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Resolution is a simple principle that says: 

(A ∨ p) ∧ (B ∨ ¬p) ∧ P ⇒ (A ∨ B) ∧ P 

Given the following three clauses, which resolutions can you 
derive? 

1: P ∨ ¬Q ∨ ¬R 
2: R ∨ Q 
3: Q ∨ ¬P
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4 (1&3, P): Q ∨ ¬Q ∨ ¬R == ¬R  
5 (1&2, R): P ∨ ¬Q ∨ Q == P 
6 (1&2, Q): P ∨ ¬R ∨ R == P 
7 (4&2, R): Q 
8 (6&3, P): Q

Motivation: the resolution rule
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Resolution is a sound reasoning principle, but not an algorithm: 
it doesn’t tell us SAT/UNSAT, but it tells us new information we 
can add

1: P ∨ ¬Q ∨ ¬R 
2: R ∨ Q 
3: Q ∨ ¬P

We can represent resolution as a graph with formulas as nodes 
and edges to indicate the resolutions—here we deduplicate

4: ¬R  
5: P 

7 (4&2, R): Q 

Notice that the graph tracks provenance of how the decision 
was made
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Given a large set of clauses, we could imagine iteratively 
applying resolution until we either (a) cannot find any more 
possible instances of resolution (we return SAT) or (b) produce a 
refutation (return UNSAT). This is the “saturation-based” 
approach 
Given clauses with N variables, repeated application of 
resolution will produce at most 2^n possible clauses

Theorem: Resolution is Sound 
Given a set of clauses ϕ, if P is a valid refutation then ϕ is UNSAT 
Proof: induction on the structure of refutations 
Theorem: Resolution is Refutationally-Complete 
If ϕ is UNSAT, then the saturation-based method above will 
eventually find a refutation  
Proof: induction on the number of variables k
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I misunderstood this basic fact for a long time: resolution will only prove a 
formula is UNSAT if it is indeed UNSAT. This is an important difference. One 
important motivation for DPLL is that it is totally complete. 

This motivates the discussion on the next slide…

Refutational Completeness is not total completeness!
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Unfortunately, while resolution will infer ∅ when the formula is UNSAT 
(given sufficient time/space), in practice a resolution-only approach is not 
scalable because of memory blowup (i.e., materialization overhead): 

Resolution will force enumeration of a huge set of derived facts 
Until a refutation is found, the resolution will keep going and going—
producing combinatorial explosion 
Instead, SAT solving makes use of guided search to “guess” a model 

We now discuss DPLL, one of the first search-based procedures for SAT 
solving. Next week, we’ll study a refinement on DPLL (CDCL) used by most 
modern solvers, which incorporate aspects of resolution (to “learn” clauses)

Why don’t we use the saturation-based resolution for deciding SAT?
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The DPLL algorithm formalizes the idea of SAT solving via 
backtracking search. The basic idea is to alternate between 
application of saturation (via unit propagation / pure variable 
elimination) and guessing a variable assignment 

It is easiest to start with an example: the next few slides use an 
example from Wikipedia user Tamkin04iut (see “DPLL Algorithm”)

SAT Solving: the DPLL Algorithm



8

Worked Example: DPLL—Variable Choice

¬A ∨ B ∨ C 
A ∨ C ∨ D 
A ∨ C ∨ ¬D 
A ∨ ¬C ∨ D 
A ∨ ¬C ∨ ¬D 
¬B ∨ ¬C ∨ D 
¬A ∨ B ∨ ¬C 
¬A ∨ ¬B ∨ C

A = False 
B = ??? 
C = ??? 
D = ???

First, we pick a variable: Let’s pick A 
Variable choice is important, we will discuss heuristics later

A

Arbitrarily, let’s guess A is false

False

The underlined clauses are now satisfied

We’re not done yet—we still need to underline the rest!
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Worked Example: DPLL—Variable Choice

¬A ∨ B ∨ C 
A ∨ C ∨ D 
A ∨ C ∨ ¬D 
A ∨ ¬C ∨ D 
A ∨ ¬C ∨ ¬D 
¬B ∨ ¬C ∨ D 
¬A ∨ B ∨ ¬C 
¬A ∨ ¬B ∨ C

A = False 
B = False 
C = False 
D = ???

Looking only at A is “fine” but still leaves things unfinished: 
Let’s keep going—we guess that B and C are also False

A
False

B

C

False

False

D
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Worked Example: DPLL—Unit Propagation

¬A ∨ B ∨ C 
A ∨ C ∨ D 
A ∨ C ∨ ¬D 
A ∨ ¬C ∨ D 
A ∨ ¬C ∨ ¬D 
¬B ∨ ¬C ∨ D 
¬A ∨ B ∨ ¬C 
¬A ∨ ¬B ∨ C

Any clause which has a single unassigned 
literal is called a unit clause

A
False

B

C

False

False

D

In this case, these clauses are unit  
Intuitively, a unit clause is a clause which is forcing the 

assignment of the single remaining literal

A = False 
B = False 
C = False 
D = ???

