Propositional Logic, DPLL, SUOS and Proof Theory CIS700 — Fall 2022 Kris Micinski

Why talk about logics?

- Logics help us understand and characterize **expressivity limits** of systems
- Logics classify sets of expressible statements
 - Sometimes syntactically (i.e., sets of formulas you can write)
 - Sometimes semantically (a set of interpretations, not necessarily syntactic)
- E.g., propositional logic
 - Atomic formulas ("Rainy", "IsSunday") with boolean interpretation
 - Boolean connectives (and/ \land , or/ \lor , implies/ \Longrightarrow , not/ \neg , ...)
- First-order logic allows quantifiers ($\forall x. \exists y. y \leq x$) more expressive

Goals for logic segment of this course

- Get an intuition for modern tools for implementing logic at practical scales
 - Will cover several logics: propositional, existential fixed-point logic, firstorder logic, higher-order logic, temporal logic, access control logics, ...
- Want an intuition: when should I use some logic X to reason about thing Y
 - E.g., use temporal logic to say "user is authorized to access password file after their password has been verified."
- Will talk about **tools** / libraries to implement these logics

Propositional Logic

- The following are propositional formulas:
 - A, A \land B, A \land B \Longrightarrow C, A \lor B \Longrightarrow A, ...
- How do we interpret formulas?
 - foundations of mathematics
 - extensionally-specified boolean interpretation
 - syntactic proofs

• This question has a few different answers depending on your outlook on the

• **Classical** — Formulas are "true" or "false," which we define via an

• **Constructive / Intuitionistic** — "True" formulas are those which have

Classical Interpretations

- Need a **truth assignment** Γ : Var \rightarrow {True, False} to each variable
- From that, build a truth assignment for formulas, Truth(Φ), depending on Φ :
 - If A is an atom, A is True iff $\Gamma(A) = True$, and False otherwise
 - $\phi \land \psi$ is True iff Truth(ϕ) = True and Truth(ψ) = True
 - $\phi \lor \psi$ is true iff Truth(ϕ) = True or Truth(ψ) = True
 - $\neg \phi$ is true iff Truth(ϕ) = False (Excluded middle!)
 - $\phi \implies \psi$ is true when $\neg \phi \lor \psi$

Classical Binary Connectives

- One possible unary connective (negation)
- Eight possible binary connectives
 - Possible to encode some operators, only need a basis

(Wikipedia)

Symbol, name 1 t			Truth table								
Zeroary connectives (constants)											
т	Truth/tautology				1						
T	Falsity/contradiction				0						
Unary connectives											
		<i>P</i> =	0		1						
	Proposition P		0		1						
-	Negation		1		0						
Binary connectives											
		<i>P</i> =	()	1						
		<i>Q</i> =	0	1	0	1					
	Proposition P		0	0	1	1					
	Proposition Q		0	1	0	1					
^	Conjunction		0	0	0	1					
t	Alternative denial		1	1	1	0					
v	Disjunction		0	1	1	1					
Ţ	Joint denial		1	0	0	0					
→	Material conditional		1	1	0	1					
↔	Exclusive or		0	1	1	0					
↔	Biconditional		1	0	0	1					
←	Converse implication		1	0	1	1	$\left(\left(\right) \right)$				
	More information										

Classical Interpretations

- Some statements are conditionally true based on Γ
- (Definition) These formulas are called satisfiable, as it is possible to find a Γ that solves them. We write this in math as $\Gamma \models \phi$
- Examples:
 - A, true if $\{A \mapsto True\}$, false if $\{A \mapsto False\}$
 - $A \land B$, true if { $A \mapsto True$, $B \mapsto True$ }
 - $C \implies A \land B$, true if $\{A \mapsto False, B \mapsto False, C \mapsto False\}/\{A \mapsto True, B \mapsto True, C \mapsto True\};$
 - but not when $\Gamma = \{A \mapsto True, B \mapsto False, C \mapsto True\}$

