
CDCL

Part 2: Implementation 
Details
CIS700 — Fall 2023

Kris Micinski



2

Last week, looked at CDCL, zChaff.


Studied CDCL basics: like DPLL, but includes clause learning.


Today: how do we justify clause learning conceptually?

Also: study implementation details of modern CDCL solvers.



3

[Joao Marques-Silva, Ines Lynce and Sharad Malik

From the “Handbook of Satisfiability]



4

¬x1

x4

0

0

x3
1

¬x8

x12

1

1

¬x2
2

x11
2

x7
3

x9 ¬x9
3

3

Recall the implication graph, where vertices are literals

Decisions are roots, which branch to unit propagations



5

¬x1

x4

0

0

x3
1

¬x8

x12

1

1

¬x2
2

x11
2

x7
3

x9 ¬x9
3

3

The conflict is always the “most recent” thing that 
happened in the graph. So WLOG, we can always 
visualize the conflict as on the “right” side of the graph.



6

¬x1

x4

0

0

x3
1

¬x8

x12

1

1

¬x2
2

x11
2

x7
3

x9 ¬x9
3

3

A cut is a set of edges which—when removed—
break reachable flows.

For the implication graph: we can always build a 
cut that puts the conflict on the “right” side and 
the rest of the graph on the “left"



7

¬x1

x4

0

0

x3
1

¬x8

x12

1

1

¬x2
2

x11
2

x7
3

x9 ¬x9
3

3

For example, these green edges form a cut in the 
implication graph. 

Notice that if you remove any edge from this set of four 
(for example, take only the right three as the cut), you no 
longer cut off the transitive flow



8

¬x1

x4

0

0

x3
1

¬x8

x12

1

1

¬x2
2

x11
2

x7
3

x9 ¬x9
3

3

Intuitively, we can look back at these roots and say: 
whenever each of these things is true, we know we’re 
destined to end up with a conflict. 


Thus, we learn ¬(x₃ ∧ ¬x₈ ∧ x₇) = ¬x₃ ∨ x₈ ∨ ¬x₇ 

¬x₃ ∨ x₈ ∨ ¬x₇

Learn!



9

A Unique Implication Point in an implication graph is a dominator 
for a conflict. I.e., a node x such that all paths eventually reaching 
the conflict must go through x


Most modern CDCL-based solvers use UIP cuts

UIP — Unique Implication Point



10

A Unique Implication Point in an implication graph is a dominator 
for a conflict. I.e., a node x such that all paths eventually reaching 
the conflict must go through x


Most modern CDCL-based solvers use UIP cuts because they 
produce unit clauses after backtracking

UIP — Unique Implication Point



11

Let’s say we’re at decision level 10, and we learn the following clause:

¬x₇@3 ∨ x₃@5 ∨ ¬ x₅@10

We add this clause to our database. Then, instead of backtracking to 
try x₅@10 (as DPLL would), we instead backtrack to decision level 5!

Now, by construction, the clause is unit and we can propagate ¬ x₅


In general the trick is this: take your learned clause, backtrack to the 
second-highest decision level. When you do that, you know all of the 
variables (except the one from the most-recent decision level) must 
be false (you wouldn’t have kept propagating if one had been true!)


This strategy produces asserting literals. Upon backtracking, there is 
guaranteed to be a unit clause which will allow unit propagation to 
occur. This lowers the burden of guessing on the search.

Non Chronological Backtracking



12

I will defer to these excellent notes with visualizations of UIPs, UIP 
cuts, and their associated learned clauses


https://users.aalto.fi/~tjunttil/2020-DP-AUT/notes-sat/cdcl.html

Visualization of CDCL



13

UIP cuts in the implication graph are a beautiful theory for 
understanding how to justify the correctness of learned clauses.


Unfortunately, they don’t really tell us how to implement things. 
Modern solvers do not literally materialize an implication graph—
calculating dominators on-the-fly is quite laborious and compute-
intensive.


