
Propositional Logic,
DPLL,
and Proof Theory
CIS700 — Fall 2022
Kris Micinski

Why talk about logics?
• Logics help us understand and characterize expressivity limits of systems

• Logics classify sets of expressible statements

• Sometimes syntactically (i.e., sets of formulas you can write)

• Sometimes semantically (a set of interpretations, not necessarily syntactic)

• E.g., propositional logic

• Atomic formulas (“Rainy”, “IsSunday”) with boolean interpretation

• Boolean connectives (and/∧, or/∨, implies/⟹, not/¬, …)

• First-order logic allows quantifiers (∀x. ∃y. y ≤ x) — more expressive

2

Goals for logic segment of this course

• Get an intuition for modern tools for implementing logic at practical scales

• Will cover several logics: propositional, existential fixed-point logic, first-
order logic, higher-order logic, temporal logic, access control logics, …

• Want an intuition: when should I use some logic X to reason about thing Y

• E.g., use temporal logic to say “user is authorized to access password file
after their password has been verified.”

• Will talk about tools / libraries to implement these logics

3

Propositional Logic
• The following are propositional formulas:

• A, A ∧ B, A ∧ B ⟹ C, A ∨ B ⟹ A, …

• How do we interpret formulas?

• This question has a few different answers depending on your outlook on the
foundations of mathematics

• Classical — Formulas are “true” or “false,” which we define via an
extensionally-specified boolean interpretation

• Constructive / Intuitionistic — “True” formulas are those which have
syntactic proofs

4

Classical Interpretations
• Need a truth assignment Γ : Var → {True, False} to each variable

• From that, build a truth assignment for formulas, Truth(Φ), depending on Φ:

• If A is an atom, A is True iff Γ(A) = True, and False otherwise

• ϕ ∧ ψ is True iff Truth(ϕ) = True and Truth(ψ) = True

• ϕ ∨ ψ is true iff Truth(ϕ) = True or Truth(ψ) = True

• ¬ ϕ is true iff Truth(ϕ) = False (Excluded middle!)

• ϕ ⟹ ψ is true when ¬ ϕ ∨ ψ

5

Classical Binary Connectives

• One possible unary connective (negation)

• Eight possible binary connectives

• Possible to encode some operators, only need a basis

6
(Wikipedia)

Classical Interpretations

• Some statements are conditionally true based on Γ

• (Definition) These formulas are called satisfiable, as it is possible to find
a Γ that solves them. We write this in math as Γ ⊨ ϕ

• Examples:

• A, true if {A ↦ True}, false if {A ↦ False}

• A ∧ B, true if {A ↦ True, B ↦ True}

• C⟹A∧B, true if {A ↦False,B↦False,C↦False}/{A ↦True,B ↦True,C↦True};

• but not when Γ = {A ↦ True, B ↦ False, C ↦ True}

7

8

(define (formula? ϕ)
 (match ϕ
 [(? symbol? s) #t]
 [`(∧ ,(? formula? ϕ) ,(? formula? ψ)) #t]
 [`(∨ ,(? formula? ϕ) ,(? formula? ψ)) #t]
 [`(⇒ ,(? formula? ϕ) ,(? formula? ψ)) #t]
 [`(¬ ,(? formula? ϕ)) #t]
 [_ #f]))

;; truth :: formula * [Variable -> bool] -> bool
(define (truth ϕ ρ)
 (match ϕ
 [(? symbol? s) (hash-ref ρ s)]
 [`(∧ ,(? formula? ϕ) ,(? formula? ψ)) (and (truth ϕ ρ) (truth ψ ρ))]
 [`(∨ ,(? formula? ϕ) ,(? formula? ψ)) (or (truth ϕ ρ) (truth ψ ρ))]
 [`(⇒ ,(? formula? ϕ) ,(? formula? ψ)) (or (not (truth ϕ ρ)) (truth ψ ρ))]
 [`(¬ ,(? formula? ϕ)) (not (truth ϕ ρ))]
 [_ (error "bad formula")]))

9

(define (variables ϕ)
 (match ϕ
 [(? symbol? s) (set s)]
 [`(∧ ,(? formula? ϕ) ,(? formula? ψ)) (set-union (variables ϕ) (variables ψ))]
 [`(∨ ,(? formula? ϕ) ,(? formula? ψ)) (set-union (variables ϕ) (variables ψ))]
 [`(⇒ ,(? formula? ϕ) ,(? formula? ψ)) (set-union (variables ϕ) (variables ψ))]
 [`(¬ ,(? formula? ϕ)) (variables ϕ)]))

(define (environments ϕ)
 ;; build all possible configurations of variables
 (define (h vars)
 (match vars
 ['() (list (hash))]
 [`(,x ,vars ...)
 ;; recursive call, build list of all possible
 ;; environments using rest of vars except x
 (define all-environments (h vars))
 ;; now for each of those add x as both true/false
 (append (map (lambda (env) (hash-set env x #t)) all-environments)
 (map (lambda (env) (hash-set env x #f)) all-environments))]))
 (h (set->list (variables ϕ))))

10

(define (check-sat ϕ)
 (define (h environments)
 (match environments
 ['() #f] ;; no more environments to check
 [`(,ρ ,next-ρs ...) ;; check ρ, return if it works
 (if (truth ϕ ρ) ρ (h next-ρs))]))
 (h (environments ϕ)))

Satisfiability Checking
• Given a formula ϕ, is there some Γ wherein ϕ holds?

