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Why talk about logics?
• Logics help us understand and characterize expressivity limits of systems


• Logics classify sets of expressible statements 


• Sometimes syntactically (i.e., sets of formulas you can write)


• Sometimes semantically (a set of interpretations, not necessarily syntactic)


• E.g., propositional logic


• Atomic formulas (“Rainy”, “IsSunday”) with boolean interpretation


• Boolean connectives (and/∧, or/∨, implies/⟹, not/¬, …)


• First-order logic allows quantifiers (∀x. ∃y. y ≤ x) — more expressive
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Goals for logic segment of this course

• Get an intuition for modern tools for implementing logic at practical scales


• Will cover several logics: propositional, existential fixed-point logic, first-
order logic, higher-order logic, temporal logic, access control logics, …


• Want an intuition: when should I use some logic X to reason about thing Y


• E.g., use temporal logic to say “user is authorized to access password file 
after their password has been verified.”


• Will talk about tools / libraries to implement these logics
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Propositional Logic
• The following are propositional formulas:


• A, A ∧ B, A ∧ B ⟹ C, A ∨ B ⟹ A, …


• How do we interpret formulas?


• This question has a few different answers depending on your outlook on the 
foundations of mathematics


• Classical — Formulas are “true” or “false,” which we define via an 
extensionally-specified boolean interpretation


• Constructive / Intuitionistic — “True” formulas are those which have 
syntactic proofs
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Classical Interpretations
• Need a truth assignment Γ : Var → {True, False} to each variable


• From that, build a truth assignment for formulas, Truth(Φ), depending on Φ:


• If A is an atom, A is True iff Γ(A) = True, and False otherwise


• ϕ ∧ ψ is True iff Truth(ϕ) = True and Truth(ψ) = True


• ϕ ∨ ψ  is true iff Truth(ϕ) = True or Truth(ψ) = True


• ¬ ϕ  is true iff Truth(ϕ) = False (Excluded middle!)


• ϕ ⟹ ψ is true when ¬ ϕ ∨ ψ
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Classical Binary Connectives

• One possible unary connective (negation)


• Eight possible binary connectives


• Possible to encode some operators, only need a basis
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Classical Interpretations

• Some statements are conditionally true based on Γ


• (Definition) These formulas are called satisfiable, as it is possible to find 
a Γ that solves them. We write this in math as Γ ⊨ ϕ 


• Examples:


• A, true if {A ↦ True}, false if  {A ↦ False}


• A ∧ B, true if {A ↦ True, B ↦ True}


• C⟹A∧B, true if {A ↦False,B↦False,C↦False}/{A ↦True,B ↦True,C↦True};


• but not when Γ = {A ↦ True, B ↦ False, C ↦ True}
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(define (formula? ϕ)

  (match ϕ
    [(? symbol? s) #t]

    [`(∧ ,(? formula? ϕ) ,(? formula? ψ)) #t]

    [`(∨ ,(? formula? ϕ) ,(? formula? ψ)) #t]

    [`(⇒ ,(? formula? ϕ) ,(? formula? ψ)) #t]

    [`(¬ ,(? formula? ϕ)) #t]

    [_ #f]))

    

;; truth :: formula * [ Variable -> bool ] -> bool

(define (truth ϕ ρ)

  (match ϕ
    [(? symbol? s) (hash-ref ρ s)]

    [`(∧ ,(? formula? ϕ) ,(? formula? ψ)) (and (truth ϕ ρ) (truth ψ ρ))]

    [`(∨ ,(? formula? ϕ) ,(? formula? ψ)) (or (truth ϕ ρ) (truth ψ ρ))]

    [`(⇒ ,(? formula? ϕ) ,(? formula? ψ)) (or (not (truth ϕ ρ)) (truth ψ ρ))]

    [`(¬ ,(? formula? ϕ)) (not (truth ϕ ρ))]

    [_ (error "bad formula")]))
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(define (variables ϕ)

  (match ϕ
    [(? symbol? s) (set s)]

    [`(∧ ,(? formula? ϕ) ,(? formula? ψ)) (set-union (variables ϕ) (variables ψ))]

    [`(∨ ,(? formula? ϕ) ,(? formula? ψ)) (set-union (variables ϕ) (variables ψ))]

    [`(⇒ ,(? formula? ϕ) ,(? formula? ψ)) (set-union (variables ϕ) (variables ψ))]

    [`(¬ ,(? formula? ϕ)) (variables ϕ)]))


(define (environments ϕ)

  ;; build all possible configurations of variables

  (define (h vars)

    (match vars

      ['() (list (hash))]

      [`(,x ,vars ...)