;; truth :: formula * [Variable -> bool] -> bool (define (truth $\phi \rho$)

 $(match \phi)$

[(? symbol? s) (hash-ref ρ s)] $[(, (, (? formula? \phi)) (not (truth \phi \rho))]$ [(error "bad formula")]))

a? Ψ)) #t] a? Ψ)) #t] a? Ψ)) #t]

 $[(\wedge, (? formula? \phi), (? formula? \psi))$ (and (truth $\phi \rho$) (truth $\psi \rho$)) $[(\vee, (? formula? \varphi), (? formula? \psi))$ (or (truth $\varphi \rho$) (truth $\psi \rho$)) $[(\Rightarrow, (? formula? \phi), (? formula? \psi))$ (or (not (truth $\phi \rho$)) (truth $\psi \rho$))]

(define (variables ϕ) (match ϕ [(? symbol? s) (set s)] $[(, (, (? formula? \varphi)) (variables \varphi)]))$ (define (environments ϕ) ;; build all possible configurations of variables (define (h vars) (match vars ['() (list (hash))] [`(,x ,vars ...) ;; recursive call, build list of all possible ;; environments using rest of vars except x (define all-environments (h vars)) ;; now for each of those add x as both true/false (h (set->list (variables ϕ))))

```
[(\wedge, (? formula? \varphi), (? formula? \psi)) (set-union (variables \varphi) (variables \psi))
[(\vee, (? formula? \Phi), (? formula? \Psi)) (set-union (variables \Phi) (variables \Psi))
[() \rightarrow (? \text{ formula? } \phi), (? \text{ formula? } \psi)) (\text{set-union (variables } \phi) (variables } \psi))]
```

```
(append (map (lambda (env) (hash-set env x #t)) all-environments)
        (map (lambda (env) (hash-set env x #f)) all-environments))]))
```


Satisfiability Checking

- Given a formula ϕ , is there some Γ wherein ϕ holds?
- For propositional logic, this this is **decidable** via an algorithm
 - Generate all possible environments—check if any of them works!

(define (check-sat ϕ) (define (h environments) (match environments (if (truth $\phi \rho$) ρ (h next- ρ s))])) (h (environments ϕ))

- ['() #f] ;; no more environments to check
- [`(, ρ ,next- ρ s ...) ;; check ρ , return if it works

Tautologies

• By contrast, some formulas are **always true** no matter what Γ is

•
$$A \land B \Longrightarrow A$$

- $B \land C \Longrightarrow C \land B$
- $A \lor B \lor \neg B$
- (Definition) These formulas, which necessarily hold regardless of valuation assigned by Γ, are called tautologies
- We often use the syntax $\vDash \phi$ to say " ϕ is valid"

Decidability of Propositional Logic

- Question: is it possible to write a program which determines if an arbitrary formula in propositional logic is true?
- Yes; trivially! Answer: try all possible interpretations!
- This is called validity checking and is **dual** to satisfiability checking

$(define (valid? \phi))$ (and map (lambda (ρ) (truth $\phi \rho$)) (environments ϕ))

Satisfiability vs. Validity

- How is it dual?
 - To check validity of ϕ (i.e., $\models \phi$), it suffices to check the **satisfiability** of $\neg \phi$
- Right now this seems useless—but this holds in more powerful logics too

(define (valid-again? ϕ) (not (check-sat (\neg, ϕ)))

Model Theory

- When an interpretation satisfies a formula, we say the environment Γ is a model for the formula $\varphi, \Gamma \vDash \varphi$
- Field of **model theory** studies logic from the perspective of its models
 - We described a model-theoretic interpretation of truth
 - Model theory asks: what properties are required of models? What is the structure of models? Etc...
- Propositional logic's model theory is, essentially, **truth tables**

Р	Q	R	$P \rightarrow Q$	$Q \rightarrow R$	$(P \to Q) \land (Q \to R)$
Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F
Т	F	Т	F	Т	F
Т	F	F	F	Т	F
F	Т	Т	Т	Т	Т
F	Т	F	Т	F	F
F	F	Т	Т	Т	Т
F	F	F	Т	Т	Т

More Intuition; Complexity?