False True

In this case, unit propagation tells 
us we must assign both D and ¬D 

Notice that unit propagation is a 
degenerate form of resolution
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Worked Example: DPLL—Conflicts

¬A ∨ B ∨ C 
A ∨ C ∨ D 
A ∨ C ∨ ¬D 
A ∨ ¬C ∨ D 
A ∨ ¬C ∨ ¬D 
¬B ∨ ¬C ∨ D 
¬A ∨ B ∨ ¬C 
¬A ∨ ¬B ∨ C

A
False

B

C

False

False

In this case, these clauses are unit  

We can now observe a conflict: unit propagation 
reveals that both D and ¬D must hold along this branch

A = False 
B = False 
C = False 
D = ???

Conflict!
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Worked Example: DPLL—Implication Graph

¬A ∨ B ∨ C 
A ∨ C ∨ D 
A ∨ C ∨ ¬D 
A ∨ ¬C ∨ D 
A ∨ ¬C ∨ ¬D 
¬B ∨ ¬C ∨ D 
¬A ∨ B ∨ ¬C 
¬A ∨ ¬B ∨ C

A

False

B

C

False

In this case, these clauses are unit  
We can assemble a (forced) 
implication graph, which allows us 
to record which clauses forced unit 
propagation to build assignments:

A = False 
B = False 
C = False 
D = ???

Conflict!
A=F C=F

D=F D=T

A ∨ C ∨ ¬D A ∨ C ∨ D 

Conflict!



Worked Example: DPLL—Backtracking

¬A ∨ B ∨ C 
A ∨ C ∨ D 
A ∨ C ∨ ¬D 
A ∨ ¬C ∨ D 
A ∨ ¬C ∨ ¬D 
¬B ∨ ¬C ∨ D 
¬A ∨ B ∨ ¬C 
¬A ∨ ¬B ∨ C

Now, these clauses are unit  

Once we get to a conflict, we backtrack. In this case we 
show chronological backtracking back to try C=True

A = False 
B = False 
C = True 
D = ???

A
False

B

C

False

True

Conflict!

Before each decision, we must repeatedly apply unit 
propagation—now again, we get a conflict!

Conflict!
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False



Worked Example: DPLL—Keep backtracking

¬A ∨ B ∨ C 
A ∨ C ∨ D 
A ∨ C ∨ ¬D 
A ∨ ¬C ∨ D 
A ∨ ¬C ∨ ¬D 
¬B ∨ ¬C ∨ D 
¬A ∨ B ∨ ¬C 
¬A ∨ ¬B ∨ C So does guessing C = True

A = False 
B = True 
C = True 
D = ???

A
False

B

C

False

True

Conflict! Conflict!
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False

True

C

False

Now, these clauses are unit  

Yet again, we get a conflict!

Conflict!

True

Conflict!



Worked Example: DPLL—Even more backtracking…

¬A ∨ B ∨ C 
A ∨ C ∨ D 
A ∨ C ∨ ¬D 
A ∨ ¬C ∨ D 
A ∨ ¬C ∨ ¬D 
¬B ∨ ¬C ∨ D 
¬A ∨ B ∨ ¬C 
¬A ∨ ¬B ∨ C

A = True 
B = False 
C = ??? 
D = ???

A
False

B

C

False

True

Conflict! Conflict!
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False

True

C

False

Conflict!

True

Conflict!

B

True

We backtrack all the way up to guessing 
A=True, and then guess B=False

Conflict!

False

Still a conflict!

These unit clauses conflict!



Worked Example: DPLL—Success!

¬A ∨ B ∨ C 
A ∨ C ∨ D 
A ∨ C ∨ ¬D 
A ∨ ¬C ∨ D 
A ∨ ¬C ∨ ¬D 
¬B ∨ ¬C ∨ D 
¬A ∨ B ∨ ¬C 
¬A ∨ ¬B ∨ C

A = True 
B = False 
C = True 
D = ???

A
False

B

C

False

True

Conflict! Conflict!
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False

True

C

False

Conflict!

True

Conflict!

B

True

The forced assignment of C=True via 
unit propagation leads to the discovery 

of a new unit clause

Conflict!

False

True

C
True

Luckily, the forced unit propagation 
D=True leads us to success!

D
True

SAT



¬A ∨ B ∨ C 
A ∨ C ∨ D 
A ∨ C ∨ ¬D 
A ∨ ¬C ∨ D 
A ∨ ¬C ∨ ¬D 
¬B ∨ ¬C ∨ D 
¬A ∨ B ∨ ¬C 
¬A ∨ ¬B ∨ C

A = True 
B = False 
C = True 
D = True

A
False

B

C

False

True

Conflict! Conflict!
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False

True

C

False

Conflict!

True

Conflict!

B

True

In sum, the DPLL algorithm says to iteratively: 
 Apply unit propagation to assignments forced by unit clauses 
 If unit propagation leads to conflict, backtrack chronologically (back to most recent guess) 
 Decide a variable after all unit clauses taken care of—this is the search phase

Conflict!

False

True

C
True

D
True

SAT

The goal is to explore the 
tree as efficiently as possible!



