
Resolution and
DPLL
CIS700 — Fall 2023
Kris Micinski

Resolution is a simple principle that says:

(A ∨ p) ∧ (B ∨ ¬p) ∧ P ⇒ (A ∨ B) ∧ P

Given the following three clauses, which resolutions can you
derive?

1: P ∨ ¬Q ∨ ¬R
2: R ∨ Q
3: Q ∨ ¬P

2

4 (1&3, P): Q ∨ ¬Q ∨ ¬R == ¬R
5 (1&2, R): P ∨ ¬Q ∨ Q == P
6 (1&2, Q): P ∨ ¬R ∨ R == P
7 (4&2, R): Q
8 (6&3, P): Q

Motivation: the resolution rule

3

Resolution is a sound reasoning principle, but not an algorithm:
it doesn’t tell us SAT/UNSAT, but it tells us new information we
can add

1: P ∨ ¬Q ∨ ¬R
2: R ∨ Q
3: Q ∨ ¬P

We can represent resolution as a graph with formulas as nodes
and edges to indicate the resolutions—here we deduplicate

4: ¬R
5: P

7 (4&2, R): Q

Notice that the graph tracks provenance of how the decision
was made

4

Given a large set of clauses, we could imagine iteratively
applying resolution until we either (a) cannot find any more
possible instances of resolution (we return SAT) or (b) produce a
refutation (return UNSAT). This is the “saturation-based”
approach
Given clauses with N variables, repeated application of
resolution will produce at most 2^n possible clauses

Theorem: Resolution is Sound
Given a set of clauses ϕ, if P is a valid refutation then ϕ is UNSAT
Proof: induction on the structure of refutations
Theorem: Resolution is Refutationally-Complete
If ϕ is UNSAT, then the saturation-based method above will
eventually find a refutation
Proof: induction on the number of variables k

5

I misunderstood this basic fact for a long time: resolution will only prove a
formula is UNSAT if it is indeed UNSAT. This is an important difference. One
important motivation for DPLL is that it is totally complete.

This motivates the discussion on the next slide…

Refutational Completeness is not total completeness!

6

Unfortunately, while resolution will infer ∅ when the formula is UNSAT
(given sufficient time/space), in practice a resolution-only approach is not
scalable because of memory blowup (i.e., materialization overhead):

Resolution will force enumeration of a huge set of derived facts
Until a refutation is found, the resolution will keep going and going—
producing combinatorial explosion
Instead, SAT solving makes use of guided search to “guess” a model

We now discuss DPLL, one of the first search-based procedures for SAT
solving. Next week, we’ll study a refinement on DPLL (CDCL) used by most
modern solvers, which incorporate aspects of resolution (to “learn” clauses)

Why don’t we use the saturation-based resolution for deciding SAT?

7

The DPLL algorithm formalizes the idea of SAT solving via
backtracking search. The basic idea is to alternate between
application of saturation (via unit propagation / pure variable
elimination) and guessing a variable assignment

It is easiest to start with an example: the next few slides use an
example from Wikipedia user Tamkin04iut (see “DPLL Algorithm”)

SAT Solving: the DPLL Algorithm

8

Worked Example: DPLL—Variable Choice

¬A ∨ B ∨ C
A ∨ C ∨ D
A ∨ C ∨ ¬D
A ∨ ¬C ∨ D
A ∨ ¬C ∨ ¬D
¬B ∨ ¬C ∨ D
¬A ∨ B ∨ ¬C
¬A ∨ ¬B ∨ C

A = False
B = ???
C = ???
D = ???

First, we pick a variable: Let’s pick A
Variable choice is important, we will discuss heuristics later

A

Arbitrarily, let’s guess A is false

False

The underlined clauses are now satisfied

We’re not done yet—we still need to underline the rest!

9

Worked Example: DPLL—Variable Choice

¬A ∨ B ∨ C
A ∨ C ∨ D
A ∨ C ∨ ¬D
A ∨ ¬C ∨ D
A ∨ ¬C ∨ ¬D
¬B ∨ ¬C ∨ D
¬A ∨ B ∨ ¬C
¬A ∨ ¬B ∨ C

A = False
B = False
C = False
D = ???

Looking only at A is “fine” but still leaves things unfinished:
Let’s keep going—we guess that B and C are also False

A
False

B

C

False

False

D

10

Worked Example: DPLL—Unit Propagation

¬A ∨ B ∨ C
A ∨ C ∨ D
A ∨ C ∨ ¬D
A ∨ ¬C ∨ D
A ∨ ¬C ∨ ¬D
¬B ∨ ¬C ∨ D
¬A ∨ B ∨ ¬C
¬A ∨ ¬B ∨ C

Any clause which has a single unassigned
literal is called a unit clause

A
False

B

C

False

False

D

In this case, these clauses are unit
Intuitively, a unit clause is a clause which is forcing the

assignment of the single remaining literal

A = False
B = False
C = False
D = ???