- It is always possible to check the validity / satisfiability of a formula by constructing the truth table for it
- Unfortunately, this may get very thorny in practice! Can take a long time!
- Algorithmic complexity (space/time) of truth tables is exponential
 - This is the worst-case scenario (beyond undecidability!)
 - Truth table approach never used in practice—proof search preferred instead!

Satisfiability Checking and SAT

- SAT asks the question: given this boolean formula with N variables, is it satisfiable?
 - 3-SAT is **NP-Hard**, but practical solutions exist
 - Modern SAT solvers scale to formulas with millions of variables
 - http://www.satcompetition.org/
- Lots of SAT variants: MAXSAT, LSAT, Horn-SAT, ...
 - Generally complex, but decidable problems requiring special solvers

Why does any of this matter?

- Propositional logic is a relatively weak, but decidable logic—we can always reason about it completely precisely and (in finite time) discern which statements are true and which are false
- Forms the basis for modern EDA algorithms
- Next week, "Boolean Satisfiability Solvers and Their Applications in Model Checking" https://ieeexplore.ieee.org/stamp/stamp.jsp? tp=&arnumber=7225110

Clausal Normal Forms

- SAT solvers pound through formulas with incredible speed using state-of-the-art top-down search approaches + learning
- Input is clausal normal form: conjunction of disjunctions—possible to translate any propositional formula into CNF.

Tseitin's Transformation

"Boolean Satisfiability Solvers and Their Applications in Model Checking" Vizel et. Al

 Encodings such as Tseitin's transformation introduce extra variables to flatten a formula into CNF—allows a "flat" input format to solver

- solving/
- again

\mathbf{D}

https://kmicinski.com/algorithms/sat/2012/09/22/efficient-sat-

 Basis for modern SAT solving. Basically: guess one variable's value, look for forced implications—if you hit a dead end, backtrack

 Modern versions of DPLL augment the backtracking step with clause learning—before backtracking, generate a new constraint that forbids you from going off into this part of the search space

- $A \lor B \lor \neg$ C, C \lor D, A $\lor \neg$ B
- Pick A = False:
 - (UnitProp, Last clause) ¬ B must be true, thus B must be false
 - (UnitProp, First clause) A/B false, so ¬C must be true; C false
 - (UnitProp, Second clause) Now, D must be true!
 - (No more choices) Our answer is A, B, C = False, D = True

DPLL Example

Algorithm DPLL Input: A set of clauses Φ . Output: A truth value indicating whether Φ is satisfiable.

function $DPLL(\Phi)$ while there is a unit clause $\{l\}$ in Φ do $\Phi \leftarrow unit-propagate(1, \Phi);$ while there is a literal l that occurs pure in Φ do $\Phi \leftarrow pure-literal-assign(l, \Phi);$ if Φ is empty then return true; if Φ contains an empty clause then return false; $1 \leftarrow choose-literal(\Phi);$ return $DPLL(\Phi \land \{1\})$ or $DPLL(\Phi \land \{not(1)\})$;

(Wikipedia, DPLL)

Clause Learning

- Basic idea: when you get to a conflict, learn from your lesson. You don't want to explore this same junk part of the space again!
- While applying unit propagation, build *constraint graph*—upon conflict, identify the **cut** in the graph that leads to conflict
- Then, learn a synthetic clause that forbids making choices that led you to the conflict

(Wikipedia, Conflict-Directed Clause Learning)

x1 + x4 x1 + x3' + x8' x1 + x8 + x12 x2 + x11 x7' + x3' + x9 x7' + x8 + x9' x7 + x8 + x10' x7 + x8 + x10' x7 + x10 + x12'

