Malware Analysis

CIS700 (Special Topics) — Fall 2021
Kris Micinski

Course Logistics

® \Welcome to the course, I'm happy you're herel

® High-level: this is a seminar course (with some hands-on
projects) introducing state-of-the-art techniques in the
analysis of malware.

® Today: introduction to assembly

e Next few weeks: boot-up on C, assembly, debugging,
traditional attacks (overflows, shell coding, etc..)

e Course website:

® https://kmicinski.com/cis7/00-121

® | will be making heavy use of Slack

® Please make sure you join the Slack right now!
2

https://kmicinski.com/cis400-f21

Course Grading and Notes

® \\Ne expect and trust that graduate students are expending
significant effort in studying for the course in a way that will
aid their own individual research efforts.

® Thus, grading for graduate courses is particularly non-
adversarial in the sense that | would like to give everyone

an A who demonstrates they signiticantly improved their
research-level knowledge.

® Grading will be as follows:
® 3 course projects (each worth 10%)})

® Paper write-ups and discussions (worth 50%)

® One take-home ftinal (worth 20%)

3

Course Delivery

® This course will be part-lecture, part seminar.

® |n a lecture, instructor presents material and solicits
participation. In seminar, students guide discussion
informed by instructor’s guidance.

® Generally, Tuesdays will be lecture days and Thursdays
will be paper discussion days.

® Slides will likely be very terse and | expect you will ask
questions.

® | would like each lecture to have a scribe. Every must scribe
at least twice. A scribe takes thoughttul notes on the
lecture so we can post them later.

Course Grading and Notes

® \\Ne expect and trust that graduate students are expending
significant effort in studying for the course in a way that will
aid their own individual research efforts.

® Thus, grading for graduate courses is particularly non-
adversarial in the sense that | would like to give everyone

an A who demonstrates they signiticantly improved their
research-level knowledge.

® Grading will be as follows:
® 3 course projects (each worth 10%)})

® Paper write-ups and discussions (worth 50%)

® One take-home ftinal (worth 20%)

5

Course Projects

® Three projects. | am not quite sure what
these will be yet. Topics may include:

® Stack overflow exploitation / shell
coding and stack overflow prevention

® SQL injection or other more modern
web attacks

® Reproducing an attack from a paper

® (Manual/automated) ROP synthesis
and exploitation

Topics (Very tentative)

o \Week 8 — Datalog, Datalog Disassembly, and

Horn-SAT-based binary analysis
Week 1 — C / assembly backgrouna

® Week 9 — Decompilation and sound

Week 2 — Spatial and temporal safety decompilation.

Week 3 — Shellcoding, ASLR, probabilistic e Week 10 — Machine learning for malware

defenses classification.

Week 4 — Return-to-libc and ROP e \Week 11 — Neural inference of binaries for

Week 5 — Modern ROP synthesis and exploit decompilation, identitier reversing, etc...

generation o \Week 12 — Usable reverse engineering tools
Week 6 — Symbolic execution and SMT e Week 13 — Scriptable, declarative, and
Week 7 — Modern binary symbolic execution compilable binary analyses.

techniques (angr, BAP, etc..) ® \Week 14 — Project presentations

Memory-Based Attacks

Assembly Review

By which I mean x¥6-64 assembl:j...

Note: you wont have to write significant amounts of
assembly for this course, but you will need to be able to
read small pieces of it and figure out what it's doing...

Note: you wont have to write significant amounts of
assembly for this course, but you will need to be able to
read small pieces of it and figure out what it's doing...

Also note: I will be discussing x¥é& &ssembi.v, although it%s

arguably a dying language (behold—ARM!). x¥6 assembly is

still the bullke of what a reverse engineer would see, so I
thinke itk malees sense bo teach that...

