
Conflict-Directed
Clause Resolution
(CDCL); Part 1
CIS700 — Fall 2023
Kris Micinski

2

This week we’ll study CDCL, the state-of-the-art algorithm for SAT
solving. CDCL extends DPLL to learn derived clauses that capture
the “root cause” of conflicts, allowing the solver to generalize
conflicts to “lemmas” which help cull the state space.

As we will see, these learned clauses (lemmas) are added in a
“sound” way that do not change satisfiability, but help accelerate
the search.

The CDCL algorithm has a lot of moving parts, and really takes
some time to understand—we will spend a few days discussing.

Last Lecture: DPLL
Main idea: search-based algorithm for materializing an
enumeration. Very space efficient, but time? Leaves a lot to be
desired. Early-day computers are space pressured.

¬A ∨ B ∨ C
A ∨ C ∨ D
A ∨ C ∨ ¬D
A ∨ ¬C ∨ D
A ∨ ¬C ∨ ¬D
¬B ∨ ¬C ∨ D
¬A ∨ B ∨ ¬C
¬A ∨ ¬B ∨ C

A = True
B = False
C = True
D = True

A
False

B

C

False

True

Conflict! Conflict!

3

False

True

C

False

Conflict!

True

Conflict!

B

True

Conflict!

False

True

C
True

Luckily, the forced unit propagation
D=True leads us to success!

D
True

SAT

4

The basic structure of CDCL is similar to DPLL:
Perform unit propagation (i.e., “forced assignments”) until it
is not possible to do so anymore
If you hit a contradiction in doing just unit propagation then
you return UNSAT—no guessing was involved
Now, in a loop, guess an assignment:

Decide an undecided variable
Unit propagate to a fixed point (until you can’t anymore)
When you reach a conflict:

Learn clause that captures the “reason” for the conflict
Backtrack non-chronologically in a way informed by
the conflict, to avoid reaching the same conflict again

5

Reminder: Unit Propagation

Unit propagation (boolean constraint propagation) is the idea that
(unsatisfied) clauses containing only one unassigned literal are
“forced” to have that value in any satisfying assignment.

For example, consider the clause x₃ ∨ ¬x₅ ∨ ¬x₇ ∨ x₈, and the
current partial assignment x₃=F x₅=T, x₈=F, now ¬x₇ is a logical
consequence of the current valuation whenever the clause holds.

Similarly, if there is another clause: ¬x₅ ∨ x₇ ∨ x₉, unit propagation
of ¬x₇ now forces the assignment of x₉ (as everything else if false)

6

Decision Levels

DPLL and CDCL both alternate between BCP and decision (guessing)

Building on the intuition from the last slide, it is sensible to construe the
“decision level” as the number of decision literals in a trace.

So when we refer to the “decision level” of the CDCL algorithm, we are
saying: how many genuine guesses have we made up until this point—
ignoring the (possibly large) number of forced implications due to
iterative application of BCP

7

Exercise: Boolean Constraint Propagation

In sum, boolean constraint propagation performs one-step
transitive reasoning to derived forced implications.

For the following SAT instance, show how iterated application of
unit propagation will lead to a conflict:

(1) ¬x₃ ∨ x₅ ∨ x₆
(2) x₃ ∨ x₅

(3) ¬x₅
(4) ¬x₆

8

Exercise Solution…

(1) ¬x₃ ∨ x₅ ∨ x₆
(2) x₃ ∨ x₅

(3) ¬x₅
(4) ¬x₆

One possible solution: ¬x₅ forces x₅=False. Now perform BCP: this
obtains x₃ from (2) and thus x₃=True. Now, from (4) conclude
x₆=False. BCP of ¬x₆ on (1) yields ¬x₃, which gives a conflict with the
previously-derived x₃=True (from BCP of 2 on ¬x₅).

9

The trail

A key data structure in the CDCL algorithm is the notion of a trail, a
LIFO list of decisions along side their provenance. The trail
accumulates a partial assignment and captures (a part of) the solver’s
execution at each step in the computation.

The trail is a list of literals, each of these literals is annotated with either
(a) a special dec token, indicating that the reason for the literal’s
inclusion was a decision, (b) a unit clause present in the instance, or (c)
a pointer to the clause that forced propagation via BCP

The trail is useful because it separates the solver’s decision points from
its unit propagations. Later on, we will backtrack to decision points,
throwing away the unit propagations after a (wrong) decision.

10

The trail records the “focus” into the tree of DPLL, but separates (a) possibly-
bad guesses (decision nodes) and (b) forced consequences of those decisions.

One of CDCL’s key insights is that the
decisions in the (a) category are the ones

we really need to be tuning—after we
choose (a), (b) is inevitable!

A
False

B

C

False

True

Conflict! Conflict!