Step 8

x1 + x4 x1 + x3' + x8' x1 + x8 + x12 x2 + x11 x7' + x3' + x9 x7' + x8 + x9' x7 + x8 + x10' x7 + x8 + x10' x7 + x10 + x12'

 $x3\texttt{=}1 \land x7\texttt{=}1 \land x8\texttt{=}0 \rightarrow \texttt{conflict}$

)ínx2æØ

If a implies b, then b' implies a'

Step 12

 $x3=1 \land x7=1 \land x8=0 \rightarrow conflict$ Not conflict \rightarrow (x3=1 \land x7=1 \land x8=0)' true \rightarrow (x3=1 \land x7=1 \land x8=0)' (x3=1^x7=1^x8=0)' (x3' + x7' + x8)

Backtracking

- Once you find a conflict there you can backtrack arbitrarily-far back in history—e.g., to the beginning or another random part of the space
 - In practice restarts do help with some classes of formulae
- Conflict-directed learning + two-watched literal + nonchronological backtracking forms backbone of fast SAT solvers

The Two-Watched-Literals Approach

- <u>http://haz-tech.blogspot.com/2010/08/whos-watching-watch-literals.html?</u> <u>m=1</u> slides: http://cse.unl.edu/~choueiry/S17-235H/files/SATslides07.pdf
- Need unit propagation to be extremely fast for efficient SAT
 - Instead of tracking clauses yet-to-be-satisfied, associate with each literal a list of clauses such that the literal is one of two "watch literals."
 - Similar to query planning: do efficient selection via indexing!
 - When assigning A, need to inspect only clauses watching ¬A
 - See above slides for examples...
 - Very fast! Core data structure used for scalability in practice

SAT is very scalable in practice!

SAT is relatively weak; does it matter?

- SAT solvers scale to clauses with millions of variables, but:
 - (a) the million variables are in CNF form, and the relationship to high-level formulas that would be useful is via an encoding
 - (b) encoding causes blowup in algorithmic complexity (i.e., the millions of variables is over counting)
 - (c) Hard / algorithmically-complex to represent complex data structures in SAT
- Common use cases are things like formulas of 64-length bit-vectors and formulas encoding logical gates in EDA applications
- 10million variables is 156kbytes—so essentially formulas whose solutions are in the kbps range wrt information expressed

Beyond SAT

- We will not focus strongly on the details of SAT solvers
- A variety of techniques extend SAT in various ways with either..
 - Recursion Datalog (Horn-SAT), Existential Fixed-Point Logic/ Constrained-Horn Clauses
 - Quantification (over elements) First-order logic, (over types / logical propositions / sorts / ...) higher-order logic
- We discuss SAT mainly to give a common baseline for notation

Law of Excluded Middle (LEM)

- Classical logic admits the law of the excluded middle: $\neg \neg A \Longrightarrow A$
 - Sometimes "proof by contradiction."
 - However, intuitionism does not disallow all uses of contradiction, just ¬¬A ⇒ A—in a constructive setting a proof is a function you can use to give you a proof of anything you want.

Constructivity

- We discussed the **classical** setting so far—*everything is either true or false*. This is why we regard truth as function with range {True, False}
- Another mathematical perspective is constructivism
 - A statement is true exactly when there exists some (syntactic) proof of its truth
- We have not yet discussed how proofs are explicitly represented

Proof Theory

- The field of **proof theory** asks how we can syntactically characterize the truth of formulas by asking which have (symbolic) proofs
- DPLL is an algorithm, but proof theory is a completely different (symbolic) approach to establishing proof of formulas
- Various systems for doing this: natural deduction and sequent calculus

below the line).