Registers

Originally, 8-bit registers: al, bl, cl, dI

Traditionally, x86 architectures only had four
| 6-bit general purpose registers: ax, bx, cx, dx

Also other registers: bp, sp, di, si

Base pointer

(Start of frame) Stack pointer

(Top of stack)

Originally, 8-bit registers: al, bl, cl, dI

Traditionally, x86 architectures only had four
| 6-bit general purpose registers: ax, bx, cx, dx

Also other registers: bp, sp, di, si

Base pointer

(Start of frame) Stack pointer

(Top of stack)

IP: instruction pointer FLAGS: holds flags

Points at current instruction,

, , , Set on subtraction, comparison, etc..
incremented after each instruction

Traditionally, x86 architectures only had four
| 6-bit general purpose registers: ax, bx, cx, dx

Also other registers: bp, sp, di, si

As time progressed, also added 32-bit registers: eax,
ebx, ecx, edx

In past few years, 64-bit registers: rax, rbx, rcx, rdx

(Also 64-bit versions: rip, etc..)

We'll pre&%v much e.xdusivetfj wse
&4--bit reqisters!

Note RAX is an extension of EAX

If you change EAX, you change lower 32 bits of RAX

General-Purpose Multimedia Extension and Streaming SIMD

Registers (GPRs) Floating-Point Registers Extension (SSE) Registers
RAX MMO/STO XMMO
RBX MM1/ST1 XMM1
RCX MM2/ST2 XMM2
RDX MM3/ST3 XMM3
RBP MM4/ST4 XMM4
RS MMS5/STS XMMS5
RDI MM6/ST6 XMM6
RSP MM7/ST7 XMM7
R8 63 J XMMS8
R9 XMM9
R10 Flags XMM10
R Regrster XMM1
R12 [] eruacs XMM12
R13 ot 0 XMM13
R14 Instruction Pointer XMM14

ws [] we XMMIs

b3) 63 0 127

| Regraer Exterrsions, supported in 64-84 Mode WU 00 g%

General-Purpose Multimedia Extension and Streaming SIMD

Registers (GPRs) Floating-Point Registers Extension (SSE) Registers
RAX MMO/STO XMMO
RBX MM1/STY XMM1
RCX MM2/ST2 XMM2
RDX MM3/ST3 XMM3
RBP MM4/ST4 XMM4
RS MM5/STS XMM5
RDI MM&6/ST6 XMM6
RSP MM7/5T7 XMM7
R8 63 U XMM8
R9 XMM9
R10 XMM10
R11 XMMM
R12 XMM12
R13 XMM13
R14 XMM14
XMM15

R15
J 127 0

LERACY xB5 Regrsiers, supponed n

| 38 MOOES . : ‘ .

| e o u Opecial regs: floating-

RERrer Exdersons, supporied in 64-84 Mode . .
point / matrix ops

VU s

To represent 0x1234567890abcdef

DEEDDEEE

Most Significant Byte Least Significant Byte

x86 is a little=endian architecture

If an n-byte value is stored at addresses a to a+(n-1) in memory,
byte a will hold the least significant byte

0x1234567890abcdef

Exercise with partner

Instructions

Binary code is made up of giant sequences of “instructions”

Modern Intel / AMD chip has hundreds of them, some very complex

Moving memory around Arithmetic Branch / If

Matrix operations Atomic-Instructions

Transactional memory instructions

Encoded as binary (as you may have seen from
hardware-design course)

We (humans) write in a format named “assembly”

Confusingly: two types of assembly

AT&T Intel

mov 5, %rax mov rax, 5

I will basiﬂau.j always use ATET
(Stince that’s whats used tn GNU toolchain)

Several addressing modes

“Move the value from register rax into the register rbx”

Opcode name Destination

mov %rax, J%rbox

Source

Top 20 instructions of x86 architecture

shi Others
1% or 11%

and 1%
1% fstp

fliy %
aub movy

g e 0 /—35% Plurality of instructions
Inc

ot 1o are MoVs

1% jne
2% -

me_

2% o, ™

e/

3%

test
3%

lea
4% push
\ 10%
pop I
add cmp -

e 4% 59, B Then pUSh
Then call

Memory:a giant chunk of bytes

You can read from it and write to it in 1/2/4/8/16-byte increments

mov (%rax), %rbx

“Move the value at address %rax into register %rbx’”

