Conflict-Directed Clause Resolution (CDCL); Part 1
CIS700 — Fall 2023
Kris Micinski

This week we'll study CDCL, the state-of-the-art algorithm for SAT solving. CDCL extends DPLL to learn derived clauses that capture the "root cause" of conflicts, allowing the solver to generalize conflicts to "lemmas" which help cull the state space.

As we will see, these learned clauses (lemmas) are added in a "sound" way that do not change satisfiability, but help accelerate the search.

The CDCL algorithm has a lot of moving parts, and really takes some time to understand-we will spend a few days discussing.

Last Lecture: DPLL

Main idea: search-based algorithm for materializing an
enumeration. Very space efficient, but time? Leaves a lot to be desired. Early-day computers are space pressured.

$$
\begin{aligned}
& \neg A \vee B \vee C \\
& A \vee C \vee D \\
& A \vee C \vee \neg D \\
& A \vee \neg C \vee D \\
& A \vee \neg C \vee \neg D \\
& \neg B \vee \neg C \vee D \\
& \neg A \vee B \vee \neg C \\
& \neg A \vee \neg B \vee C
\end{aligned}
$$

$$
A=\text { True }
$$

The basic structure of CDCL is similar to DPLL:

- Perform unit propagation (i.e., "forced assignments") until it is not possible to do so anymore
- If you hit a contradiction in doing just unit propagation then you return UNSAT-no guessing was involved
- Now, in a loop, guess an assignment:
- Decide an undecided variable

■ Unit propagate to a fixed point (until you can't anymore)

- When you reach a conflict:
- Learn clause that captures the "reason" for the conflict
- Backtrack non-chronologically in a way informed by the conflict, to avoid reaching the same conflict again

Reminder: Unit Propagation

Unit propagation (boolean constraint propagation) is the idea that (unsatisfied) clauses containing only one unassigned literal are "forced" to have that value in any satisfying assignment.

For example, consider the clause $x_{3} \vee \neg x_{5} \vee \neg x_{7} \vee x_{8^{\prime}}$ and the current partial assignment $x_{3}=F x_{5}=T, x_{8}=F$, now $\neg x_{7}$ is a logical consequence of the current valuation whenever the clause holds.

Similarly, if there is another clause: $\neg x_{5} \vee x_{7} \vee x_{9}$, unit propagation of $\neg x_{7}$ now forces the assignment of x_{9} (as everything else if false)

Decision Levels

DPLL and CDCL both alternate between BCP and decision (guessing)

Building on the intuition from the last slide, it is sensible to construe the "decision level" as the number of decision literals in a trace.

So when we refer to the "decision level" of the CDCL algorithm, we are saying: how many genuine guesses have we made up until this pointignoring the (possibly large) number of forced implications due to iterative application of BCP

Exercise: Boolean Constraint Propagation

In sum, boolean constraint propagation performs one-step transitive reasoning to derived forced implications.

For the following SAT instance, show how iterated application of unit propagation will lead to a conflict:

$$
\text { (1) } \neg x_{3} \vee x_{5} \vee x_{6}, ~ \begin{gathered}
\text { (2) } x_{3} \vee x_{5} \\
\text { (3) } \neg x_{5} \\
\text { (4) } \neg x_{6}
\end{gathered}
$$

Exercise Solution...

$$
\text { (1) } \neg x_{3} \vee x_{5} \vee x_{6}, ~ \begin{aligned}
& \text { (2) } x_{3} \vee x_{5} \\
& \text { (3) } \neg x_{5} \\
& \text { (4) } \neg x_{6}
\end{aligned}
$$

One possible solution: $\neg x_{5}$ forces $x_{5}=$ False. Now perform BCP: this obtains x_{3} from (2) and thus $x_{3}=$ True. Now, from (4) conclude $x_{6}=$ False. BCP of $\neg x_{6}$ on (1) yields $\neg x_{3}$, which gives a conflict with the previously-derived $\mathrm{x}_{3}=$ True (from BCP of 2 on $\neg \mathrm{x}_{5}$).

The trail

A key data structure in the CDCL algorithm is the notion of a trail, a LIFO list of decisions along side their provenance. The trail accumulates a partial assignment and captures (a part of) the solver's execution at each step in the computation.

The trail is a list of literals, each of these literals is annotated with either (a) a special dec token, indicating that the reason for the literal's inclusion was a decision, (b) a unit clause present in the instance, or (c) a pointer to the clause that forced propagation via BCP

The trail is useful because it separates the solver's decision points from its unit propagations. Later on, we will backtrack to decision points, throwing away the unit propagations after a (wrong) decision.

The trail records the "focus" into the tree of DPLL, but separates (a) possiblybad guesses (decision nodes) and (b) forced consequences of those decisions.

