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Why talk about logics?

® | ogics help us understand and characterize expressivity limits of systems
® | ogics classity sets of expressible statements

® Sometimes syntactically (i.e., sets of formulas you can write)

® Sometimes semantically (a set of interpretations, not necessarily syntactic)
® E.g., propositional logic
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® Atomic formulas (“Rainy”, “IsSunday”) with boolean interpretation

® Boolean connectives (and/a, or/v, implies/=>, not/—, ...)

® First-order logic allows quantifiers (vx. 3y. y < x) — more expressive



Goals for logic segment of this course

® Get an intuition for modern tools for implementing logic at practical scales

o \Will cover several logics: propositional, existential tfixed-point logic, first-

order logic, higher-order logic, temporal logic, access control logics, ...
® \Want an intuition: when should | use some logic X to reason about thing Y

® £.g., use temporal logic to say “user is authorized to access password file
after their password has been veritied.”

e Will talk about tools / libraries to implement these logics



Propositional Logic

® The following are propositional formulas:

o AAABAAB=C AvB=A, ...

® How do we interpret formulas?

® This question has a few different answers depending on your outlook on the
foundations of mathematics

® Classical — Formulas are “true” or “talse,” which we define via an
extensionally-specified boolean interpretation

® Constructive / Intuitionistic — “True” formulas are those which have
syntactic proofs



Classical Interpretations

® Need a truth assignment I : Var — {True, False} to each variable
® From that, build a truth assignment for formulas, Truth(®), depending on ©:
® |f Aisan atom, A is True iff '(A) = True, and False otherwise
® ¢ A Y is True iff Truth(dp) = True and Truth() = True
¢ v U istrue iff Truth(dp) = True or Truth(P) = True
® - ¢ istrue iff Truth(ep) = False (Excluded middle!)

e & — Y istruewhen P v Y



Classical Binary Connectives

® One possible unary connective (negation)
® Fight possible binary connectives

® Possible to encode some operators, only need a basis

(Wikipedia)

Symbol, name Truth Venn
table diagram

Zeroary connectives (constants)

T Truthftautology 1

1 Falsity/contradiction 0

Unary connectives

P=0 1
Proposition P 0 1
= Negation 1 0
Binary connectives
=0 1
Q=010 1
Proposition P 0011 .:'
/
Proposition QO 0101 /)
: (
~  Conjunction 0001 (I\,
\ /
T Alternative denial 1110 n
v Disjunction 0111 .
L Joint denial 1000
=+ Material conditional 1101 m
« Exclusive or 0110 o
« Biconditional 1001 m
« Converse implication 1011 n

More information



Classical Interpretations

® Some statements are conditionally true based on I

® (Definition) These formulas are called satisfiable, as it is possible to find
a [ that solves them. We write this in math as ' & ¢

® Examples:
o A true if {Ar True}, talse if {A » False}
o A AB, trueit{Awr True, B » True}
o C—=AAB, true it {A »False,BrFalse,CrFalse}/{A »True,B »True,CrTruel;

e but notwhen Il ={A » True, B » False, C » True}



(define (formula? ¢)
(match ¢
[ (? symbol? s) #t]
[T (A ,(? formula? ¢) ,(? formula? Y)) #t]
[T(V ,(? formula? ¢) ,(? formula? Y)) #t]
[T (= ,(? formula? ¢) ,(? formula? Y)) #t]
[T(™ ,(? formula? ¢)) #t]
[ #£]))

s truth :: formula * [ Variable -> bool ] -> bool
(define (truth ¢ p)
(match ¢
[ (? symbol? s) (hash-ref p s)]
[T (AN ,(? formula? ¢) ,(? formula? Y)) (and (truth ¢ p) (truth Y p))]
[T(V ,(? formula? ¢) ,(? formula? Y)) (or (truth ¢ p) (truth Y p))]
[T (= ,(? formula? ¢) ,(? formula? Y)) (or (not (truth ¢ pP)) (truth Y p))]
[T(™ ,(? formula? ¢)) (not (truth ¢ pP))]
[ (error "bad formula")]))