       ;; recursive call, build list of all possible

       ;; environments using rest of vars except x

       (define all-environments (h vars))

       ;; now for each of those add x as both true/false

       (append (map (lambda (env) (hash-set env x #t)) all-environments)

               (map (lambda (env) (hash-set env x #f)) all-environments))]))

  (h (set->list (variables ϕ))))



10

(define (check-sat ϕ)

  (define (h environments)

    (match environments

      ['() #f] ;; no more environments to check

      [`(,ρ ,next-ρs ...) ;; check ρ, return if it works

       (if (truth ϕ ρ) ρ (h next-ρs))]))

  (h (environments ϕ)))

Satisfiability Checking
• Given a formula ϕ, is there some Γ wherein ϕ holds?


• For propositional logic, this this is decidable via an algorithm


• Generate all possible environments—check if any of them works!



Tautologies

• By contrast, some formulas are always true no matter what Γ is


• A ∧ B ⟹ A


• B ∧ C ⟹ C ∧ B


• A ∨ B ∨ ¬ B


• (Definition) These formulas, which necessarily hold regardless of valuation 
assigned by Γ, are called tautologies


• We often use the syntax ⊨ ϕ to say “ϕ is valid”
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Decidability of Propositional Logic

• Question: is it possible to write a program which determines if an 
arbitrary formula in propositional logic is true? 


• Yes; trivially! Answer: try all possible interpretations!


• This is called validity checking and is dual to satisfiability checking
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(define (valid? ϕ)

  (andmap (lambda (ρ) (truth ϕ ρ)) (environments ϕ)))



Satisfiability vs. Validity

• How is it dual?


• To check validity of ϕ (i.e., ⊨ ϕ), it suffices to check the satisfiability of ¬ϕ


• Right now this seems useless—but this holds in more powerful logics too
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(define (valid-again? ϕ) (not (check-sat `(¬ ,ϕ))))



Model Theory

• When an interpretation satisfies a formula, we say the environment Γ is 
a model for the formula ϕ, Γ ⊨ ϕ


• Field of model theory studies logic from the perspective of its models


• We described a model-theoretic interpretation of truth


• Model theory asks: what properties are required of models? What is 
the structure of models? Etc…


• Propositional logic’s model theory is, essentially, truth tables
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More Intuition; Complexity?

• It is always possible to check the validity / satisfiability of a formula by 
constructing the truth table for it


• Unfortunately, this may get very thorny in practice! Can take a long time!


• Algorithmic complexity (space/time) of truth tables is exponential


• This is the worst-case scenario (beyond undecidability!)


• Truth table approach never used in practice—proof search preferred instead!
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Satisfiability Checking and SAT

• SAT asks the question: given this boolean formula with N variables, is 
it satisfiable?


• 3-SAT is NP-Hard, but practical solutions exist


• Modern SAT solvers scale to formulas with millions of variables 


• http://www.satcompetition.org/


• Lots of SAT variants: MAXSAT, LSAT, Horn-SAT, …


• Generally complex, but decidable problems requiring special solvers
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Why does any of this matter?

• Propositional logic is a relatively weak, but decidable logic—we 
can always reason about it completely precisely and (in finite time) 
discern which statements are true and which are false


• Forms the basis for modern EDA algorithms


• Next week, “Boolean Satisfiability Solvers and Their Applications 
in Model Checking” https://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=7225110
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Clausal Normal Forms

• SAT solvers pound through formulas with incredible speed using 
state-of-the-art top-down search approaches + learning


• Input is clausal normal form: conjunction of disjunctions—possible 
to translate any propositional formula into CNF.
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• Encodings such as Tseitin’s transformation introduce extra variables 
to flatten a formula into CNF—allows a “flat” input format to solver

Tseitin’s Transformation
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“Boolean Satisfiability Solvers and Their Applications in Model Checking” Vizel et. Al



DPLL

• https://kmicinski.com/algorithms/sat/2012/09/22/efficient-sat-
solving/


• Basis for modern SAT solving. Basically: guess one variable’s value, 
look for forced implications—if you hit a dead end, backtrack


• Modern versions of DPLL augment the backtracking step with 
clause learning—before backtracking, generate a new constraint 
that forbids you from going off into this part of the search space 
again
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DPLL Example

• A ∨ B ∨ ¬  C, C ∨ D, A ∨ ¬ B


• Pick A = False:


• (UnitProp, Last clause) ¬ B must be true, thus B must be false


• (UnitProp, First clause) A/B false, so ¬C must be true; C false


• (UnitProp, Second clause) Now, D must be true!


• (No more choices) Our answer is A, B, C = False, D = True
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(Wikipedia, DPLL)



Clause Learning

• Basic idea: when you get to a conflict, learn from your lesson. You 
don’t want to explore this same junk part of the space again!