One of CDCL's key insights is that the decisions in the (a) category are the ones we really need to be tuning-after we choose (a), (b) is inevitable!

The trail

When we write a trail, we may also include the decision level via "@N" where N is the decision level. Thus, our trails will have the form

```
\(I_{\_} @ 0, \ldots, I_{k} \operatorname{dec}, I_{j} @ 1, \ldots ., I_{k+1} \operatorname{dec}, I_{j+1} @ 2, \ldots\)
```

I.e., an initial set of unit clauses and their propagations, followed by decisions with (possibly zero) consequences of unit propagation

Conflicts from BCP at level 0 represent UNSAT problems that require no guessing to prove UNSAT

These represent "easy" UNSAT instances, no guessing involved!

Example trail

$$
\text { (1) } \neg x_{3} \vee x_{5} \vee x_{6} \text { (2) } x_{3} \vee x_{5}, ~ \begin{aligned}
& \text { (3) } \neg x_{5} \\
& \text { (4) } \neg x_{6}
\end{aligned}
$$

For the problem here, the trail looks like the following:

$$
\neg x_{5} @ 0(3), x_{3} @ 0\left(2_{5}\right), \neg x_{6} @ 0(4), \neg x_{3} @ 0(1), \text { CONFLICT }
$$

Now an example which is satisfiable

Consider the following clauses:
(1) $x_{0} \vee x_{3} \vee \neg x_{4}$
(2) $\neg x_{3} \vee x_{5}$
(3) $x_{4} \vee x_{3}$

No unit clauses, and thus we must guess. We are guessing at decision-level zero, and we will guess $x_{3}=$ True, our trail looks like
$\mathrm{x}_{3} @ 0$ dec

Now an example which is satisfiable

Consider the following clauses:
(1) $x_{0} \vee x_{3} \vee \neg x_{4}$
(2) $\neg x_{3} \vee x_{5}$
(3) $x_{4} \vee x_{3}$

Now, we need to perform BCP for x_{3}, we always eagerly apply BCP. Now (2) tells us we need to decide $\mathrm{x}_{5^{\prime}}$, and our trail looks like:
$\mathrm{x}_{3} @ 0$ dec, $\mathrm{x}_{5} @ 11^{(2)}$

Now an example which is satisfiable

Consider the following clauses:
(1) $x_{0} \vee x_{3} \vee \neg x_{4}$
(2) $\neg x_{3} \vee x_{5}$
(3) $x_{4} \vee x_{3}$

Now we can't apply BCP anymore (all clauses satisfied), we have unassigned values, but their values are arbitrary ($1 / 2 / 3$ already satisfied):
$\mathrm{x}_{3} @ 0$ dec $, \mathrm{x}_{5} @ 1{ }^{(2)}, \mathrm{x}_{0} @ 1$ dec, $\neg \mathrm{x}_{4} @ 2$ dec
This gives us a satisfying assignment: $x_{0}=T, x_{3}=T, x_{5}=T, x_{4}=F$

```
Algorithm 1 Typical CDCL algorithm
\(\operatorname{CDCL}(\varphi, \nu)\)
    if (UnitPropagation \((\varphi, \nu)==\) CONFLICT)
        then return UNSAT
    \(d l \leftarrow 0 \quad \triangleright\) Decision level
    while (not \(\operatorname{AllVariablesAssigned}(\varphi, \nu)\) )
        do \((x, v)=\operatorname{PickBranching} \operatorname{Variable}(\varphi, \nu) \quad \triangleright\) Decide stage
            \(d l \leftarrow d l+1 \quad \triangleright\) Increment decision level due to new decision
            \(\nu \leftarrow \nu \cup\{(x, v)\}\)
            if \((\operatorname{UnitPropagation}(\varphi, \nu)==\) CONFLICT) \(\quad \triangleright\) Deduce stage
                then \(\beta=\operatorname{Conflict} \operatorname{AnALysis}(\varphi, \nu) \quad \triangleright\) Diagnose stage
                if \((\beta<0)\)
                        then return UNSAT
                        else \(\operatorname{BACKtRACK}(\varphi, \nu, \beta)\)
                            \(d l \leftarrow \beta \quad \triangleright\) Decrement decision level due to backtracking
return SAT
```

[Joao Marques-Silva, Ines Lynce and Sharad Malik From the "Handbook of Satisfiability]

Implication Graph

Solvers work in terms of linear trails, but it is semantically useful to construe an implication graph, whose vertices are literals and whose edges define the "forced implications" from the rules

Step 1 - Decide

$$
\begin{gathered}
x_{1} \vee x_{4} \\
x_{1} \vee \neg x_{3} \vee \neg x_{8} \\
x_{1} \vee \neg x_{8} \vee x_{12} \\
x_{2} \vee x_{11} \\
\neg x_{7} \vee \neg x_{3} \vee x_{9} \\
\neg x_{7} \vee x_{8} \vee \neg x_{9} \\
x_{7} \vee x_{8} \vee \neg x_{10} \\
x_{7} \vee x_{10} \vee \neg x_{12}
\end{gathered}
$$