(define (variables ¢)
(match ¢

(? symbol? s) (set s)]

(AN ,(? formula? ¢) ,(? formula? Y)) (set-union (variables ¢) (variables Y)):

(Vv ,(? formula? ¢) ,(? formula? Y)) (set-union (variables ¢) (variables Y)):

(= ,(? formula? ¢) ,(? formula? Y)) (set-union (variables ¢) (variables Y)):

(7 ,(? formula? ¢)) (variables ¢)]))

(define (environments ()
;3 build all possible configurations of variables
(define (h vars)
(match wvars
['() (list (hash))]
[ (,X ,vars ...)
;7 recursive call, build 1list of all possible
; ;7 environments using rest of vars except x
(define all-environments (h vars))
;; now for each of those add x as both true/false
(append (map (lambda (env) (hash-set env x #t)) all-environments)
(map (lambda (env) (hash-set env x #f)) all-environments))]))
(h (set->list (variables ¢))))



Satistiability Checking

® Given a formula @, is there some [T wherein ¢ holds?
® For propositional logic, this this is decidable via an algorithm

® Generate all possible environments—check it any of them works!

(define (check-sat ¢)
(define (h environments)
(match environments
['() #f] ;; no more environments to check
[ (,P ,next-pPs ...) ;; check p, return if it works
(if (truth ¢ p) P (h next-ps))]))

(h (environments ¢)))
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Tautologies

® By contrast, some formulas are always true no matter what I’ is

o AAB=—=A

e BAC=>CAB
e AvBv-B

® (Definition) These formulas, which necessarily hold regardless of valuation
assigned by I, are called tautologies

® \Ve often use the syntax = ¢ to say “@ is valid”
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Decidability of Propositional Logic

® Question: is it possible to write a program which determines it an
arbitrary formula in propositional logic is true?

® Yes; trivially! Answer: try all possible interpretations!

® This is called validity checking and is dual to satistiability checking

(define (valid? ¢)
(andmap (lambda (p) (truth ¢ pP)) (environments ¢)))
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Satistiability vs. Validity

® How is it dual?

® To check validity of @ (i.e., = @), it suffices to check the satisfiability of =¢

® Right now this seems useless—but this holds in more powerful logics too

(define (valid-again? ¢) (not (check-sat (= ,0))))

13



Model Theory

® \When an interpretation satisfies a formula, we say the environment I is
a model for the formula ¢, N = ¢

® Field of model theory studies logic from the perspective of its models
® \We described a model-theoretic interpretation of truth

® Model theory asks: what properties are required of models? What is
the structure of models? Etc...

® Propositional logic's model theory is, essentially, truth tables
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More Intuition; Complexity?

® |tis always possible to check the validity / satistiability of a formula by
constructing the truth table for it

® Unfortunately, this may get very thorny in practice! Can take a long time!
® Algorithmic complexity (space/time) of truth tables is exponential
® This is the worst-case scenario (beyond undecidability!)

® Truth table approach never used in practice—proof search preferred instead!
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Satistiability Checking and SAT

® SAT asks the question: given this boolean formula with N variables, is
it satistiable?

e 3-SAT is NP-Hard, but practical solutions exist
® Modern SAT solvers scale to formulas with millions of variables

® http://www.satcompetition.org/

® | ots of SAT variants: MAXSAT LSAT, Horn-SAT, ...

® Generally complex, but decidable problems requiring special solvers
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Why does any of this matter?