False

True

C

False

Conflict!

True

Conflict!

B

True

Conflict!

False

True

C
True

D
True

SAT

11

The trail

When we write a trail, we may also include the decision level via “@N”
where N is the decision level. Thus, our trails will have the form

l_i@0, …, lₖdec, lⱼ @ 1, …., lk+1dec, lⱼ+1 @ 2, …

I.e., an initial set of unit clauses and their propagations, followed by
decisions with (possibly zero) consequences of unit propagation

Conflicts from BCP at level 0 represent UNSAT problems that require
no guessing to prove UNSAT

These represent “easy” UNSAT instances, no guessing involved!

12

Example trail

(1) ¬x₃ ∨ x₅ ∨ x₆
(2) x₃ ∨ x₅

(3) ¬x₅
(4) ¬x₆

For the problem here, the trail looks like the following:

¬x₅@0(3), x₃@0(2₅), ¬x₆@0(4), ¬x₃@0(1), CONFLICT

13

Consider the following clauses:
(1) x₀ ∨ x₃ ∨ ¬x₄
(2) ¬x₃ ∨ x₅
(3) x₄ ∨ x₃

No unit clauses, and thus we must guess. We are guessing at
decision-level zero, and we will guess x₃ = True, our trail looks like

x₃@0dec

Now an example which is satisfiable

14

Consider the following clauses:
(1) x₀ ∨ x₃ ∨ ¬x₄
(2) ¬x₃ ∨ x₅
(3) x₄ ∨ x₃

Now, we need to perform BCP for x₃, we always eagerly apply BCP.
Now (2) tells us we need to decide x₅, and our trail looks like:

x₃@0dec, x₅@1(2)

Now an example which is satisfiable

15

Consider the following clauses:
(1) x₀ ∨ x₃ ∨ ¬x₄
(2) ¬x₃ ∨ x₅
(3) x₄ ∨ x₃

Now we can’t apply BCP anymore (all clauses satisfied) , we have
unassigned values, but their values are arbitrary (1/2/3 already
satisfied):

x₃@0dec, x₅@1(2), x0@1dec, ¬x4@2dec

This gives us a satisfying assignment: x0=T, x₃=T, x₅=T, x4=F

Now an example which is satisfiable

16

[Joao Marques-Silva, Ines Lynce and Sharad Malik
From the “Handbook of Satisfiability]

17

Solvers work in terms of linear trails, but it is semantically useful to
construe an implication graph, whose vertices are literals and
whose edges define the “forced implications” from the rules

Implication Graph

18

x₁ ∨ x₄
x₁ ∨ ¬x₃ ∨ ¬x₈
x₁ ∨ ¬x₈ ∨ x₁₂

x₂ ∨ x₁₁
¬ x₇ ∨ ¬x₃ ∨ x₉
¬ x₇ ∨ x₈ ∨ ¬ x₉
x₇ ∨ x₈ ∨ ¬x₁₀
x₇ ∨ x₁₀ ∨ ¬ x₁₂

Step 1 — Decide
No possible unit propagation, thus decide

Arbitrarily, we decide ¬x1

x1 ¬x1@0

Implication Graph

New node in implication graph, all root nodes
are decisions. Non-root nodes are results of BCP

(Bottom right of node labels decision level)0
¬x1

By Tamkin04iut - asdfPreviously published: asdfasf, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=25662783

19

x₁ ∨ x₄
x₁ ∨ ¬x₃ ∨ ¬x₈
x₁ ∨ ¬x₈ ∨ x₁₂

x₂ ∨ x₁₁
¬ x₇ ∨ ¬x₃ ∨ x₉
¬ x₇ ∨ x₈ ∨ ¬ x₉
x₇ ∨ x₈ ∨ ¬x₁₀
x₇ ∨ x₁₀ ∨ ¬ x₁₂

Step 2 — BCP

First clause forces x₄, extend trail rooted at x1

¬x1 ¬x1@0, x₄@0

¬x1

Implication Graph

New non-root node x4

x4

0

0

20

x₁ ∨ x₄
x₁ ∨ ¬x₃ ∨ ¬x₈
x₁ ∨ ¬x₈ ∨ x₁₂

x₂ ∨ x₁₁
¬ x₇ ∨ ¬x₃ ∨ x₉
¬ x₇ ∨ x₈ ∨ ¬ x₉
x₇ ∨ x₈ ∨ ¬x₁₀
x₇ ∨ x₁₀ ∨ ¬ x₁₂

Step 3 — Decide Again

Still more unassigned literals—keep going, next
let’s assign x3 (True). This is a new decision level

