
Malware Analysis
CIS700 (Special Topics) — Fall 2021

Kris Micinski

Course Logistics
• Welcome to the course, I’m happy you’re here!

• High-level: this is a seminar course (with some hands-on
projects) introducing state-of-the-art techniques in the
analysis of malware.

• Today: introduction to assembly

• Next few weeks: boot-up on C, assembly, debugging,
traditional attacks (overflows, shell coding, etc..)

• Course website:

• https://kmicinski.com/cis700-f21

• I will be making heavy use of Slack

• Please make sure you join the Slack right now!
2

https://kmicinski.com/cis400-f21

Course Grading and Notes
• We expect and trust that graduate students are expending

significant effort in studying for the course in a way that will
aid their own individual research efforts.

• Thus, grading for graduate courses is particularly non-
adversarial in the sense that I would like to give everyone
an A who demonstrates they significantly improved their
research-level knowledge.

• Grading will be as follows:

• 3 course projects (each worth 10%)

• Paper write-ups and discussions (worth 50%)

• One take-home final (worth 20%)

3

Course Delivery
• This course will be part-lecture, part seminar.

• In a lecture, instructor presents material and solicits
participation. In seminar, students guide discussion
informed by instructor’s guidance.

• Generally, Tuesdays will be lecture days and Thursdays
will be paper discussion days.

• Slides will likely be very terse and I expect you will ask
questions.

• I would like each lecture to have a scribe. Every must scribe
at least twice. A scribe takes thoughtful notes on the
lecture so we can post them later.

4

Course Grading and Notes
• We expect and trust that graduate students are expending

significant effort in studying for the course in a way that will
aid their own individual research efforts.

• Thus, grading for graduate courses is particularly non-
adversarial in the sense that I would like to give everyone
an A who demonstrates they significantly improved their
research-level knowledge.

• Grading will be as follows:

• 3 course projects (each worth 10%)

• Paper write-ups and discussions (worth 50%)

• One take-home final (worth 20%)

5

Course Projects
• Three projects. I am not quite sure what

these will be yet. Topics may include:

• Stack overflow exploitation / shell
coding and stack overflow prevention

• SQL injection or other more modern
web attacks

• Reproducing an attack from a paper

• (Manual/automated) ROP synthesis
and exploitation

6

Topics (Very tentative)

• Week 1 — C / assembly background

• Week 2 — Spatial and temporal safety

• Week 3 — Shellcoding, ASLR, probabilistic
defenses

• Week 4 — Return-to-libc and ROP

• Week 5 — Modern ROP synthesis and exploit
generation

• Week 6 — Symbolic execution and SMT

• Week 7 — Modern binary symbolic execution
techniques (angr, BAP, etc..)

7

• Week 8 — Datalog, Datalog Disassembly, and
Horn-SAT-based binary analysis

• Week 9 — Decompilation and sound
decompilation.

• Week 10 — Machine learning for malware
classification.

• Week 11 — Neural inference of binaries for
decompilation, identifier reversing, etc…

• Week 12 — Usable reverse engineering tools

• Week 13 — Scriptable, declarative, and
compilable binary analyses.

• Week 14 — Project presentations

Memory-Based Attacks

Assembly Review

By which I mean x86-64 assembly…

Note: you won’t have to write significant amounts of
assembly for this course, but you will need to be able to
read small pieces of it and figure out what it’s doing…

Note: you won’t have to write significant amounts of
assembly for this course, but you will need to be able to
read small pieces of it and figure out what it’s doing…

Also note: I will be discussing x86 assembly, although it’s
arguably a dying language (behold—ARM!). x86 assembly is
still the bulk of what a reverse engineer would see, so I

think it makes sense to teach that…

Registers

Traditionally, x86 architectures only had four
16-bit general purpose registers: ax, bx, cx, dx

Also other registers: bp, sp, di, si

Base pointer

(Start of frame) Stack pointer

(Top of stack)

Originally, 8-bit registers: al, bl, cl, dl

Traditionally, x86 architectures only had four
16-bit general purpose registers: ax, bx, cx, dx

Also other registers: bp, sp, di, si

Base pointer

(Start of frame) Stack pointer

(Top of stack)

IP: instruction pointer
Points at current instruction,

incremented after each instruction

FLAGS: holds flags

Set on subtraction, comparison, etc..