® Propositional logic is a relatively weak, but decidable logic—we
can always reason about it completely precisely and (in finite time)
discern which statements are true and which are false

® Forms the basis for modern EDA algorithms

® Next week, "Boolean Satisfiability Solvers and Their Applications

in Model Checking” https://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=7225110
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Clausal Normal Forms

® SAT solvers pound through formulas with incredible speed using
state-of-the-art top-down search approaches + learning

® |nput is clausal normal form: conjunction of disjunctions—possible
to translate any propositional formula into CNF.
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Tseitin's Transformation

® Encodings such as Tseitin's transtormation introduce extra variables
to flatten a formula into CNF—allows a “flat” input format to solver

Propositional Formulas CNF
()
(x Ay)V(y & 2) f]@ (0V p) //t (éq)(z—iq)\(g_o_p,
p 0 po(zhy) A| PDPYIEYD)
v | cowez | ©PTAE
(yzo)loyz)

"Boolean Satistiability Solvers and Their Applications in Model Checking” Vizel et. Al
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DPLL

® https://kmicinski.com/algorithms/sat/2012/09/22/efticient-sat-
solving/

® Basis for modern SAT solving. Basically: guess one variable's value,
look for forced implications—if you hit a dead end, backtrack

® Modern versions of DPLL augment the backtracking step with
clause learning—betore backtracking, generate a new constraint
that forbids you from going oft into this part of the search space
again
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DPLL Example

e AvBv—- C,CvD Av-B
® Pick A = False:

® (UnitProp, Last clause) = B must be true, thus B must be false
® (UnitProp, First clause) A/B false, so =C must be true; C false
® (UnitProp, Second clause) Now, D must be truel

® (No more choices) Our answer is A, B, C = False, D = True
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Algorithm DPLL
Input: A set of clauses O.
Output: A truth value indicating whether ® is satisfiable.

function DPLL(PD)

while there is a unit clause {1} in ® do
P « unit-propagate(l, P);

while there is a literal 1 that occurs pure in ® do
P « pure-literal-assign(l, P);

if & is empty then
return true;

if ® contains an empty clause then
return false;

1l « choose-literal(®);

return DPLL(® A {1}) or DPLL(® A {not(l)});

(Wikipedia, DPLL)
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Clause Learning

® Basic idea: when you get to a conflict, learn from your lesson. You
don’t want to explore this same junk part of the space again!

® \While applying unit propagation, build constraint graph—upon
conflict, identify the cut in the graph that leads to conflict

® Then, learn a synthetic clause that forbids making choices that led
you to the conflict
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Step 7 x1=0, x4=1
X1+ x4 / ;

X1+ x3" + x8’ /
X1+ x8 +x12 »
2 + 11 @ x3=1, X8=0, x12=1
X7'+x3 +x9 \

X7+ x8 +x9’ 4

X7 + x8 + x10’ @ x2=0, x11=1
X7 + x10 + x12’ s’

@ x4=1

(Wikipedia, Contlict-Directed Clause Learning)
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X1+ x4

X1+ x3" + x8’

X1+ x8 +x12

X2 + x11

X7+ x3"+Xx9

X7’ + x8 +x9’

X7 + x8 + x10°
X7 +x10 + x12°

© x4=1

Step 8
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X1=0, x4=1

@ x3=1, x8=0, Xx12=1

x2=0, x11=1




X1 + x4 Step 9

X1+ x3 + x8
X1+ x8 + x12
x2 + x11

X7+ x3"+x9
X7+ x8 + x9’
x7 + x8 + x10’
X7 +x10 +x12’

© x4=1

X3=1) x7=1
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x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

X7=1




x1 + x4 Step 10
X1 + X3’ + X8’ ,°
X1 + X8 + x12 s’

x1=0, x4=1

X2 + xX11 x3=1, x8=0, x12=1

X7’ + X3 +x9
X7’ + X8 + x9’

X7 + x8 + x10° x2=0, x11=1

X7 + x10 + x12’ s’

x7=1,x9=0, 1

O x4=1
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X1+ x4 Step 11 (x1) [ x1=0, x4=1
X1+ x3" + x8’ Y
X1+ x8 + x12 »

2 + x11 @ x3=1, x8=0, X12=1
X7+ x3"+x9 \
X7’ + X8 + X9’ 4

X7 + x8 + x10’ @ x2=0, x11=1

X7 + X10 + x12’ s’
Q X7=1, X9=1

X3=1Ax7=1Ax8=0 — conflict
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X1+ x4