• For propositional logic, this this is decidable via an algorithm

• Generate all possible environments—check if any of them works!

Tautologies

• By contrast, some formulas are always true no matter what Γ is

• A ∧ B ⟹ A

• B ∧ C ⟹ C ∧ B

• A ∨ B ∨ ¬ B

• (Definition) These formulas, which necessarily hold regardless of valuation
assigned by Γ, are called tautologies

• We often use the syntax ⊨ ϕ to say “ϕ is valid”

11

Decidability of Propositional Logic

• Question: is it possible to write a program which determines if an
arbitrary formula in propositional logic is true?

• Yes; trivially! Answer: try all possible interpretations!

• This is called validity checking and is dual to satisfiability checking

12

(define (valid? ϕ)
 (andmap (lambda (ρ) (truth ϕ ρ)) (environments ϕ)))

Satisfiability vs. Validity

• How is it dual?

• To check validity of ϕ (i.e., ⊨ ϕ), it suffices to check the satisfiability of ¬ϕ

• Right now this seems useless—but this holds in more powerful logics too

13

(define (valid-again? ϕ) (not (check-sat `(¬ ,ϕ))))

Model Theory

• When an interpretation satisfies a formula, we say the environment Γ is
a model for the formula ϕ, Γ ⊨ ϕ

• Field of model theory studies logic from the perspective of its models

• We described a model-theoretic interpretation of truth

• Model theory asks: what properties are required of models? What is
the structure of models? Etc…

• Propositional logic’s model theory is, essentially, truth tables

14

15

More Intuition; Complexity?

• It is always possible to check the validity / satisfiability of a formula by
constructing the truth table for it

• Unfortunately, this may get very thorny in practice! Can take a long time!

• Algorithmic complexity (space/time) of truth tables is exponential

• This is the worst-case scenario (beyond undecidability!)

• Truth table approach never used in practice—proof search preferred instead!

16

Satisfiability Checking and SAT

• SAT asks the question: given this boolean formula with N variables, is
it satisfiable?

• 3-SAT is NP-Hard, but practical solutions exist

• Modern SAT solvers scale to formulas with millions of variables

• http://www.satcompetition.org/

• Lots of SAT variants: MAXSAT, LSAT, Horn-SAT, …

• Generally complex, but decidable problems requiring special solvers

17

http://www.satcompetition.org/

Why does any of this matter?

• Propositional logic is a relatively weak, but decidable logic—we
can always reason about it completely precisely and (in finite time)
discern which statements are true and which are false

• Forms the basis for modern EDA algorithms

• Next week, “Boolean Satisfiability Solvers and Their Applications
in Model Checking” https://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=7225110

18

Clausal Normal Forms

• SAT solvers pound through formulas with incredible speed using
state-of-the-art top-down search approaches + learning

• Input is clausal normal form: conjunction of disjunctions—possible
to translate any propositional formula into CNF.

19

• Encodings such as Tseitin’s transformation introduce extra variables
to flatten a formula into CNF—allows a “flat” input format to solver

Tseitin’s Transformation

20

“Boolean Satisfiability Solvers and Their Applications in Model Checking” Vizel et. Al

DPLL

• https://kmicinski.com/algorithms/sat/2012/09/22/efficient-sat-
solving/

• Basis for modern SAT solving. Basically: guess one variable’s value,
look for forced implications—if you hit a dead end, backtrack

• Modern versions of DPLL augment the backtracking step with
clause learning—before backtracking, generate a new constraint
that forbids you from going off into this part of the search space
again

21

DPLL Example

• A ∨ B ∨ ¬ C, C ∨ D, A ∨ ¬ B

• Pick A = False:

• (UnitProp, Last clause) ¬ B must be true, thus B must be false

• (UnitProp, First clause) A/B false, so ¬C must be true; C false

• (UnitProp, Second clause) Now, D must be true!

• (No more choices) Our answer is A, B, C = False, D = True

22

23

(Wikipedia, DPLL)

Clause Learning

• Basic idea: when you get to a conflict, learn from your lesson. You
don’t want to explore this same junk part of the space again!