Originally, 8-bit registers: al, bl, cl, dl

Traditionally, x86 architectures only had four
16-bit general purpose registers: ax, bx, cx, dx

As time progressed, also added 32-bit registers: eax,
ebx, ecx, edx

In past few years, 64-bit registers: rax, rbx, rcx, rdx

Also other registers: bp, sp, di, si

(Also 64-bit versions: rip, etc..)

We’ll pretty much exclusively use
64-bit registers!

Note RAX is an extension of EAX

If you change EAX, you change lower 32 bits of RAX

Special regs: floating-
point / matrix ops

12 34

To represent 0x1234567890abcdef

56 78 90 ab cd ef

Least Significant ByteMost Significant Byte

x86 is a little-endian architecture

If an n-byte value is stored at addresses a to a+(n-1) in memory,
byte a will hold the least significant byte

0x1234567890abcdef

Exercise with partner

Instructions

Binary code is made up of giant sequences of “instructions”

Modern Intel / AMD chip has hundreds of them, some very complex

Moving memory around Arithmetic Branch / If

Matrix operations Atomic-Instructions

Transactional memory instructions

Encoded as binary (as you may have seen from
hardware-design course)

We (humans) write in a format named “assembly”

Confusingly: two types of assembly

AT&T Intel

mov 5, %rax mov rax, 5

I will basically always use AT&T

(Since that’s what’s used in GNU toolchain)

Several addressing modes

mov %rax, %rbx
Opcode name

Source

Destination

“Move the value from register rax into the register rbx”

Plurality of instructions
are movs

Then push
Then call

Memory: a giant chunk of bytes

You can read from it and write to it in 1/2/4/8/16-byte increments

mov (%rax), %rbx

mov (%rax), %rbx
Opcode name

Source

Destination

“Move the value at address %rax into register %rbx”

0xaf23c8a223356ac0xffffffff00000000%rax 0xffffffff00000008

0xdeadbeefdeadbeef0xffffffff00000000
0x1234123412341234%rbx

mov (%rax), %rbx
Opcode name

Source

Destination

“Move the value at address %rax into register %rbx”

0xaf23c8a223356ac0xffffffff00000000%rax 0xffffffff00000008

0xdeadbeefdeadbeef0xffffffff00000000
0xdeadbeefdeadbeef%rbx

mov 8(%rax), %rbx
Opcode name

Source

Destination

“Move the value at address %rax+8 into register %rbx”

0xaf23c8a223356ac0xffffffff00000000%rax 0xffffffff00000008

0xdeadbeefdeadbeef0xffffffff00000000
0xaf23c8a223356ac%rbx

A few other more complicated ones that allow
you to add registers, offsets, etc…

Different instructions allow different addressing-modes

Memory is divided into different regions

Name a few?

OS separates these into different segments

Kernel memory

Your OS uses it

Stack: push / pop

Very important:
The stack grows down

Stack: push / pop

Very important:
The stack grows down

mmap segments

Allows you to map a file
to memory

Heap: dynamic allocation

C++: New / delete

C: Malloc / free

BSS: Uninitialized static
vars (globals)

Data segment: initialized
statics—e.g., constant strings

Text segment: program code

Note the permissions

This random offset
really security feature

Calling conventions

Touch-tone phones, send an acoustic wave over the wire

If Alice wants to call Bob, her phone needs to send the right
sounds over the wire in the right order

Calling conventions

When function A wants to call function B, it has to do the same

Where do arguments go?

How to store return address?

Who saves registers?

Where is result stored?

Calling conventions

Modern computers use a few different calling conventions

Where do arguments go?

How to store return address?

Who saves registers?

Where is result stored?

De-facto standard (Linux / MacOS / etc..) : x86-64 System V ABI

Note: this is new for the 64 bit API. You might see stuff online
for the 32-bit API that is different

Calling conventions: x86-64
System V ABI

Where do arguments go?