X1+ x3 + x8

X1+ x8 + x12

X2 + x11

X7’ +x3 +x9

X7’ + X8 + x9’

x7 + x8 + x10°
X7 +x10 +x12’

Step 11

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7=1, x9=1

X3=1AX7=1,%X8=0 — conflict
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If a implies b, then b’ implies a’

Step 12 x3=1Ax7=1Ax8=0 — conflict

Not conflict — (X3=1AX7=1Ax8=0)
true — (X3=1Ax7=1Ax8=0)
(X3=1AX7=1A%x8=0)

(X3 + X/ + X8)



Backtracking

® Once you find a conftlict there you can backtrack arbitrarily-tar back in
history—e.g., to the beginning or another random part of the space

® |n practice restarts do help with some classes of formulae

® Conflict-directed learning + two-watched literal + nonchronological
backtracking forms backbone of fast SAT solvers
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The Two-Watched-Literals Approach

® http://haz-tech.blogspot.com/2010/08/whos-watching-watch-literals.htm|?
m=1 slides: http://cse.unl.edu/~choueiry/S17-235H/tiles/SATslides07/.pdf

® Need unit propagation to be extremely fast for efficient SAT

® |nstead of tracking clauses yet-to-be-satisfied, associate with each literal a

list of clauses such that the literal is one of two “watch literals.”
® Similar to query planning: do efficient selection via indexing!
® \When assigning A, need to inspect only clauses watching = A
® See above slides for examples...

® Very fast! Core data structure used for scalability in practice
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SAT is very scalable in practice!

SAT Competition Winners on the SC2020 Benchmark Suite
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SAT is relatively weak; does it matter?

® SAT solvers scale to clauses with millions of variables, but:

® (a) the million variables are in CNF form, and the relationship to high-level formulas

that would be useful is via an encoding

® (b) encoding causes blowup in algorithmic complexity (i.e., the millions of variables

is over counting)

® (c) Hard / algorithmically-complex to represent complex data structures in SAT

e Common use cases are things like formulas of 64-length bit-vectors and formulas

encoding logical gates in E

DA applications

® 10million variables is 156kbytes—so essentially formulas whose solutions are in the

kbps range wrt information

expressed
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Beyond SAT

¢ \We will not focus strongly on the details of SAT solvers
® A variety of techniques extend SAT in various ways with either..

® Recursion — Datalog (Horn-SAT), Existential Fixed-Point Logic/
Constrained-Horn Clauses

® Quantification — (over elements) First-order logic, (over types /
logical propositions / sorts / ...) higher-order logic

® \We discuss SAT mainly to give a common baseline for notation
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| aw ot Excluded Middle (LEM)

® Classical logic admits the law of the excluded middle: -—A = A

® Sometimes “proof by contradiction.”

® However, intuitionism does not disallow all uses of contradiction,
just =—=A = A—in a constructive setting a proof is a function you
can use to give you a proot of anything you want.
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Constructivity

® \We discussed the classical setting so far—everything is either true or
false. This is why we regard truth as function with range {True, False}

® Another mathematical perspective is constructivism

® A statement is true exactly when there exists some (syntactic) proot
of its truth

® \We have not yet discussed how proofs are explicitly representea
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Proof Theory

® The field of proof theory asks how we can syntactically characterize the
truth of formulas by asking which have (symbolic) proofs

® DPLL is an algorithm, but proof theory is a completely difterent (symbolic)
approach to establishing proot of formulas

® \arious systems for doing this: natural deduction and sequent calculus

38



Natural Deduction

® Gives schemas for proofs; User writes natural deduction proots which
instantiate natural deduction rules. Each rule has a set of antecedents
(assumptions, above the line) and a single consequent (conclusion;
below the line).