• While applying unit propagation, build constraint graph—upon
conflict, identify the cut in the graph that leads to conflict

• Then, learn a synthetic clause that forbids making choices that led
you to the conflict

24

25

(Wikipedia, Conflict-Directed Clause Learning)

26

27

28

29

30

Backtracking

• Once you find a conflict there you can backtrack arbitrarily-far back in
history—e.g., to the beginning or another random part of the space

• In practice restarts do help with some classes of formulae

• Conflict-directed learning + two-watched literal + nonchronological
backtracking forms backbone of fast SAT solvers

31

The Two-Watched-Literals Approach

• http://haz-tech.blogspot.com/2010/08/whos-watching-watch-literals.html?
m=1 slides: http://cse.unl.edu/~choueiry/S17-235H/files/SATslides07.pdf

• Need unit propagation to be extremely fast for efficient SAT

• Instead of tracking clauses yet-to-be-satisfied, associate with each literal a
list of clauses such that the literal is one of two “watch literals.”

• Similar to query planning: do efficient selection via indexing!

• When assigning A, need to inspect only clauses watching ¬A

• See above slides for examples…

• Very fast! Core data structure used for scalability in practice

32

http://haz-tech.blogspot.com/2010/08/whos-watching-watch-literals.html?m=1
http://haz-tech.blogspot.com/2010/08/whos-watching-watch-literals.html?m=1

33

SAT is very scalable in practice!

SAT is relatively weak; does it matter?

• SAT solvers scale to clauses with millions of variables, but:

• (a) the million variables are in CNF form, and the relationship to high-level formulas
that would be useful is via an encoding

• (b) encoding causes blowup in algorithmic complexity (i.e., the millions of variables
is over counting)

• (c) Hard / algorithmically-complex to represent complex data structures in SAT

• Common use cases are things like formulas of 64-length bit-vectors and formulas
encoding logical gates in EDA applications

• 10million variables is 156kbytes—so essentially formulas whose solutions are in the
kbps range wrt information expressed

34

Beyond SAT

• We will not focus strongly on the details of SAT solvers

• A variety of techniques extend SAT in various ways with either..

• Recursion — Datalog (Horn-SAT), Existential Fixed-Point Logic/
Constrained-Horn Clauses

• Quantification — (over elements) First-order logic, (over types /
logical propositions / sorts / …) higher-order logic

• We discuss SAT mainly to give a common baseline for notation

35

Law of Excluded Middle (LEM)

• Classical logic admits the law of the excluded middle: ¬¬A ⟹ A

• Sometimes “proof by contradiction.”

• However, intuitionism does not disallow all uses of contradiction,
just ¬¬A ⟹ A—in a constructive setting a proof is a function you
can use to give you a proof of anything you want.

36

Constructivity

• We discussed the classical setting so far—everything is either true or
false. This is why we regard truth as function with range {True, False}

• Another mathematical perspective is constructivism

• A statement is true exactly when there exists some (syntactic) proof
of its truth

• We have not yet discussed how proofs are explicitly represented

37

Proof Theory

• The field of proof theory asks how we can syntactically characterize the
truth of formulas by asking which have (symbolic) proofs

• DPLL is an algorithm, but proof theory is a completely different (symbolic)
approach to establishing proof of formulas

• Various systems for doing this: natural deduction and sequent calculus

38

Natural Deduction

• Gives schemas for proofs; User writes natural deduction proofs which
instantiate natural deduction rules. Each rule has a set of antecedents
(assumptions, above the line) and a single consequent (conclusion;
below the line).

39

This is a proof in natural deduction of (A ∧ B) ∧ (A ∧ C)

40

(From Lean’s “Logic and Proof,” Ch 3)

https://leanprover.github.io/logic_and_proof/natural_deduction_for_propositional_logic.html

Key definitions

• Logical system / set of rules said to be sound if everything it proves is “true.”

• A logical system is said to be consistent if it is impossible to prove “false.”

• When we say a logic / procedure / … is complete we mean (roughly) “every
provable thing is true.”

• Natural deduction is sound and complete for propositional logic—it is always
possible to find a natural deduction proof for any true statement, and every
natural deduction proof is of a true statement (under its assumptions).

41

Why should we care?

• Proof theory focuses on the explicit materialization of proofs—this allows
us to construct certificates of correctness for code we write

• Lets us build correct and secure systems

• Lots of practical, real-world security problems can be phrased in terms of
software correctness

• Can use automated proof assistants (based on some higher-order /
dependent type theory) to develop and check our proofs

42

43

CertiCrypt — Formally-verified cryptography in Coq

Summary

• Propositional logic is decidable and useful, but lacks expressivity of
more complete logics.

• E.g., propositional logic can’t express linear arithmetic without
specific encodings (e.g., bit vectors)

• Propositional logics don’t allow quantifiers

• Natural deduction explicitly materializes proofs for propositional
formulas

• Key idea: do you materialize a proof or just trust a solver?

44

Tools

• minisat http://logicrunch.it.uu.se:4096/~wv/minisat/

• Z3 https://microsoft.github.io/z3guide/playground/
Freeform%20Editing/

45

http://logicrunch.it.uu.se:4096/~wv/minisat/
https://microsoft.github.io/z3guide/playground/Freeform%20Editing/
https://microsoft.github.io/z3guide/playground/Freeform%20Editing/
https://microsoft.github.io/z3guide/playground/Freeform%20Editing/