¬x1 ¬x1@0, x₄@0

¬x1

Implication Graph

x4

0

0

x3
x3@1

x3
1

21

x₁ ∨ x₄
x₁ ∨ ¬x₃ ∨ ¬x₈
x₁ ∨ ¬x₈ ∨ x₁₂

x₂ ∨ x₁₁
¬ x₇ ∨ ¬x₃ ∨ x₉
¬ x₇ ∨ x₈ ∨ ¬ x₉
x₇ ∨ x₈ ∨ ¬x₁₀
x₇ ∨ x₁₀ ∨ ¬ x₁₂

Step 4 — More BCP

Now x3 is true and x1 is false, thus BCP ¬x₈

¬x1 ¬x1@0, x₄@0

¬x1

Implication Graph

x4

0

0

x3

x3@1,¬x₈@1

x3
1

¬x8
1

22

x₁ ∨ x₄
x₁ ∨ ¬x₃ ∨ ¬x₈
x₁ ∨ ¬x₈ ∨ x₁₂

x₂ ∨ x₁₁
¬ x₇ ∨ ¬x₃ ∨ x₉
¬ x₇ ∨ x₈ ∨ ¬ x₉
x₇ ∨ x₈ ∨ ¬x₁₀
x₇ ∨ x₁₀ ∨ ¬ x₁₂

Step 5 — Even More BCP

We can now infer x12 from ¬x₈

¬x1 ¬x1@0, x₄@0

¬x1

Implication Graph

x4

0

0

x3
x3@1,¬x₈@1, x12@1

x3
1

¬x8

x12

1

1

23

x₁ ∨ x₄
x₁ ∨ ¬x₃ ∨ ¬x₈
x₁ ∨ ¬x₈ ∨ x₁₂

x₂ ∨ x₁₁
¬ x₇ ∨ ¬x₃ ∨ x₉
¬ x₇ ∨ x₈ ∨ ¬ x₉
x₇ ∨ x₈ ∨ ¬x₁₀
x₇ ∨ x₁₀ ∨ ¬ x₁₂

Step 6 — Back to Guessing

Now let’s guess ¬x2

¬x1 ¬x1@0, x₄@0

¬x1

Implication Graph

x4

0

0

x3
x3@1,¬x₈@1, x12@1

x3
1

¬x8

x12

1

1

¬x2

¬x2
2

¬x2@2

24

x₁ ∨ x₄
x₁ ∨ ¬x₃ ∨ ¬x₈
x₁ ∨ ¬x₈ ∨ x₁₂

x₂ ∨ x₁₁
¬ x₇ ∨ ¬x₃ ∨ x₉
¬ x₇ ∨ x₈ ∨ ¬ x₉
x₇ ∨ x₈ ∨ ¬x₁₀
x₇ ∨ x₁₀ ∨ ¬ x₁₂

Step 7 — BCP

We’re now forced to decide x11

¬x1 ¬x1@0, x₄@0

¬x1

Implication Graph

x4

0

0

x3
x3@1,¬x₈@1, x12@1

x3
1

¬x8

x12

1

1

¬x2

¬x2
2

¬x2@2, x11@2

x11
2

25

x₁ ∨ x₄
x₁ ∨ ¬x₃ ∨ ¬x₈
x₁ ∨ ¬x₈ ∨ x₁₂

x₂ ∨ x₁₁
¬ x₇ ∨ ¬x₃ ∨ x₉
¬ x₇ ∨ x₈ ∨ ¬ x₉
x₇ ∨ x₈ ∨ ¬x₁₀
x₇ ∨ x₁₀ ∨ ¬ x₁₂

Step 8 — Guess yet Again!

Still no answer, let’s try x7

¬x1 ¬x1@0, x₄@0

¬x1

Implication Graph

x4

0

0

x3
x3@1,¬x₈@1, x12@1

x3
1

¬x8

x12

1

1

¬x2

¬x2
2

¬x2@2, x11@2

x11
2

x7x7@3

x7
3

26

x₁ ∨ x₄
x₁ ∨ ¬x₃ ∨ ¬x₈
x₁ ∨ ¬x₈ ∨ x₁₂

x₂ ∨ x₁₁
¬ x₇ ∨ ¬x₃ ∨ x₉
¬ x₇ ∨ x₈ ∨ ¬ x₉
x₇ ∨ x₈ ∨ ¬x₁₀
x₇ ∨ x₁₀ ∨ ¬ x₁₂

Step 9 — BCP & Conflict

After deciding x7, we apply BCP

¬x1 ¬x1@0, x4@0

¬x1

Implication Graph

x4

0

0

x3
x3@1,¬x8@1, x12@1

x3
1

¬x8

x12

1

1

¬x2

¬x2
2

¬x2@2, x11@2

x11
2

x7x7@3

x7
3

These two clauses yield a conflict

C

x9 ¬x9
3

3

27

x₁ ∨ x₄
x₁ ∨ ¬x₃ ∨ ¬x₈
x₁ ∨ ¬x₈ ∨ x₁₂

x₂ ∨ x₁₁
¬ x₇ ∨ ¬x₃ ∨ x₉
¬ x₇ ∨ x₈ ∨ ¬ x₉
x₇ ∨ x₈ ∨ ¬x₁₀
x₇ ∨ x₁₀ ∨ ¬ x₁₂

Step 10 — Analyze Conflict

We’re at a conflict, we need to (a) decide on new
“learned” clause and (b) decide where to backjump