A B A C
AND ANC

(ANB)N(AANC)

This is a proof in natural deduction of (A A B) A (A A C)
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Implication: (From Lean’s “Logic and Proof,” Ch 3)

https://leanprover.github.io/logic_and_proof/natural_deduction_for_propositional_logic.html

— 1
A
A— B A
: B
B
B 1 —I Conjunction:
A— B
A B ANB o ANB .
Truth and falsity: ANB A B
Disjunction:
A i = F
Negation: Lf/lB v A€B v
egation. Ay R - -
1 VE

A ¢

. — A A Reductio ad absurdum (proof by contradiction):

: n —E — .

L

1 I :
~A :
% I RAA
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Key definitions

® |ogical system / set of rules said to be sound if everything it proves is “true.”
® A |ogical system is said to be consistent if it is impossible to prove "“false.”

® \When we say a logic / procedure / ... is complete we mean (roughly) “every
provapble thing is true.”

® Natural deduction is sound and complete for propositional logic—it is always
possible to find a natural deduction proof for any true statement, and every
natural deduction proof is of a true statement (under its assumptions).
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Why should we care?

® Proof theory focuses on the explicit materialization ot proots—this allows
us to construct certificates of correctness for code we write

® | ets us build correct and secure systems

® | ots of practical, real-world security problems can be phrased in terms of
software correctness

® Can use automated proof assistants (based on some higher-order /
dependent type theory) to develop and check our proofs
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CertiCrypt — Formally-veritied cryptography in Cog

313 let EA := add_decl Eenc A A_params (refl_equal true) A_body A_ret in

314 add_decl EA A' A'_params (refl_equal true) A'_body A'_ret.

315

316 (s« Environment for the DDH and ES adversaries xx)

317 Definition EBD :=

318 let ED := add_decl E D D_params (refl_equal true) D_body D_res in
319 add_decl ED B B_params (refl_equal true) B_body B_res.

320

321 (¢ The set of oracles that can be called by [A] and [A'] (there are none) x)
322 Definition PrOrcl := PrSet.empty.

323

324 (#x Private procedures, not accessible to the adversary x)

325 Definition PrPriv := PrSet.add (BProc.mkP B) (PrSet.singleton (BProc.mkP D)).
326

327 (#x The adversary is well-formed in [E], i.e. it only reads or writes

328 variables it has access to, and only calls oracles and its own procedures x)

329 Hypothesis A_wf : WFAdv PrOrcl PrPriv Gadv Gcomm E A.

330 Hypothesis A'_wf : WFAdv PrOrcl PrPriv Gadv Gcomm E A'.

331

332 (#k The adversary runs in PPT x*)

333 Hypothesis A_PPT : forall E', Eg_adv_decl PrOrcl PrPriv E E' -> PPT_proc E' A.
334 Hypothesis A'_PPT : forall E', Eq_adv_decl PrOrcl PrPriv E E' -> PPT_proc E' A'.
335

336 (#k The adversary is lossless (i.e. it always terminates) x)

337 Hypothesis A_lossless : forall E, lossless E A_body.

338 Hypothesis A'_lossless : forall E, lossless E A'_body.

339

340 Lemma EqAD : Eg_adv_decl PrOrcl PrPriv E EBD.

341 Praof.

342 unfold Eq_adv_decl, proc_params, prac_body, proc_res; intros.

343 generalize (BProc.eqb_spec (BProc.mkP A) (BProc.mkP f)).
241 Aact riieret (BDrerane anbh (BDear mkD AY BDenre mblD £YY:Y T4 rac



Summary

® Propositional logic is decidable and useful, but lacks expressivity of
more complete logics.

® £ .g., propositional logic can’t express linear arithmetic without
specific encodings (e.g., bit vectors)

® Propositional logics don't allow quantifiers

® Natural deduction explicitly materializes proofs for propositional
formulas

® Key idea: do you materialize a proof or just trust a solver?

44



Tools

® minisat http://logicrunch.it.uu.se:4096/~wv/minisat/

® /3 https://microsoft.github.io/z3guide/playground/
Freetorm%20Editing/
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