First six: rdi,rsi,rdx,rcx,r8,r9

How to store return address?

call instruction puts on top of stack

Who saves registers?

Caller saves caller-save registers

R10,R11, any ones used for args

Where is result stored?

Result stored in %rax

http://slideplayer.com/slide/9679824/

x86-64 System V ABI

Rules for caller:

• Save caller-save registers

• First six args in registers, after that put on

stack

• Execute call—pushes ret addr

Afterwards:

•Pop saved registers

•Result now in %rax

Rules for callee:

• First six args available in registers

• Push %rbp—caller’s base pointer

• Move %rsp to %rbp—Setup new frame

• Subtract necessary stack space

• Push callee-save registers

• Before exit: restore rbp/callee-saved regs

• leave instruction restores rbp

• When function done, put result in %rax

• Use ret instruction to pop return rip

x86-64 System V ABI

These rules are cumbersome: I frequently look
them up, they change depending on the kind of

function you’re calling, etc…

Upshot: don’t feel you have to memorize, just
get the gist / know how to recognize them

Small examples: interactive demo of x86-64 ABI

Trivia: the red zone
int bar(int a, int b) {

 return a + b;

} bar:

 pushq %rbp

movq %rsp, %rbp

 movl %edi, -4(%rbp)

 movl %esi, -8(%rbp)

 movl -4(%rbp), %edx

 movl -8(%rbp), %eax

 addl %edx, %eax

popq %rbp

 ret

Weird! This code using -4(%rbp) before
decrementing the stack pointer!!

Turns out: x86-64 guarantees there
are always128 bytes below %rsp

Upshot: if a function uses at most
128 bytes below RSP, doesn’t have

to subtract anything from RSP

This is an optimization for “small”
functions: so they never have to

subtract from RSP

Question: why does GCC generate such stupid code?

Answer: code unoptimized, add -O(1/2/3) to optimize it

-O0 generates code that is predictable and easy to read

First attack: Stack Smashing

void foo(char *ptr) {

 char buffer[1000];

 strcpy(buffer, ptr);

 printf(“length: %d\n”, strlen(buffer));

}

This code is bad because it doesn’t check the
length of the string in ptr…

After foo starts

Stuff from foo…

Return addr

Saved %rbp

buffer[999]

…

buffer[0]%rsp

%rsp+3E8

%rsp+3F0

%rsp+3F8

%rsp+400

%rbp

Callee’s %rbx

Return addr

Saved %rbp

buffer[999]

…

buffer[0]

%rbp

Key observation: the stack grows down

After foo starts

%rsp

%rsp+3E8

%rsp+3F0

%rsp+3F8

%rsp+400

Callee’s %rbx

Return addr

Saved %rbp

buffer[999]

buffer[0]

Consider what happens when strcpy(buffer,ptr)

ptr[0] = ‘H’

ptr[1] = ‘i’buffer[1]

buffer[2]

…

ptr[2] = 0

%rsp

%rsp+3E8

%rsp+3F0

%rsp+3F8

%rsp+400

Callee’s %rbx

Return addr

Saved %rbp

buffer[999]

‘H’

Consider what happens when strcpy(buffer,ptr)

ptr[0] = ‘H’

ptr[1] = ‘i’‘i’

0

…

ptr[2] = 0

(This one is fine..)

%rsp

%rsp+3E8

%rsp+3F0

%rsp+3F8

%rsp+400

Now consider what happens when we provide input ‘A’ * 1008

Callee’s %rbx

0x41414141

0x41414141

‘A’

‘A’

Return addr becomes 0x41414141 (‘A’ four times)

‘A’

…

‘A’

‘A’ * 8

‘A’ * 8

%rsp

%rsp+3E8

%rsp+3F0

%rsp+3F8

%rsp+400

Upon return, control goes to 0x41414141

If anything at this address, program will execute it

But falls in here, unmapped memory

Result: most common C crash

Segmentation Fault

The compiler translates binary code into machine code

execve("/bin/sh")