No possible unit propagation, thus decide Arbitrarily, we decide $\neg \times 1$

Implication Graph

New node in implication graph, all root nodes are decisions. Non-root nodes are results of BCP (Bottom right of node labels decision level)

Step 2 - BCP

$X_{1} \vee x_{4}$
$X_{1} \vee \neg X_{3} \vee \neg X_{8}$
$X_{1} \vee \neg X_{8} \vee X_{12}$
$X_{2} \vee X_{11}$
$\neg X_{7} \vee \neg X_{3} \vee x_{9}$
$\neg X_{7} \vee X_{8} \vee \neg X_{9}$
$X_{7} \vee X_{8} \vee \neg X_{10}$
$X_{7} \vee X_{10} \vee \neg X_{12}$

First clause forces $\mathrm{x}_{4^{\prime}}$ extend trail rooted at $\times 1$

Implication Graph

New non-root node $\times 4$

Step 3 - Decide Again

$X_{1} \vee X_{4}$
$X_{1} \vee \neg X_{3} \vee \neg X_{8}$
$X_{1} \vee \neg X_{8} \vee X_{12}$
$X_{2} \vee X_{11}$
$\neg X_{7} \vee \neg X_{3} \vee x_{9}$
$\neg X_{7} \vee X_{8} \vee \neg X_{9}$
$X_{7} \vee X_{8} \vee \neg X_{10}$
$X_{7} \vee X_{10} \vee \neg X_{12}$

Implication Graph

Still more unassigned literals-keep going, next let's assign $x 3$ (True). This is a new decision level

Step 4 - More BCP

$$
\begin{gathered}
x_{1} \vee x_{4} \\
x_{1} \vee \neg x_{3} \vee \neg x_{8} \\
x_{1} \vee \neg x_{8} \vee x_{12} \\
x_{2} \vee x_{11} \\
\neg x_{7} \vee \neg x_{3} \vee x_{9} \\
\neg x_{7} \vee x_{8} \vee \neg x_{9} \\
x_{7} \vee x_{8} \vee \neg x_{10} \\
x_{7} \vee x_{10} \vee \neg x_{12}
\end{gathered}
$$

Implication Graph

Now $x 3$ is true and $x 1$ is false, thus $B C P \neg x_{8}$

Step 5 - Even More BCP

$$
\begin{gathered}
x_{1} \vee x_{4} \\
x_{1} \vee \neg x_{3} \vee \neg x_{8} \\
x_{1} \vee \neg x_{8} \vee x_{12} \\
x_{2} \vee x_{11} \\
\neg x_{7} \vee \neg x_{3} \vee x_{9} \\
\neg x_{7} \vee x_{8} \vee \neg x_{9} \\
x_{7} \vee x_{8} \vee \neg x_{10} \\
x_{7} \vee x_{10} \vee \neg x_{12}
\end{gathered}
$$

We can now infer $\times 12$ from $\neg x_{8}$

Step 6 - Back to Guessing

$$
\begin{aligned}
& X_{1} \vee X_{4} \\
& X_{1} \vee \neg X_{3} \vee \neg X_{8} \\
& X_{1} \vee \neg X_{8} \vee X_{12} \\
& X_{2} \vee X_{11} \\
& \neg X_{7} \vee \neg X_{3} \vee X_{9} \\
& \neg X_{7} \vee X_{8} \vee \neg X_{9} \\
& X_{7} \vee X_{8} \vee \neg X_{10} \\
& X_{7} \vee X_{10} \vee \neg X_{12}
\end{aligned}
$$

Implication Graph

-7×2

Step 7 - BCP

$$
\begin{gathered}
x_{1} \vee x_{4} \\
x_{1} \vee \neg x_{3} \vee \neg x_{8} \\
x_{1} \vee \neg x_{8} \vee x_{12} \\
x_{2} \vee x_{11} \\
\neg x_{7} \vee \neg x_{3} \vee x_{9} \\
\neg x_{7} \vee x_{8} \vee \neg x_{9} \\
x_{7} \vee x_{8} \vee \neg x_{10} \\
x_{7} \vee x_{10} \vee \neg x_{12}
\end{gathered}
$$

Implication Graph

We're now forced to decide $\times 11$

Step 8 - Guess yet Again!

$$
\begin{gathered}
x_{1} \vee x_{4} \\
x_{1} \vee \neg x_{3} \vee \neg x_{8} \\
x_{1} \vee \neg x_{8} \vee x_{12} \\
x_{2} \vee x_{11} \\
\neg x_{7} \vee \neg x_{3} \vee x_{9} \\
\neg x_{7} \vee x_{8} \vee \neg x_{9} \\
x_{7} \vee x_{8} \vee \neg x_{10} \\
x_{7} \vee x_{10} \vee \neg x_{12}
\end{gathered}
$$

