ C), A ⊢ B

(A ⇒ B ∧ C), A ⊢ A

⇒I

(A ⇒ B ∧ C), A ⊢ B ∧ C
⇒E

∧E1

(A ⇒ B ∧ C) ⊢ ((A ⇒ B) ∧ (A ⇒ C)) ⇒I

∧I

⊢ (A ⇒ B ∧ C) ⇒ ((A ⇒ B) ∧ (A ⇒ C))

(A ⇒ B ∧ C), A ⊢ A ⇒ B ∧ C

(A ⇒ B ∧ C), A ⊢ C

(A ⇒ B ∧ C), A ⊢ A

⇒I

(A ⇒ B ∧ C), A ⊢ B ∧ C
⇒E

∧E2

(A ⇒ B ∧ C) ⊢ A ⇒ C

Assm

AssmAssm

Assm

The new style makes assumptions explicitly manifest (i.e., materialized)

(Assumptions are tracked and extended on-the-fly rather than a
reachability-based check at the end!)

47

(A ⇒ B ∧ C) ⊢ A ⇒ B

(A ⇒ B ∧ C), A ⊢ A ⇒ B ∧ C

(A ⇒ B ∧ C), A ⊢ B

(A ⇒ B ∧ C), A ⊢ A

⇒I

(A ⇒ B ∧ C), A ⊢ B ∧ C
⇒E

∧E1

(A ⇒ B ∧ C) ⊢ ((A ⇒ B) ∧ (A ⇒ C)) ⇒I

∧I

⊢ (A ⇒ B ∧ C) ⇒ ((A ⇒ B) ∧ (A ⇒ C))

(A ⇒ B ∧ C), A ⊢ A ⇒ B ∧ C

(A ⇒ B ∧ C), A ⊢ C

(A ⇒ B ∧ C), A ⊢ A

⇒I

(A ⇒ B ∧ C), A ⊢ B ∧ C
⇒E

∧E2

(A ⇒ B ∧ C) ⊢ A ⇒ C

Assm

AssmAssm

Assm

Also, look at this fragment of the proof, this is an example of us assuming
that we can reorder assumptions at will

Assumption
Γ, P ⊢ P

Notice that it’s not quite the assumption rule — P is on the
front rather than the end

48

(A ⇒ B ∧ C) ⊢ A ⇒ B

(A ⇒ B ∧ C), A ⊢ A ⇒ B ∧ C

(A ⇒ B ∧ C), A ⊢ B

(A ⇒ B ∧ C), A ⊢ A

⇒I

(A ⇒ B ∧ C), A ⊢ B ∧ C
⇒E

∧E1

(A ⇒ B ∧ C) ⊢ ((A ⇒ B) ∧ (A ⇒ C)) ⇒I

∧I

⊢ (A ⇒ B ∧ C) ⇒ ((A ⇒ B) ∧ (A ⇒ C))

(A ⇒ B ∧ C), A ⊢ A ⇒ B ∧ C

(A ⇒ B ∧ C), A ⊢ C

(A ⇒ B ∧ C), A ⊢ A

⇒I

(A ⇒ B ∧ C), A ⊢ B ∧ C
⇒E

∧E2

(A ⇒ B ∧ C) ⊢ A ⇒ C

Assm

AssmAssm

Assm

Also, look at this fragment of the proof, this is an example of us assuming
that we can reorder assumptions at will

Assumption
Γ, P ⊢ P

Some sub-structural logics treat assumptions like resources, popular
examples are linear logic (assumptions must be used exactly once) or affine
logic (assumptions may be used at most once); these logics can reason
about resource usage (e.g., files always closed after opened)

The Curry-Howard Isomorphism

Intuitively, the Curry-Howard Isomorphism is the notion that proof terms in intuitionistic
logics are equivalent to (isomorphic to) terms (i.e., expressions, programs) in a suitable
type theory

This means that every well-typed program (in the Simply-Typed λ calculus) is a proof of
a theorem in IPL, and vice-versa (every proof of a theorem in IPL can be read
computationally as a term in the Simply-Typed λ calculus)

49

Every program (in a language with a consistent & sound type theory) may be read as a
proof (of the theorem corresponding to the propositional analogue of the type
inhabited by the term). Every proof may be read as a program.