Opcode name Destination

mov (%rax), %rbx

Source

%rax | exreeeerrrooocosoe | oxrrefrfrroeoeoeos| oxaf23c8az233s6ac
OxTfffffffo0000000 Oxdeadbeefdeadbeef

0

%rhx | exizzszzarz3a1234

“Move the value at address %rax into register %rbx’”

Opcode name Destination

mov (%rax), %rbx

Source

%rax | exreeeerrrooocosoe | oxrrefrfrroeoeoeos| oxaf23c8az233s6ac
OxTfffffffo0000000 Oxdeadbeefdeadbeef

“Move the value at address 7%rax+8 into register 7%rbx”

Opcode name Destination

mov 8(%rax), %rbx

Source

% PaX | oxfrffrrrfooo00000 | oxffffffffoe000008| @Oxaf23c8a223356ac
'QXfffffffFQQQﬁﬁﬁﬁe»*deéddbeeFdeadbeef
% I b X Oxaf23c8a223356ac [*¢

A few other more complicated ones that allow
you to add registers, offsets, etc...

Different instructions allow different addressing-modes

Memory is divided into different regions

Name a few!

OS separates these into different segments

Kernel space

Virtual memory reserved for the kernel usage.

Stack

Local variables
int tries = 10;

v

mmap segments

File mappings (including dynamic libraries)
Anonymous mappings
/1lib/libc.so

¢

Heap

Small memory chunks
char *path = malloc(256);

rw=—
BSS segment
Uninitialized static variables.
static char *fullname;
Y=
Data segment
Initialized static variables.
static char *hello = "Hello, worxrld!";
r=XxX

Text segment

ELF header and code of the process.
int main() { return printf({hello); }

|

;

Handom
offset

Handom
offset

..... 0x804800

Kernel memory

Your OS uses it

Kernel space

Virtual memory reserved for the kernel usage.

Stack

Local variables
int tries = 10;

v

mmap segments

File mappings (including dynamic libraries)
Anonymous mappings
/1lib/libc.so

¢

Heap

Small memory chunks
char *path = malloc(256);

BSS segment

Uninitialized static variables.
static char *fullname;

Data segment

Initialized static variables.
static char *hello = "Hello, worxrld!";

Text segment

ELF header and code of the process.
int main() { return printf({hello); }

Handom
offset

Handom
offset

.......... 0x804800

Stack: push / pop

Very important:

The stack grows down

Kernel space

Virtual memory reserved for the kernel usage.

Stack

Local variables
int tries = 10;

v

mmap segments

File mappings (including dynamic libraries)
Anonymous mappings
/1lib/libc.so

¢

Heap

Small memory chunks
char *path = malloc(256);

BSS segment

Uninitialized static variables.
static char *fullname;

Data segment

Initialized static variables.
static char *hello = "Hello, worxrld!";

Text segment

ELF header and code of the process.
int main() { return printf({hello); }

Handom
offset

Handom
offset

.......... 0x804800

Stack: push / pop

Very important:

The stack grows down

Kernel space

Virtual memory reserved for the kernel usage.

Stack £V

Local variables
int tries = 10;

Handom
offset

mmap segments

mmap segments

File mappings (including dynamic libraries)
Anonymous mappings
/1lib/libc.so

. Allows you to map a file
eap
Small memory chunks to memor)l

char *path = malloc(256);
Handom
offset

BSS segment i

Uninitialized static variables.
static char *fullname;

Data segment £

Initialized static variables.
static char *hello = "Hello, woxld!";

r-x

Text segment

ELF header and code of the process.
int main() { return printf({hello); }

.......... 0x804800

Kernel space

Virtual memory reserved for the kernel usage.

Stack o

Local variables
int tries = 10;

Handom
offset

mmap segments

File mappings (including dynamic libraries)
+ Anonymous mappings
/1lib/libc.so

Heap o . .
! Small mermory chunks Heap: dynamic allocation

char *path = malloc(256);
Handom
offset

BSS segment - C++: New / delete

Uninitialized static variables.
static char *fullname;

Data segment £

Initialized static variables. C : M al I O C / fre e

static char *hello = "Hello, worxrld!";

r-x

Text segment

ELF header and code of the process.
int main() { return printf({hello); }

.......... 0x804800

Kernel space

Virtual memory reserved for the kernel usage.