Implication Graph

Still no answer, let's try x7

Step 9 - BCP \& Conflict

$$
\begin{gathered}
x_{1} \vee x_{4} \\
x_{1} \vee \neg x_{3} \vee \neg x_{8} \\
x_{1} \vee \neg x_{8} \vee x_{12} \\
x_{2} \vee x_{11} \\
\neg x_{7} \vee \neg x_{3} \vee x_{9} \\
\neg x_{7} \vee x_{8} \vee \neg x_{9} \\
x_{7} \vee x_{8} \vee \neg x_{10} \\
x_{7} \vee x_{10} \vee \neg x_{12}
\end{gathered}
$$

These two clauses yield a conflict

After deciding x7, we apply BCP

Step 10 - Analyze Conflict

$$
\begin{gathered}
x_{1} \vee x_{4} \\
x_{1} \vee \neg x_{3} \vee \neg x_{8} \\
x_{1} \vee \neg x_{8} \vee x_{12} \\
x_{2} \vee x_{11} \\
\neg x_{7} \vee \neg x_{3} \vee x_{9} \\
\neg x_{7} \vee x_{8} \vee \neg x_{9} \\
x_{7} \vee x_{8} \vee \neg x_{10} \\
x_{7} \vee x_{10} \vee \neg x_{12}
\end{gathered}
$$

We're at a conflict, we need to (a) decide on new "learned" clause and (b) decide where to backjump

Step 10 - Analyze Conflict

Idea: "cut out" the conflict

$$
\begin{gathered}
x_{1} \vee x_{4} \\
x_{1} \vee \neg x_{3} \vee \neg x_{8} \\
x_{1} \vee \neg x_{8} \vee x_{12} \\
x_{2} \vee x_{11} \\
\neg x_{7} \vee \neg x_{3} \vee x_{9} \\
\neg x_{7} \vee x_{8} \vee \neg x_{9} \\
x_{7} \vee x_{8} \vee \neg x_{10} \\
x_{7} \vee x_{10} \vee \neg x_{12}
\end{gathered}
$$

Step 10 - Analyze Conflict

$$
\begin{gathered}
x_{1} \vee x_{4} \\
x_{1} \vee \neg x_{3} \vee \neg x_{8} \\
x_{1} \vee \neg x_{8} \vee x_{12} \\
x_{2} \vee x_{11} \\
\neg x_{7} \vee \neg x_{3} \vee x_{9} \\
\neg x_{7} \vee x_{8} \vee \neg x_{9} \\
x_{7} \vee x_{8} \vee \neg x_{10} \\
x_{7} \vee x_{10} \vee \neg x_{12}
\end{gathered}
$$

The "reason" is the incoming nodes sitting along the boundary

Together, these nodes form a sufficient condition for the conflict

Step 10 - Analyze Conflict

$$
\begin{gathered}
x_{1} \vee x_{4} \\
x_{1} \vee \neg x_{3} \vee \neg x_{8} \\
x_{1} \vee \neg x_{8} \vee x_{12} \\
x_{2} \vee x_{11} \\
\neg x_{7} \vee \neg x_{3} \vee x_{9} \\
\neg x_{7} \vee x_{8} \vee \neg x_{9} \\
x_{7} \vee x_{8} \vee \neg x_{10} \\
x_{7} \vee x_{10} \vee \neg x_{12}
\end{gathered}
$$

Thus, to "explain" the conflict we can

$$
\text { assert } \neg\left(x_{3} \wedge \neg x_{8} \wedge x_{7}\right)
$$

$$
\text { i.e., } \neg x_{3} \vee x_{8} \vee \neg x_{7}
$$

Step 11 - Backtrack

$$
\begin{aligned}
& X_{1} \vee X_{4} \\
& x_{1} \vee \neg x_{3} \vee \neg x_{8} \\
& X_{1} \vee \neg X_{8} \vee X_{12} \\
& X_{2} \vee X_{11} \\
& \neg X_{7} \vee \neg X_{3} \vee X_{9} \\
& \neg X_{7} \vee X_{8} \vee \neg X_{9} \\
& X_{7} \vee X_{8} \vee \neg X_{10} \\
& X_{7} \vee X_{10} \vee \neg X_{12}
\end{aligned}
$$

Implication Graph

Now we "backtrack" to x3

Non-Chronological Backtracking

In DPLL, we backtrack "one level."
In CDCL, we backtrack to the second most recent decision level in the conflict clause. Or, equivalently, backtrack to the highest
decision level in the conflict clause other than the most recent decision level.