So what is the programming language that corresponds to the natural-deduction-style
rules we gave for IPL?

Answer: a minimal functional language with functions (→ types, the analogue of ⇒), pairs

(product types, A × B—the analogue of A ∧ B), sums (A + B—the analogue of A ∨ B),
along with a collection of primitive types (e.g., Int, Bool, etc…).

50

51

CHI vs. IPL
The key idea is to realize that the typing derivation for
STLC precisely mirrors the deductive rules of IPL

App
Γ ⊢ e : t → t′

Γ ⊢ (e e′) : t′

Γ ⊢ e′ : t

Lam
Γ, {x ↦ t} ⊢ e : t′

Γ ⊢ (λ (x : t) e) : t → t′

VarΓ ⊢ x : t
x ↦ t ∈ Γ

Γ, ϕ ⊢ ψ
Γ ⊢ ϕ ⇒ ψ

⇒I

⇒E
Γ ⊢ ψ

Γ ⊢ ϕ ⇒ ψ Γ ⊢ ϕ

Γ, P ⊢ PAssumption

52

This means that every proof tree for STLC can be trivially-mapped to a
proof tree in IPL. I.e., if (e : t) is typeable in STLC, the theorem t
holds in IPL by construction of the proof built using this mapping

App
Γ ⊢ e : t → t′

Γ ⊢ (e e′) : t′

Γ ⊢ e′ : t

Lam
Γ, {x ↦ t} ⊢ e : t′

Γ ⊢ (λ (x : t) e) : t → t′

VarΓ ⊢ x : t
x ↦ t ∈ Γ

Γ, ϕ ⊢ ψ
Γ ⊢ ϕ ⇒ ψ

Γ ⊢ ψ

Γ ⊢ ϕ ⇒ ψ Γ ⊢ ϕ

Γ, P ⊢ PAssumption

⇒I

⇒E

We will talk more about Typed Lambda Calculi (i.e., the programming embodiment of
constructive logics) later on in the course if students are interested—it would be easy to
fill a whole course on this, but much work in automated reasoning exploits classical logic
and the excluded middle.

Next we will look at DPLL and algorithms for SAT.

53

History, as I understand it (and some links / references)

First accounts of intuitionism by Brouwer (see http://thatmarcusfamily.org/
philosophy/Course_Websites/Readings/Brouwer%20-
%20Intuitionism%20and%20Formalism.pdf)

1960s-1970s: Per Martin-Löf gives several series of lectures on intuitionistic type
theory which were highly influential (https://www.cs.cmu.edu/~crary/819-f09/
Martin-Lof80.pdf)
Type theory within PL has since become lore, explored by meany famous folks
(Harper, Pfenning, Milner, Coquand, Pierce, …). Type theories inspired a wide array
of systems from AUTOMATH, Mizar, HOL, Coq, Lean, Idris, Agda, …
These systems enable such feats as certified programming (proof-carrying code)
Each of these systems builds upon the foundational ideas, proximately influenced
by Martin-Löf’s type theory

54

http://thatmarcusfamily.org/philosophy/Course_Websites/Readings/Brouwer%20-%20Intuitionism%20and%20Formalism.pdf
http://thatmarcusfamily.org/philosophy/Course_Websites/Readings/Brouwer%20-%20Intuitionism%20and%20Formalism.pdf
http://thatmarcusfamily.org/philosophy/Course_Websites/Readings/Brouwer%20-%20Intuitionism%20and%20Formalism.pdf
http://thatmarcusfamily.org/philosophy/Course_Websites/Readings/Brouwer%20-%20Intuitionism%20and%20Formalism.pdf
https://www.cs.cmu.edu/~crary/819-f09/Martin-Lof80.pdf
https://www.cs.cmu.edu/~crary/819-f09/Martin-Lof80.pdf