• While applying unit propagation, build constraint graph—upon 
conflict, identify the cut in the graph that leads to conflict


• Then, learn a synthetic clause that forbids making choices that led 
you to the conflict
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(Wikipedia, Conflict-Directed Clause Learning)
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Backtracking

• Once you find a conflict there you can backtrack arbitrarily-far back in 
history—e.g., to the beginning or another random part of the space


• In practice restarts do help with some classes of formulae


• Conflict-directed learning + two-watched literal + nonchronological 
backtracking forms backbone of fast SAT solvers
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The Two-Watched-Literals Approach

• http://haz-tech.blogspot.com/2010/08/whos-watching-watch-literals.html?
m=1 slides: http://cse.unl.edu/~choueiry/S17-235H/files/SATslides07.pdf


• Need unit propagation to be extremely fast for efficient SAT


• Instead of tracking clauses yet-to-be-satisfied, associate with each literal a 
list of clauses such that the literal is one of two “watch literals.”


• Similar to query planning: do efficient selection via indexing!


• When assigning A, need to inspect only clauses watching ¬A


• See above slides for examples…


• Very fast! Core data structure used for scalability in practice
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SAT is very scalable in practice!



SAT is relatively weak; does it matter?

• SAT solvers scale to clauses with millions of variables, but:


• (a) the million variables are in CNF form, and the relationship to high-level formulas 
that would be useful is via an encoding


• (b) encoding causes blowup in algorithmic complexity (i.e., the millions of variables 
is over counting)


• (c) Hard / algorithmically-complex to represent complex data structures in SAT


• Common use cases are things like formulas of 64-length bit-vectors and formulas 
encoding logical gates in EDA applications


• 10million variables is 156kbytes—so essentially formulas whose solutions are in the 
kbps range wrt information expressed
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Beyond SAT

• We will not focus strongly on the details of SAT solvers


• A variety of techniques extend SAT in various ways with either..


• Recursion — Datalog (Horn-SAT), Existential Fixed-Point Logic/
Constrained-Horn Clauses


• Quantification — (over elements) First-order logic, (over types / 
logical propositions / sorts / …) higher-order logic


• We discuss SAT mainly to give a common baseline for notation
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Law of Excluded Middle (LEM)

• Classical logic admits the law of the excluded middle: ¬¬A ⟹ A


• Sometimes “proof by contradiction.”


• However, intuitionism does not disallow all uses of contradiction, 
just ¬¬A ⟹ A—in a constructive setting a proof is a function you 
can use to give you a proof of anything you want.
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Constructivity

• We discussed the classical setting so far—everything is either true or 
false. This is why we regard truth as function with range {True, False}


• Another mathematical perspective is constructivism


• A statement is true exactly when there exists some (syntactic) proof 
of its truth


• We have not yet discussed how proofs are explicitly represented
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Proof Theory

• The field of proof theory asks how we can syntactically characterize the 
truth of formulas by asking which have (symbolic) proofs


• DPLL is an algorithm, but proof theory is a completely different (symbolic) 
approach to establishing proof of formulas


• Various systems for doing this: natural deduction and sequent calculus
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Natural Deduction

• Gives schemas for proofs; User writes natural deduction proofs which 
instantiate natural deduction rules. Each rule has a set of antecedents 
(assumptions, above the line) and a single consequent (conclusion; 
below the line). 
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This is a proof in natural deduction of (A ∧ B) ∧ (A ∧ C)
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(From Lean’s “Logic and Proof,” Ch 3)

https://leanprover.github.io/logic_and_proof/natural_deduction_for_propositional_logic.html



Key definitions

• Logical system / set of rules said to be sound if everything it proves is “true.”


• A logical system is said to be consistent if it is impossible to prove “false.”


• When we say a logic / procedure / … is complete we mean (roughly) “every 
provable thing is true.”


• Natural deduction is sound and complete for propositional logic—it is always 
possible to find a natural deduction proof for any true statement, and every 
natural deduction proof is of a true statement (under its assumptions).
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Why should we care?

• Proof theory focuses on the explicit materialization of proofs—this allows 
us to construct certificates of correctness for code we write


• Lets us build correct and secure systems


• Lots of practical, real-world security problems can be phrased in terms of 
software correctness


• Can use automated proof assistants (based on some higher-order / 
dependent type theory) to develop and check our proofs
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CertiCrypt — Formally-verified cryptography in Coq



Summary

• Propositional logic is decidable and useful, but lacks expressivity of 
more complete logics.


• E.g., propositional logic can’t express linear arithmetic without 
specific encodings (e.g., bit vectors)


• Propositional logics don’t allow quantifiers


• Natural deduction explicitly materializes proofs for propositional 
formulas


• Key idea: do you materialize a proof or just trust a solver?
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Tools

• minisat http://logicrunch.it.uu.se:4096/~wv/minisat/


• Z3 https://microsoft.github.io/z3guide/playground/
Freeform%20Editing/
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