False True

In this case, unit propagation tells
us we must assign both D and ¬D

Notice that unit propagation is a
degenerate form of resolution

11

Worked Example: DPLL—Conflicts

¬A ∨ B ∨ C
A ∨ C ∨ D
A ∨ C ∨ ¬D
A ∨ ¬C ∨ D
A ∨ ¬C ∨ ¬D
¬B ∨ ¬C ∨ D
¬A ∨ B ∨ ¬C
¬A ∨ ¬B ∨ C

A
False

B

C

False

False

In this case, these clauses are unit

We can now observe a conflict: unit propagation
reveals that both D and ¬D must hold along this branch

A = False
B = False
C = False
D = ???

Conflict!

12

Worked Example: DPLL—Implication Graph

¬A ∨ B ∨ C
A ∨ C ∨ D
A ∨ C ∨ ¬D
A ∨ ¬C ∨ D
A ∨ ¬C ∨ ¬D
¬B ∨ ¬C ∨ D
¬A ∨ B ∨ ¬C
¬A ∨ ¬B ∨ C

A

False

B

C

False

In this case, these clauses are unit
We can assemble a (forced)
implication graph, which allows us
to record which clauses forced unit
propagation to build assignments:

A = False
B = False
C = False
D = ???

Conflict!
A=F C=F

D=F D=T

A ∨ C ∨ ¬D A ∨ C ∨ D

Conflict!

Worked Example: DPLL—Backtracking

¬A ∨ B ∨ C
A ∨ C ∨ D
A ∨ C ∨ ¬D
A ∨ ¬C ∨ D
A ∨ ¬C ∨ ¬D
¬B ∨ ¬C ∨ D
¬A ∨ B ∨ ¬C
¬A ∨ ¬B ∨ C

Now, these clauses are unit

Once we get to a conflict, we backtrack. In this case we
show chronological backtracking back to try C=True

A = False
B = False
C = True
D = ???

A
False

B

C

False

True

Conflict!

Before each decision, we must repeatedly apply unit
propagation—now again, we get a conflict!

Conflict!

13

False

Worked Example: DPLL—Keep backtracking

¬A ∨ B ∨ C
A ∨ C ∨ D
A ∨ C ∨ ¬D
A ∨ ¬C ∨ D
A ∨ ¬C ∨ ¬D
¬B ∨ ¬C ∨ D
¬A ∨ B ∨ ¬C
¬A ∨ ¬B ∨ C So does guessing C = True

A = False
B = True
C = True
D = ???

A
False

B

C

False

True

Conflict! Conflict!

14

False

True

C

False

Now, these clauses are unit

Yet again, we get a conflict!

Conflict!

True

Conflict!

Worked Example: DPLL—Even more backtracking…

¬A ∨ B ∨ C
A ∨ C ∨ D
A ∨ C ∨ ¬D
A ∨ ¬C ∨ D
A ∨ ¬C ∨ ¬D
¬B ∨ ¬C ∨ D
¬A ∨ B ∨ ¬C
¬A ∨ ¬B ∨ C

A = True
B = False
C = ???
D = ???

A
False

B

C

False

True

Conflict! Conflict!

15

False

True

C

False

Conflict!

True

Conflict!

B

True

We backtrack all the way up to guessing
A=True, and then guess B=False

Conflict!

False

Still a conflict!

These unit clauses conflict!

Worked Example: DPLL—Success!

¬A ∨ B ∨ C
A ∨ C ∨ D
A ∨ C ∨ ¬D
A ∨ ¬C ∨ D
A ∨ ¬C ∨ ¬D
¬B ∨ ¬C ∨ D
¬A ∨ B ∨ ¬C
¬A ∨ ¬B ∨ C

A = True
B = False
C = True
D = ???

A
False

B

C

False

True

Conflict! Conflict!

16

False

True

C

False

Conflict!

True

Conflict!

B

True

The forced assignment of C=True via
unit propagation leads to the discovery

of a new unit clause

Conflict!

False

True

C
True

Luckily, the forced unit propagation
D=True leads us to success!

D
True

SAT

¬A ∨ B ∨ C
A ∨ C ∨ D
A ∨ C ∨ ¬D
A ∨ ¬C ∨ D
A ∨ ¬C ∨ ¬D
¬B ∨ ¬C ∨ D
¬A ∨ B ∨ ¬C
¬A ∨ ¬B ∨ C

A = True
B = False
C = True
D = True

A
False

B

C

False

True

Conflict! Conflict!

17

False

True

C

False

Conflict!

True

Conflict!

B

True

In sum, the DPLL algorithm says to iteratively:
 Apply unit propagation to assignments forced by unit clauses
 If unit propagation leads to conflict, backtrack chronologically (back to most recent guess)
 Decide a variable after all unit clauses taken care of—this is the search phase

Conflict!

False

True

C
True

D
True

SAT

The goal is to explore the
tree as efficiently as possible!