There are some key tricks the solver exploits.

SAT Solver Internals



14

MiniSAT and others use representational tricks, i.e., vectors to 
represent clauses with watch literals in a canonical location


We will discuss these tricks on Thursday’s class.

Watchlist Tricks



15

As the solver does its work, it builds up a decision trail, which could 
be (in principle) extended to an implication graph.


Surprisingly, it is possible to inspect only the trail to construct the 
learned clause, without materializing the implication graph or 
calculating UIPs via dominators.

Analyzing the Trail



16

“In a breadth-first manner, continue to trace literals of the current 
decision level, until there is just one left.”

Algorithm for Learning via UIPs



17

Input: confl — the conflicting clause,

       reason — mapping from vars to clauses


Outputs: out_clause, the output clause; out_btlevel, the bt level

seen-vars = {}

counter = 0

lit p = ⊥
do

  // initially when p is ⊥, reason returns each lit

  p_reason = confl.reason(p) // returns the “reason” vector

  // For each literal in the reason vector…

  for (int j = 0; j < p_reason.size(); j++) {

    lit q = p_reason[j];

    if (var(q) ∉ seen-vars):

      Add var(q) to seen-vars

      If decision level of q is current decision level:

        counter++

      Else if (decision level of q is > 0):

        Push ¬q onto the learned clause

  // Select next literal

  do

    p = trail.last

    confl = reason[var(p)]

    undoOne(); // Pop one decision from the trail

  while (p ∉ seen-vars)

  counter -= 1;

while (counter > 0)

out_clause[0] = ¬p



18

Input: confl — the conflicting clause,

       reason — mapping from vars to clauses


Outputs: out_clause, the output clause; out_btlevel, the bt level

seen-vars = {}

counter = 0

lit p = ⊥
do

  // initially when p is ⊥, reason returns each lit

  p_reason = confl.reason(p) // returns the “reason” vector

  // For each literal in the reason vector…

  for (int j = 0; j < p_reason.size(); j++) {

    lit q = p_reason[j];

    if (var(q) ∉ seen-vars):

      Add var(q) to seen-vars

      If decision level of q is current decision level:

        counter++

      Else if (decision level of q is > 0):

        Push ¬q onto the learned clause

  // Select next literal

  do

    p = trail.last

    confl = reason[var(p)]

    undoOne(); // Pop one decision from the trail

  while (p ∉ seen-vars)

  counter -= 1;

while (counter > 0)

out_clause[0] = ¬p

- Initially, p = ⊥, which sets p_reason to the 
conflict clause


- E.g., if the conflict is ¬x₃ ∨ x₅ ∨ ¬x₈

- p_reason is x₃ ∨ ¬x₅ ∨ x₈

- For each literal q in p_reason:


- Mark q as seen

- If q comes from the current level, bump count 

& exclude it from learned clause

- If q was at DL > 0, add ¬q to output

- out_level is max of old level and q’s DL


- Throw away decisions until you hit one of the 
“seen” ones, call that p


- At the end of everything there is one (asserting) 
literal at the current decision level: p

- So set out_clause[0] = ¬ p



Horn Clauses 
and Datalog
CIS700 — Fall 2023

Kris Micinski



20

Today, we’ll talk about how to operationalize the rules 
from last class as a specific programming paradigm: 
logic programming



Review: Resolution

21

The resolution rule tells us how to infer new knowledge 
from preexisting knowledge

P ∨ … ∨ Q ¬Q ∨ R … ∨
P ∨ … R ∨ …

If we derive ⊥, we know the original formula is tantamount to ⊥

We can view resolution as giving us the transitive closure of 
our current knowledge base to explicate latent implications



The Problem with Resolution

22

Resolution may or may not be helpful—it may produce new 
clauses which are not useful

P ∨ … ∨ Q ¬Q ∨ R … ∨
P ∨ … R ∨ …

{ n { n

{

2n

Churning on unproductive 
work can be very costly


Resolution-based solvers 
must judiciously select 
how to apply resolution



23

In future lectures, we’ll see how DPLL, CDCL, and related 
systems apply resolution intelligently (but heuristically) to 
scale SAT solving to formulas with tens of thousands of 
variables and millions of clauses.