¬x1 ¬x1@0, x4@0

¬x1

Implication Graph

x4

0

0

x3
x3@1,¬x8@1, x12@1

x3
1

¬x8

x12

1

1

¬x2

¬x2
2

¬x2@2, x11@2

x11
2

x7x7@3

x7
3

C

x9 ¬x9
3

3

28

x₁ ∨ x₄
x₁ ∨ ¬x₃ ∨ ¬x₈
x₁ ∨ ¬x₈ ∨ x₁₂

x₂ ∨ x₁₁
¬ x₇ ∨ ¬x₃ ∨ x₉
¬ x₇ ∨ x₈ ∨ ¬ x₉
x₇ ∨ x₈ ∨ ¬x₁₀
x₇ ∨ x₁₀ ∨ ¬ x₁₂

Step 10 — Analyze Conflict
Idea: “cut out” the conflict

¬x1 ¬x1@0, x4@0

¬x1

Implication Graph

x4

0

0

x3
x3@1,¬x8@1, x12@1

x3
1

¬x8

x12

1

1

¬x2

¬x2
2

¬x2@2, x11@2

x11
2

x7x7@3

x7
3

C

x9 ¬x9
3

3

Identify cut in implication
graph which separates latest
decision node and conflict

29

x₁ ∨ x₄
x₁ ∨ ¬x₃ ∨ ¬x₈
x₁ ∨ ¬x₈ ∨ x₁₂

x₂ ∨ x₁₁
¬ x₇ ∨ ¬x₃ ∨ x₉
¬ x₇ ∨ x₈ ∨ ¬ x₉
x₇ ∨ x₈ ∨ ¬x₁₀
x₇ ∨ x₁₀ ∨ ¬ x₁₂

Step 10 — Analyze Conflict

¬x1 ¬x1@0, x4@0

¬x1

Implication Graph

x4

0

0

x3
x3@1,¬x8@1, x12@1

x3
1

¬x8

x12

1

1

¬x2

¬x2
2

¬x2@2, x11@2

x11
2

x7x7@3

x7
3

C

x9 ¬x9
3

3

The “reason” is the incoming nodes
sitting along the boundary

Together, these nodes form a sufficient
condition for the conflict

30

x₁ ∨ x₄
x₁ ∨ ¬x₃ ∨ ¬x₈
x₁ ∨ ¬x₈ ∨ x₁₂

x₂ ∨ x₁₁
¬ x₇ ∨ ¬x₃ ∨ x₉
¬ x₇ ∨ x₈ ∨ ¬ x₉
x₇ ∨ x₈ ∨ ¬x₁₀
x₇ ∨ x₁₀ ∨ ¬ x₁₂

Step 10 — Analyze Conflict

¬x1 ¬x1@0, x4@0

¬x1

Implication Graph

x4

0

0

x3
x3@1,¬x8@1, x12@1

x3
1

¬x8

x12

1

1

¬x2

¬x2
2

¬x2@2, x11@2

x11
2

x7x7@3

x7
3

C

x9 ¬x9
3

3

Thus, to “explain” the conflict we can
assert ¬(x₃ ∧ ¬x₈ ∧ x₇)

i.e., ¬x₃ ∨ x₈ ∨ ¬x₇

31

x₁ ∨ x₄
x₁ ∨ ¬x₃ ∨ ¬x₈
x₁ ∨ ¬x₈ ∨ x₁₂

x₂ ∨ x₁₁
¬ x₇ ∨ ¬x₃ ∨ x₉
¬ x₇ ∨ x₈ ∨ ¬ x₉
x₇ ∨ x₈ ∨ ¬x₁₀
x₇ ∨ x₁₀ ∨ ¬ x₁₂

Step 11 — Backtrack

¬x1 ¬x1@0, x4@0

¬x1

Implication Graph

x4

0

0

x3

x3
1

¬x8

x12

1

1

¬x2

¬x2
2

x11
2

x7

Now we “backtrack” to x3

32

In DPLL, we backtrack “one level.”
In CDCL, we backtrack to the second most recent decision level in
the conflict clause. Or, equivalently, backtrack to the highest
decision level in the conflict clause other than the most recent
decision level.

Non-Chronological Backtracking