Stack

Local variables
int tries = 10;

v

mmap segments

File mappings (including dynamic libraries)
Anonymous mappings
/1lib/libc.so

¢

Heap

Small memory chunks
char *path = malloc(256);

BSS segment

Uninitialized static variables.
static char *fullname;

Data segment

Initialized static variables.
static char *hello = "Hello, worxrld!";

Text segment

ELF header and code of the process.
int main() { return printf({hello); }

r-x

|

;

Handom
offset

Handom
offset

..... 0x804800

BSS: Uninitialized static
vars (globals)

Kernel space

Virtual memory reserved for the kernel usage.

Stack £V

Local variables
int tries = 10;

Handom
offset

mmap segments

File mappings (including dynamic libraries)
+ Anonymous mappings
/1lib/libc.so

* Heap e

Small memory chunks
char *path = malloc(256);

Handom
offset

BSS segment i

Uninitialized static variables.
static char *fullname;

Data segment Data segment: initialized
ctatic chas Thells - ‘melie, werldi® statics—e.g., constant strings

Text segment s

ELF header and code of the process.
int main() { return printf({hello); }

.......... 0x804800

Kernel space

Virtual memory reserved for the kernel usage.

Stack

Local variables
int tries = 10;

v

mmap segments

File mappings (including dynamic libraries)
Anonymous mappings
/1lib/libc.so

¢

Heap

Small memory chunks
char *path = malloc(256);

rw=—
BSS segment
Uninitialized static variables.
static char *fullname;
Y=
Data segment
Initialized static variables.
static char *hello = "Hello, worxrld!";
r=XxX

Text segment

ELF header and code of the process.
int main() { return printf({hello); }

Handom
offset

|

Handom
offset

;

Text segment: program code

.......... 0x804800

Kernel space

Virtual memory reserved for the kernel usage.

Stack

Local variables
int tries = 10;

mmap segments

File mappings (including dynamic libraries)
Anonymous mappings
/1lib/libc.so

Heap

Small memory chunks
char *path = malloc(256);

BSS segment

Uninitialized static variables.
static char *fullname;

Data segment

Initialized static variables.
static char *hello = "Hello, worxrld!";

Text segment

ELF header and code of the process.
int main() { return printf({hello); }

Handom
offset

0x804800

- Note the permissions

Kernel space

Virtual memory reserved for the kernel usage.

Stack

Local variables
int tries = 10;

mmap segments

File mappings (including dynamic libraries)
Anonymous mappings
/1lib/libc.so

Heap

Small memory chunks
char *path = malloc(256);

rw=—
BSS segment
Uninitialized static variables.
static char *fullname;
Y=
Data segment
Initialized static variables.
static char *hello = "Hello, worxrld!";
r=XxX

Text segment

ELF header and code of the process.
int main() { return printf({hello); }

Handom
offset

’ ndom
offset

.......... 0x804800

This random offset
really security feature

Calling conventions

Touch-tone phones, send an acoustic wave over the wire

If Alice wants to call Bob, her phone needs to send the right
sounds over the wire in the right order

Calling conventions

When function A wants to call function B, it has to do the same

Where do arguments go!
How to store return address’
Who saves registers?

Where is result stored?

Calling conventions

Modern computers use a few different calling conventions

De-facto standard (Linux / MacOS / etc..) : x86-64 System V ABI

Where do arguments go!
How to store return address’
Who saves registers?

Where is result stored?

Note: this is new for the 64 bit APl.You might see stuff online
for the 32-bit APl that is different

Calling conventions: x86-64
System V ABI

Where do arguments go?

First six: rdi,rsi,rdx,rex,r8,r9

How to store return address’

cal l instruction puts on top of stack

Who saves registers!