This is a **proof** in natural deduction of $(A \land B) \land (A \land C)$

Natural Deduction

 Gives schemas for proofs; User writes natural deduction proofs which instantiate natural deduction *rules*. Each rule has a set of **antecedents** (assumptions, above the line) and a single **consequent** (conclusion;

Implication:

Truth and falsity:

Disjunction:

Negation:

(From Lean's "Logic and Proof," Ch 3)

https://leanprover.github.io/logic_and_proof/natural_deduction_for_propositional_logic.html

Conjunction:

Reductio ad absurdum (proof by contradiction):

$$-\overline{A}^{1}$$

$$\vdots$$

$$-\underline{\bot}^{1} RAA$$

$$A$$
40

- Logical system / set of rules said to be **sound** if everything it proves is "true." • A logical system is said to be **consistent** if it is impossible to prove "false." • When we say a logic / procedure / ... is **complete** we mean (roughly) "every
- provable thing is true."
- Natural deduction is sound and complete for propositional logic—it is always possible to find a natural deduction proof for any true statement, and every natural deduction proof is of a true statement (under its assumptions).

Key definitions

Why should we care?

- Proof theory focuses on the explicit materialization of proofs—this allows us to construct certificates of correctness for code we write
 - Lets us build correct and secure systems
- Lots of practical, real-world security problems can be phrased in terms of software correctness
- Can use automated proof assistants (based on some higher-order / dependent type theory) to develop and check our proofs

CertiCrypt — Formally-verified cryptography in Coq

```
let EA := add_decl Eenc A A_params (refl_equal true) A_body A_ret in
313
314
        add_decl EA A' A'_params (refl_equal true) A'_body A'_ret.
315
       (** Environment for the DDH and ES adversaries *)
316
      Definition EBD :=
317
       let ED := add_decl E D D_params (refl_equal true) D_body D_res in
318
        add_decl ED B B_params (refl_equal true) B_body B_res.
319
320
      (** The set of oracles that can be called by [A] and [A'] (there are none) *)
321
      Definition PrOrcl := PrSet.empty.
322
323
      (** Private procedures, not accessible to the adversary *)
324
      Definition PrPriv := PrSet.add (BProc.mkP B) (PrSet.singleton (BProc.mkP D)).
325
326
       (** The adversary is well-formed in [E], i.e. it only reads or writes
327
         variables it has access to, and only calls oracles and its own procedures *)
328
      Hypothesis A_wf : WFAdv PrOrcl PrPriv Gadv Gcomm E A.
329
      Hypothesis A'_wf : WFAdv PrOrcl PrPriv Gadv Gcomm E A'.
330
331
      (** The adversary runs in PPT *)
332
      Hypothesis A_PPT : forall E', Eq_adv_decl PrOrcl PrPriv E E' -> PPT_proc E' A.
333
      Hypothesis A'_PPT : forall E', Eq_adv_decl PrOrcl PrPriv E E' -> PPT_proc E' A'.
334
335
      (*** The adversary is lossless (i.e. it always terminates) *)
336
337
      Hypothesis A_lossless : forall E, lossless E A_body.
       Hypothesis A'_lossless : forall E, lossless E A'_body.
338
339
       Lemma EqAD : Eq_adv_decl PrOrcl PrPriv E EBD.
340
341
       Proof.
342
       unfold Eq_adv_decl, proc_params, proc_body, proc_res; intros.
       generalize (BProc.eqb_spec (BProc.mkP A) (BProc.mkP f)).
343
        destruct (BProc each (BProc mkP A) (BProc mkP f)); intros
3/1/1
```

- Propositional logic is decidable and useful, but lacks expressivity of more complete logics.
 - E.g., propositional logic can't express linear arithmetic without specific encodings (e.g., bit vectors)
 - Propositional logics don't allow quantifiers
- Natural deduction explicitly materializes proofs for propositional formulas
 - Key idea: do you **materialize** a proof or just *trust* a solver?

Summary

- minisat <u>http://logicrunch.it.uu.se:4096/~wv/minisat/</u>
- Z3 <u>https://microsoft.github.io/z3guide/playground/</u> Freeform%20Editing/

Tools