¬A ∨ B ∨ C
A ∨ C ∨ D
A ∨ C ∨ ¬D
A ∨ ¬C ∨ D
A ∨ ¬C ∨ ¬D
¬B ∨ ¬C ∨ D
¬A ∨ B ∨ ¬C
¬A ∨ ¬B ∨ C

A = True
B = False
C = True
D = True

A
False

B

C

False

True

Conflict! Conflict!

18

False

True

C

False

Conflict!

True

Conflict!

B

True

Conflict!

False

True

C
True

D
True

SAT

 Notice that the first choice led us to do a lot of redundant work
 Why didn’t we just pick A = True?
 In general: picking variables optimally is tantamount to the halting problem—no general-
purpose algorithm exists
 Next week, we’ll discuss a better algorithm (CDCL) which analyzes conflicts to learn derived
clauses that help cut off the search space based on clauses learned on-the-fly

19

function DPLL(Φ)
 // unit propagation:
 while there is a unit clause {l} in Φ do
 Φ ← unit-propagate(l, Φ);
 // pure literal elimination:
 while there is a literal l that occurs pure in Φ do
 Φ ← pure-literal-assign(l, Φ);
 // stopping conditions:
 if Φ is empty then
 return true; // SAT
 if Φ contains an empty clause then
 return false; // UNSAT
 // DPLL procedure:
 l ← choose-literal(Φ);
 return DPLL(Φ ∧ {l}) or DPLL(Φ ∧ {¬l});

DPLL Algorithm (Wikipedia’s definition)

20

Pure Literals

Literals are pure when they are both (a) unassigned at the
current point in the search and (b) they only occur in a single
polarity (i.e., only A or only ¬A) in the formula.

Pure variables may simply be discarded—assigning them as
either True or False is fine, and so they do not force decisions.

Decision
Phase

21

function DPLL(Φ)
 // unit propagation:
 while there is a unit clause {l} in Φ do
 Φ ← unit-propagate(l, Φ);
 // pure literal elimination:
 while there is a literal l that occurs pure in Φ do
 Φ ← pure-literal-assign(l, Φ);
 // stopping conditions:
 if Φ is empty then
 return true; // SAT
 if Φ contains an empty clause then
 return false; // UNSAT
 // DPLL procedure:
 l ← choose-literal(Φ);
 return DPLL(Φ ∧ {l}) or DPLL(Φ ∧ {¬l});

DPLL alternates between inferring immediate consequences
(i.e., “saturation”) and guessing (i.e., “decision”)

Saturation
Phase

22

Aside: Horn clauses and Datalog

Horn clauses are clauses with at most one positive (i.e., non-
negated) literal

P ← Q, R (Logic programming style)
or Q ∧ R → P (implication style)
or (definition of →, DeMorgan…) ¬(Q ∧ R) ∨ P ≡ ¬Q ∨ ¬R ∨ P

Datalog also allows facts: atomically known propositions (which
can be interpreted as → P, i.e., nothing needed to infer P)

P ← Q, R
Q ← K
K
G
R ← J
J ←G

Query: P?

Datalog is easier to decide than SAT—the degenerate nature of Horn
clauses means that we never have to guess. Datalog can be solved via
saturation, without the need for guessing or backtracking. It’s complexity
lies in PSPACE (<< than k-SAT!)

23

Input — set of clauses ϕ in CNF
Output — True (SAT) or False (UNSAT)

DPLL(ϕ):
 Forever:
 While there exist any unit clauses {l} ∈ ϕ:
 ϕ := unit_propagate(ϕ,l)
 If ϕ contains no more clauses: return True
 Elif ϕ contains any empty clauses: return False
 Else:
 Choose a literal l which is unassigned in ϕ
 Return DPLL(Φ ∧ {l}) ∨ DPLL(Φ ∧ {¬l})

DPLL Algorithm

24

A few remarks:

DPLL(ϕ):
 Forever:
 // Want to avoid scanning over all of ϕ
 While there exist any unit clauses {l} ∈ ϕ:
 // Unit Propagation needs to be fast
 ϕ := unit_propagate(ϕ,l)
 If ϕ contains no more clauses: return True
 Elif ϕ contains any empty clauses: return False
 Else:
 // How do we pick variables?
 Choose a literal l which is unassigned in ϕ
 Return DPLL(Φ ∧ {l}) ∨ DPLL(Φ ∧ {¬l})

25

Please email me submissions, kkmicins@syr.edu, CCing all of
your group mates.

I will test your submissions with a variety of DIMACS inputs,
e.g., the ones from this page. https://people.sc.fsu.edu/
~jburkardt/data/cnf/cnf.html

Please tell me how to invoke and run your program when you
email me. Ensure that it can run on either a Mac or Linux
machine (I have both of these)—give me sources and
instructions to build your project.

Grading / Rubric

mailto:kkmicins@syr.edu
https://people.sc.fsu.edu/~jburkardt/data/cnf/cnf.html
https://people.sc.fsu.edu/~jburkardt/data/cnf/cnf.html