Caller saves caller-save registers
RIO,RI I, any ones used for args

Where is result stored!?

Result stored in %rax

X86-64 Integer Registers:

-
N
Q)
0Q
®
O
O
-
<
rb
-
=
O
-
N

srax Return value $r8 Argument #5
Srbx Callee saved $r9 Argument #6

SrCxX Argument #4 $rl0 Caller saved

srdx Argument #3 $ril Caller Saved

srsi Argument #2 $rl2 Callee saved

Srdi Argument #1 2 rl3 Callee saved

Srsp Stack pointer srld Callee saved

$rlb5 Callee saved

srbp Callee saved

http://slideplayer.com/slide/9679824/ 4

x86-64 System V ABI

Rules for caller:

* Save caller-save registers

* First six args in registers, after that put on
stack

* Execute cal l—pushes ret addr
Afterwards:

* Pop saved registers
* Result now in %rax

x86-64 System V ABI

Rules for callee:

* First six args available in registers

* Push %rbp—-caller’s base pointer

* Move %rsp to %rbp—Setup new frame

* Subtract necessary stack space

* Push callee-save registers

* Before exit: restore rbp/callee-saved regs

* Leave instruction restores rbp
* When function done, put result in %rax
* Use ret instruction to pop return rip

These rules are cumbersome: | frequently look
them up, they change depending on the kind of
function you're calling, etc...

Upshot: don’t feel you have to memorize, just
get the gist / know how to recognize them

Small examples: interactive demo of x86-64 ABI

Trivia: the red zone

int bar(int a, 1nt b) {
return a + b;

¥

Weird! This code using -4(%rbp) before
decrementing the stack pointer!!

Turns out: x86-64 guarantees there
are always |28 bytes below %rsp

bar:

pushg
movdg
mov 1
mov L
mov L
mov L
addl
popq
ret

%rbp

%rsp, %rbp
%ed1, -4(%rbp)
%es1, -8(%rbp)
-4(%rbp), %edx
-8(%rbp), %eax
%edx, %eax
%rbp

high address

o [

o
o o
. Upshot: if a function uses at most
|28 bytes below RSP, doesn’t have
RBP - 16 .
to subtract anything from RSP
RBP - 24
‘red zone”
RBP - 32 128 bytes
This is an optimization for “small”
low address

functions: so they never have to
subtract from RSP

Question: why does GCC generate such stupid code!

Answer: code unoptimized, add -O(1/2/3) to optimize it

-O0 generates code that is predictable and easy to read

First attack: Stack Smashing

This code is bad because it doesn’t check the
length of the string in ptr...

void foo(char *ptr) {
char buffer[1000];

strcpy(buffer, ptr);
printf(“length: %d\n”, strlen(buffer));

After TOO starts

%rsp+400 Stuff from foo...

%/ rsp+3F8 Return addr

%rsp+3F0 Saved %rbp % rbp

% rsp+3E8 buffer[999]

%rsp buffer[0]

After T0OO starts

%rsp+400 Callee’s %rbx
%/ rsp+3F8 Return addr
%rsp+3F0 Saved %rbp %rbp

%rsp+3E8 buffer[999]

%rsp buffer[0]

Key observation: the stack grows down

%rsp+400 Callee’s %rbx

%/ rsp+3F8 Return addr

%/ rsp+3F0 Saved %rbp

%rsp+3ES8 buffer[999]

buffer[2]

buffer[1]

%rsp buffer[0]

Consider what happens when strcpy(buffer,ptr)

%rsp+400

%/ rsp+3F8

%/ rsp+3F0

%/ rsp+3E8

% rsp

Callee’s %rbx

Return addr

Saved %rbp

buffer[999]

otr[2] = ©

Consider what happens when strcpy(buffer,ptr)

(This one is fine..)

Now consider what happens when we provide input ‘A’ * 1008

%rsp+400 Callee’s %rbx
%rsp+3F8 0x41414141

Yorsp+3F0 0x41414141

%/ rsp+3ES8 €A

% rsp

Return addr becomes Ox41414141 (‘A’ four times)

Upon return, control goes to Ox4141414|

If anything at this address, program will execute it

Kernel space

Virtual memory reserved for the kernel usage.