Today, we’ll focus on a simpler logic programming language 
based on a restricted form of clauses



Horn Clauses

24

A horn clause is a clause with at most one positive (i.e., 
not negated) literal

H is the “head” of the clause, and the Bₙs are the “body”

"If everything in the body is true, the head must be true”

¬B₀ ∨ ... ∨ ¬Bₙ ∨ H or, equivalently… H ← B₀ ∧ ... Bₙ



Datalog

25

Horn clauses allow chain forward reasoning: if the body 
is true, then the head must be true

The language Datalog implements chain forward Horn 
clauses over a universe of atoms; in this lecture we’ll 
look at Datalog, its foundations and applications, and its 
implementation



Datalog
• Declarative language used to implement 

analytics queries over large amounts of data


• Extends SQL with the ability to deduce “facts”


• For example, starting with an initial database of 
edges, transitively compute a path relation

.decl edge(x:number, y:number)


.input edge


.decl path(x:number, y:number)


.output path


path(x, y) :- edge(x, y).

path(x, y) :- path(x, z), edge(z, y).


26



Example: Transitive Closure in Soufflé

27

// Transitive Closure

.decl edge(x:number, y:number)

.decl path(x:number, y:number)

.output path // materializes path on disc


path(x, y) :- edge(x, y).

path(x, z) :- path(x, y), edge(y, z).




Input: Extensional DataBase (EDB)

28

// Transitive Closure

.decl edge(x:number, y:number)

.decl path(x:number, y:number)

.output path // materializes path on disc


path(x, y) :- edge(x, y).

path(x, z) :- path(x, y), edge(y, z).


// Extensional DataBase (EDB)

edge(0,1). edge(1,2). edge(2,3). edge(2,4).

0
1

2

3 4



Computation materializes the result

29

// Transitive Closure

.decl edge(x:number, y:number)

.decl path(x:number, y:number)

.output path // materializes path on disc


path(x, y) :- edge(x, y).

path(x, z) :- path(x, y), edge(y, z).


// Extensional DataBase (EDB)

edge(0,1). edge(1,2). edge(2,3). edge(2,4).

0
1

2

3 4



Let’s run it and see

30

kmicinski % souffle tc.dl

kmicinski % cat path.csv

0	 1

0	 2

0	 3

0	 4

1	 2

1	 3

1	 4

2	 3

2	 4

0
1

2

3 4



Challenge: Triangle Counting, etc…

31

Write a Soufflé program which takes an input edge of 
the same form as before. You should output triples


How does this generalize to k-clique (k > 3)?


What is (worst-case) runtime complexity of k-clique, 
increasing with k? (Hint: k-clique is NP complete!)



Conjunction in the rule heads

32

A conjunction in the head is technically disallowed:

H₀ ∧ H₁ ← B₀ ∧ ... Bₙ

But this is only superficial: we can simply refactor this 
into two rules

H₀ ← B₀ ∧ ... Bₙ

H₁ ← B₀ ∧ ... Bₙ



Disjunction in rule heads

33

Horn clauses allow chain forward reasoning: if the body 
is true, then the head must be true

H₀ ∨ H₁ ← B₀ ∧ ... Bₙ

Notice that this rules out (a) negation in the body and 
(b) disjunction in the head; consider the alternative:

H₀ ∨ H₁ ∨ ¬B₀ ∨ ... ∨ ¬Bₙ

Here, when we know the body is true, we know that 
either H₀ ∨ H₁ is true—this means we need to consider 
both possibilities