Compiler

 "\x48\x31\xd2" // xor %rdx, %rdx

 "\x48\xbb\x2f\x2f\x62\x69\x6e\x2f\x73\x68" // mov	 $0x68732f6e69622f2f, %rbx

 "\x48\xc1\xeb\x08" // shr $0x8, %rbx

 "\x53" // push %rbx

 "\x48\x89\xe7" // mov %rsp, %rdi

 "\x50" // push %rax

 "\x57" // push %rdi

 "\x48\x89\xe6" // mov %rsp, %rsi

 "\xb0\x3b" // mov $0x3b, %al

 "\x0f\x05"; // syscall

We’ll cover this assembly
later in class!

man execve

All that code is loaded by the kernel at a specific place in memory

Let’s assume for a second that the compiler loads that code at
0x41414141

In the next few slides we’ll see what happens if it’s not there

 "\x48\x31\xd2" // xor %rdx, %rdx

 "\x48\xbb\x2f\x2f\x62\x69\x6e\x2f\x73\x68" // mov	 $0x68732f6e69622f2f, %rbx

 "\x48\xc1\xeb\x08" // shr $0x8, %rbx

 "\x53" // push %rbx

 "\x48\x89\xe7" // mov %rsp, %rdi

 "\x50" // push %rax

 "\x57" // push %rdi

 "\x48\x89\xe6" // mov %rsp, %rsi

 "\xb0\x3b" // mov $0x3b, %al

 "\x0f\x05"; // syscall

0x41414141

// foo’s caller

foo(p);

x = x+1;

void foo(char *ptr) {

 char buffer[ptr];

 strcpy(buffer, ptr);

 printf(“length: %d\n”, strlen(buffer));

}

Return pointer: 0x41414141
After returning, we expect the code

to go back here

 "\x48\x31\xd2" // xor %rdx, %rdx

 "\x48\xbb\x2f\x2f\x62\x69\x6e\x2f\x73\x68" // mov	 $0x68732f6e69622f2f, %rbx

 "\x48\xc1\xeb\x08" // shr $0x8, %rbx

 "\x53" // push %rbx

 "\x48\x89\xe7" // mov %rsp, %rdi

 "\x50" // push %rax

 "\x57" // push %rdi

 "\x48\x89\xe6" // mov %rsp, %rsi

 "\xb0\x3b" // mov $0x3b, %al

 "\x0f\x05"; // syscall

0x41414141

// foo’s caller

foo(p);

x = x+1;

void foo(char *ptr) {

 char buffer[ptr];

 strcpy(buffer, ptr);

 printf(“length: %d\n”, strlen(buffer));

}

Return pointer: 0x41414141
But the return address has been

overwritten (stack has been smashed)

Instead, return goes here

Now, the computer executes a shell instead!!!

Might not be so bad if it’s a local program

But bad if it’s a connection to a remote server!

In your first project, you’ll mount one of these
attacks on a vulnerable file server

So my job as an attacker is to find a buffer overflow in the program
and then craft an input that sends the code where I want

Question 1: How do I find a bug?

A: Dig through the source manually, if source is available

(If source unavailable, use a decompiler)

A: Some automated testing tools

So my job as an attacker is to find a buffer overflow in the program
and then craft an input that sends the code where I want

Question 2: What if program doesn’t have bugs!?

A: You’re hosed, can’t perform this attack

But some other attacks we’ll talk about on Thursday

The best way to prevent these attacks is to write in
languages where these bugs can’t occur!!

So my job as an attacker is to find a buffer overflow in the program
and then craft an input that sends the code where I want

Question 3: How do I know what code to execute?

A: Find the code you want in the binary

A: We’ll also learn how you can inject your own code

So my job as an attacker is to find a buffer overflow in the program
and then craft an input that sends the code where I want

Question 4: How do I know where the code is

A: Use GDB to find it after booting up the binary

But there’s a critical catch!

The compiler includes a variety of protections
against stack smashing

Stack canaries (which we’ll learn about next week)

Address Space Layout Randomization

Loads code into random addr each run!

(We’ll see some techniques to help defeat this)