¬A ∨ B ∨ C 
A ∨ C ∨ D 
A ∨ C ∨ ¬D 
A ∨ ¬C ∨ D 
A ∨ ¬C ∨ ¬D 
¬B ∨ ¬C ∨ D 
¬A ∨ B ∨ ¬C 
¬A ∨ ¬B ∨ C

A = True 
B = False 
C = True 
D = True

A
False

B

C

False

True

Conflict! Conflict!
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False

True

C

False

Conflict!

True

Conflict!

B

True

Conflict!

False

True

C
True

D
True

SAT

 Notice that the first choice led us to do a lot of redundant work 
 Why didn’t we just pick A = True?  
 In general: picking variables optimally is tantamount to the halting problem—no general-
purpose algorithm exists 
 Next week, we’ll discuss a better algorithm (CDCL) which analyzes conflicts to learn derived 
clauses that help cut off the search space based on clauses learned on-the-fly
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function DPLL(Φ)
    // unit propagation:
    while there is a unit clause {l} in Φ do
        Φ ← unit-propagate(l, Φ);
    // pure literal elimination:
    while there is a literal l that occurs pure in Φ do
        Φ ← pure-literal-assign(l, Φ);
    // stopping conditions:
    if Φ is empty then
        return true; // SAT
    if Φ contains an empty clause then
        return false; // UNSAT
    // DPLL procedure:
    l ← choose-literal(Φ);
    return DPLL(Φ ∧ {l}) or DPLL(Φ ∧ {¬l});

DPLL Algorithm (Wikipedia’s definition)
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Pure Literals

Literals are pure when they are both (a) unassigned at the 
current point in the search and (b) they only occur in a single 
polarity (i.e., only A or only ¬A) in the formula. 

Pure variables may simply be discarded—assigning them as 
either True or False is fine, and so they do not force decisions.



Decision 
Phase

21

function DPLL(Φ)
    // unit propagation:
    while there is a unit clause {l} in Φ do
        Φ ← unit-propagate(l, Φ);
    // pure literal elimination:
    while there is a literal l that occurs pure in Φ do
        Φ ← pure-literal-assign(l, Φ);
    // stopping conditions:
    if Φ is empty then
        return true; // SAT
    if Φ contains an empty clause then
        return false; // UNSAT
    // DPLL procedure:
    l ← choose-literal(Φ);
    return DPLL(Φ ∧ {l}) or DPLL(Φ ∧ {¬l});

DPLL alternates between inferring immediate consequences 
(i.e., “saturation”) and guessing (i.e., “decision”)

Saturation 
Phase
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Aside: Horn clauses and Datalog

Horn clauses are clauses with at most one positive (i.e., non-
negated) literal 

P ← Q, R (Logic programming style)  
or Q ∧ R → P (implication style) 
or (definition of →, DeMorgan…) ¬(Q ∧ R) ∨ P ≡ ¬Q ∨ ¬R ∨ P 

Datalog also allows facts: atomically known propositions (which 
can be interpreted as → P, i.e., nothing needed to infer P)

P ← Q, R 
Q ← K  
K 
G 
R ← J 
J ←G 

Query: P?

Datalog is easier to decide than SAT—the degenerate nature of Horn 
clauses means that we never have to guess. Datalog can be solved via 
saturation, without the need for guessing or backtracking. It’s complexity 
lies in PSPACE (<< than k-SAT!)
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Input — set of clauses ϕ in CNF 
Output — True (SAT) or False (UNSAT) 

DPLL(ϕ): 
  Forever: 
    While there exist any unit clauses {l} ∈ ϕ: 
      ϕ := unit_propagate(ϕ,l) 
     If ϕ contains no more clauses: return True 
     Elif ϕ contains any empty clauses: return False 
     Else:  
        Choose a literal l which is unassigned in ϕ 
        Return DPLL(Φ ∧ {l}) ∨ DPLL(Φ ∧ {¬l}) 

DPLL Algorithm
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A few remarks: 

DPLL(ϕ): 
  Forever: 
    // Want to avoid scanning over all of ϕ 
    While there exist any unit clauses {l} ∈ ϕ: 
      // Unit Propagation needs to be fast 
      ϕ := unit_propagate(ϕ,l) 
     If ϕ contains no more clauses: return True 
     Elif ϕ contains any empty clauses: return False 
     Else:  
        // How do we pick variables? 
        Choose a literal l which is unassigned in ϕ 
        Return DPLL(Φ ∧ {l}) ∨ DPLL(Φ ∧ {¬l}) 



25

Please email me submissions, kkmicins@syr.edu, CCing all of 
your group mates. 

I will test your submissions with a variety of DIMACS inputs, 
e.g., the ones from this page. https://people.sc.fsu.edu/
~jburkardt/data/cnf/cnf.html 

Please tell me how to invoke and run your program when you 
email me. Ensure that it can run on either a Mac or Linux 
machine (I have both of these)—give me sources and 
instructions to build your project.

Grading / Rubric

mailto:kkmicins@syr.edu
https://people.sc.fsu.edu/~jburkardt/data/cnf/cnf.html
https://people.sc.fsu.edu/~jburkardt/data/cnf/cnf.html