Extending Datalog to include disjunction in the head is 
called disjunctive Datalog and is much more complex



Datalog Programs
• Consist of facts and rules


• Facts stipulate extensionally-known data


• Form “input” database, real impls. don’t generally have 
many facts (instead loaded via CSV)


• Formal Datalog: facts must be “flat,” i.e., relation 
arguments must be atoms


• Rules: if everything in the body is true, then head is true

34



Rules
• Must be Horn-clauses


• 


• Head implied by conjunction (and) of body clauses


• Variables in head must be ground (appear in body)


• Negation is not allowed, except when stratified


• Stratified negation easy to add metatheoretically:  run 
stratified stuff first; then treat it as an EDB

P(x, . . . ) ← Q(y, . . . ), R(z, . . . )

35



Datalog Applications — Graph Mining

• k-Clique computation (e.g., big social network graphs)


• Pagerank, SSSP, and Connected Components can be 
calculated if we also add recursive aggregation


• Yihao will discuss this in several weeks.


• Datalog a popular implementation target for social-media 
mining and graph mining broadly.

two_clique(x, y) :- edge(x,y), edge(y,x).

three_clique(x,y,z) :- two_clique(x,y), two_clique(x,z), two_clique(y,z)

four_clique(a,b,c,d) :- three_clique(a,b,c), two_clique(a,d), …

…

36



Datalog Applications — Program Analysis
• Datalog’s rough expressive power is reachability-based analyses 

over graphs, where the graph structure is dynamic


• Most scalable points-to (and related) analysis to date (DOOP, 
cclyzer, ddisasm) use Soufflé — fast single-node compilation


• Scales to hundreds of thousands of lines in hours, variety of 
experimental context sensitivities

37

void a(Foo *x) {

  x.f(0);

}

void b(Foo *x) {

  x.f(1);

}

class Foo {

  virtual void f(int x) = 0;

}

class Bar : Foo {

  virtual void f(int x) { return 1 / x; }

}

class Baz : Foo {

  virtual void f(int x) { return 1 + x; }

}

int main() {

  Baz *baz = new Baz();

  Bar *bar = new Bar();

  a(baz);

  b(bar);

}



Datalog Applications — 
Business Analytics/Databases

• Datalog is roughly the backend structure of many 
business analytics platforms.


• Lots of industry applications consisting of ad-hoc 
implementations that scale to things like customer logs, 
etc…

Datomic: high-speed in-memory 
(memcached) database via Datalog

38



Semantics of Datalog
• Typically given via an extensional (model-theoretic) and 

intensional (iteration to a fixed-point up a lattice) semantics


• Model-theoretic semantics gives ground truth, but does 
not immediately lend itself to efficient calculation


• Can argue about universal properties of models, etc…


• Fixed-point semantics gives operational semantics


• Efficient implementation, semi-naive evaluation, etc…

39



• A program P consists of a set of Rules and a set of Facts. 
There is a set of Predicates whose arguments are variables 
or ground Terms

Model-Theoretic Semantics

Preds = {path, edge}

Terms = {0,1,2,3,4}

40

// Facts

edge(0,1). edge(1,2). edge(1,3). edge(2,4). edge(3,4).


// Rules — A <- B /\ C /\ …

path(x, y) :- edge(x, y).

path(x, y) :- path(x, z), edge(z, y).



Model-Theoretic Semantics
• A program P consists of a set of Rules and a set of Facts. 

There is a set of Predicates whose arguments are variables 
or ground Terms


• The Herbrand base is the set of all ground instances of 
predicates from terms in the program

// Facts

edge(0,1). edge(1,2). edge(1,3). edge(2,4). edge(3,4).


// Rules — A <- B /\ C /\ …

path(x, y) :- edge(x, y).

path(x, y) :- path(x, z), edge(z, y).

Herbrand base is…

{edge(0,0), …, edge(4,4), path(0,0), …, path(4,4)}

41



Model-Theoretic Semantics
• A program P consists of a set of Rules and a set of Facts. 

There is a set of Predicates whose arguments are variables 
or ground Terms


• The Herbrand base is the set of all ground instances of 
predicates from terms in the program 


• The Herbrand base forms a lattice (it is a set!)—join is ∪, 
meet is ∩, ordering is via inclusion


• The Herbrand base is finite

∅

{R(a), R(b), R(c)}

{R(a)}
⋮

…

⋮

42



Herbrand Interpretations
• Any subset of the Herbrand base forms an interpretation: a 

classification of ground atoms as either “true” or “false.”


• Interpretations do not have to be consistent with the 
program

43



Herbrand Interpretations
• Any subset of the Herbrand base forms an interpretation: a 

classification of ground atoms as either “true” or “false.”


• Interpretations do not have to be consistent with the 
program

q(1)

p(x) :- q(x)

Four possible Herbrand interpretations

{} {p(1)} {q(1)} {p(1),q(1)}

44



Herbrand Models
• An interpretation is a model when every rule in the program 

is satisfied by the model

q(1)

p(x) :- q(x)

Four possible Herbrand interpretations

{} {p(1)} {q(1)} {p(1),q(1)}

This one is a model

45



Least Herbrand Models
• Model theory—semantics of P is its least Herbrand model


• Many (but not all) larger interpretations may also be 
models…

q(1)

p(x) :- q(x)

r(2)

{q(1),r(2),p(1),q(2),p(2)} Another larger (not least) model

{q(1),p(1),r(2)}

{}

Least Herbrand model for P

Not a model (too small)

{r(2),q(1),p(1),q(2)} Not a model (requires p(2))

46



Implementing Datalog

• You need a tuple representation strategy and a 
computation strategy


• Early 2000s: bddbddb, Whaley and Lam scale inclusion-
based alias analysis to Java-sized systems via Binary 
Decision Diagrams (BDDs)

• Variable ordering posed a 
significant problem


• Modern implementations use 
relational algebra w/ explicit 
representation (tries)

47



Translation to Relational Algebra

• Datalog ~= superficial syntax on top of relational algebra


• Projection, Selection, Renaming, Joins, etc…


• Relational algebra is “just a bunch of for loops”


• We built modern processors to be good at dense loops 
over good trie-like data structures

path(x, y) :- edge(x, y).

path(x, y) :- path(x, z), edge(z, y).

for(x in path):

  for(z in path):

    for all y such that edge(z,y):

      insert path(x,y)

48



Fixed-Point Iteration

• Model theory gives us least-Herbrand models as an 
extensional representation of a Datalog program


• Computing this least-Herbrand model can be done via a 
fixed-point (operational, intensional) semantics


• Start with {}, add all facts (equiv: prepare an EDB), and 
then iterate each rule—Horn clauses force ground 
implications

edge(0,1). edge(1,2).

path(x, y) :- edge(x, y).

path(x, y) :- path(x, z), edge(z, y).

{}
49



Fixed-Point Iteration

• Model theory gives us least-Herbrand models as an 
extensional representation of a Datalog program


• Computing this least-Herbrand model can be done via a 
fixed-point (operational, intensional) semantics


• Start with {}, add all facts (equiv: prepare an EDB), and 
then iterate each rule—Horn clauses force ground 
implications

edge(0,1). edge(1,2).

path(x, y) :- edge(x, y).

path(x, y) :- path(x, z), edge(z, y).

{} {edge(0,1), edge(1,2)}
50



Fixed-Point Iteration

• Model theory gives us least-Herbrand models as an 
extensional representation of a Datalog program


• Computing this least-Herbrand model can be done via a 
fixed-point (operational, intensional) semantics


• Start with {}, add all facts (equiv: prepare an EDB), and 
then iterate each rule—Horn clauses force ground 
implications

edge(0,1). edge(1,2).

path(x, y) :- edge(x, y).

path(x, y) :- path(x, z), edge(z, y).

{} {edge(0,1), edge(1,2)}
{…,path(0,1),path(1,2)}

51



Fixed-Point Iteration

• Model theory gives us least-Herbrand models as an 
extensional representation of a Datalog program


• Computing this least-Herbrand model can be done via a 
fixed-point (operational, intensional) semantics


• Start with {}, add all facts (equiv: prepare an EDB), and 
then iterate each rule—Horn clauses force ground 
implications

edge(0,1). edge(1,2).

path(x, y) :- edge(x, y).

path(x, y) :- path(x, z), edge(z, y).

{} {edge(0,1), edge(1,2)}
{…,path(0,1),path(1,2)}

{…,path(0,2)}
52



Fixed-Point = Least Herbrand Model

• Easy theorem to prove: define an immediate consequence 
operator that derives immediate consequences of facts in 
program


• Immediate consequence of fact is itself


• Head is immediately consequence of ground bodies


• By induction, iterating immediate consequence operator 
starting with {} gives us a least-Herbrand interpretation

53



Modern Datalog Compilation

• Continued resurgences in Datalog: semi-naive evaluation, BDDs 
(Whaley et al.), compilation to relational algebra


• Modern engines work by generating compiled relational algebra 
kernels (for loops), pushes stress onto high-performance tuple 
representation


• Also join planning / RA compilation

54



Semi-Naive Evaluation

• Each iteration we reexamine lots of tuples


• Datalog is monotonic: each iteration strictly grows result


• Here: result is monotonically-increasing set of tuples


• “Sets of tuples” is the only lattice DL supports!


• Thus, no need to look at old tuples; only need to consider 
new tuples that may cause rules to “fire”

55



Semi-Naive Evaluation

56



Semi-Naive Evaluation

First, discover all edges in path

57



Semi-Naive Evaluation

First, discover all edges in path

Now, find next iteration…

Those all go into Δ, then move into full as a new 
iteration enters Δ

58



Semi-Naive Evaluation

Eventually get to a point where nothing new can be discovered…

59



Semi-Naive Evaluation

At which point full contains the result set
60



Semi-Naive Evaluation

p(x) :- q(x), s(x)

p(x) :- q_delta(x), s_full(x)

•Compiler adds delta versions (in below rule: join Δ 
with full, joining Δ with Δ doesn’t work—would force 
facts to be discovered at same iteration).


•Heads implicitly add to “fresh” version, which 
becomes delta at end of each iteration


•After each iteration, delta merged into free; free 
becomes the “fresh” tuples

61



Partitioning
• We are forced to do one of the following:


• [(p x y z) <- (r x y) (int_rel x y z)]  
[(int_rel x y z) <- (q x z) (g y z)]


• [(p x y z) <- (int_rel x y z) (g y z)]  
[(int_rel x y z) <- (r x y) (q x z)]

62



Partitioning contd…
• [(p x y z) <— (r x y) (q x z) (g y z)]


• [(p x y z) <- (r x y) (int_rel x y z)]  
[(int_rel x y z) <- (q x z) (g y z)]


• Good if we expect a small number of zs shared 
between q and g


• [(p x y z) <- (int_rel x y z) (g y z)]  
[(int_rel x y z) <- (r x y) (q x z)]


• Good if we expect a small number of xs shared 
between r and q

63



Partitioning is akin to let*
• [(p x y z) <-  
  (a x y)          ;; and last this  
  —   
  (b x z)          ;; then this  
  —  
  (c x y) (d y z)] ;; first compute this join


• Partitioning adds sequential cost—tuples in intermediate 
relation must propagate to outer joins

64



Tree Partitioning
• Other partitioning strategies exist, e.g., could partition into a 

tree, which may expose parallelism in sub-binary-joins that 
can be done in parallel

65