Stack

Local variables
int tries = 10;

v

mmap segments

File mappings (including dynamic libraries)
Anonymous mappings
/1lib/libc.so

¢

Heap

Small memory chunks
char *path = malloc(256);

BSS segment

Uninitialized static variables.
static char *fullname;

Data segment

Initialized static variables.
static char *hello = "Hello, worxrld!";

Text segment

ELF header and code of the process.
int main() { return printf({hello); }

r-x

Handom
offset

But falls in here, unmapped memory

Handom
offset

Result: most common C crash

Segmentation Fault

The compiler translates binary code into machine code

We’ll cover this assembly

later in class!

"\x48\x31\xd2"

v

Compiler

v

//

"\x48\xbb\x2f\x2f\x62\x69\x6\x2f\x73\x68" //

"\x48\xcl\xeb\x08"
"\x53"
"\x48\x89\xe7"
"\x50"

"\x57"
"\x48\x89\xeb"
"\xb0\x3b"
"\x0£\x05";

//
//
//
//
//
//
//
//

execve("/b1in/sh")

XOr 2rdx, %rdx

mov $0x68732f6e69622f2f,

shr S0x8, %rbx

push 3rbx
mov $rsp, %rdi
push Frax
push $rdi
mov $rsp, %rsi
mov S0x3b, %al

syscall

$rbx

IMan €XeCve

All that code is loaded by the kernel at a specific place in memory

Let’s assume for a second that the compiler loads that code at

0x41414141

In the next few slides we’ll see what happens if it's hot there

Return pointer: 0x41414141

0x41414141

After returning, we expect the code

// foo’s caller

foo(p);
X = X+1;

void foo(char *ptr) {
char buffer[ptr];
strcpy(buffer, ptr);

to go back here

printf(“length: %d\n”, strlen(buffer));

"\x48\x31\xd2"
"\x48\xbb\x2f\x2f\x62\x69\x6e\x2f\x73\x68"
"\x48\xcl\xeb\x08"

"\x53"

"\x48\x89\xe7"

"\x50"

"\x57"

"\x48\x89\xe6"

"\xb0\x3b"

"\x0£f\x05";

//
//
//
//
//
//
//
//
//
//

XOr $rdx, %$rdx
mov S0x68732f6e69622f2f,

shr S0x8, %rbx
push 3rbx

mov $rsp, %$rdi
push ¥rax

push Srdi

mov $rsp, %rsi
mov S0x3b, %al
syscall

$rbx

Return pointer: 0x41414141
But the return address has been

/7 f00’s caller overwritten (stack has been smashed)

foo(p);

X = x+1; Instead, return goes here

void foo(char *ptr) {
char buffer[ptr];

strcpy(buffer ;
gth: %d\n”, strlen(buffer));

0x41414141 "\x48\x31\xd2" // xor $rdx, %rdx
"\x48\xbb\x2f\x2f\x62\x69\x6e\x2f\x73\x68" // mov S0x68732f6e69622f2f, %rbx
"\x48\xcl\xeb\x08" // shr $0x8, %$rbx
"\x53" // push $rbx
"\x48\x89\xe7" // mov $rsp, %rdi
"\x50" // push $rax
"\x57" // push srdi
"\x48\x89\xeb6" // mov $rsp, %rsi
"\xb0\x3b" // mov $0x3b, %al

"\x0£\x05"; // syscall

Now, the computer executes a shell instead!!!

Might not be so bad if it’s a local program

But bad if it’s a connection to a remote server!

In your first project, you’ll mount one of these
attacks on a vulnerable file server

So my job as an attacker is to find a buffer overflow in the program
and then craft an input that sends the code where | want

Question I: How do | find a bug!?

A: Dig through the source manually, if source is available
(If source unavailable, use a decompiler)

A: Some automated testing tools

2012 IEEE Symposium on Security and Privacy

Unleashing MAYHEM on Binary Code

Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert and David Brumley
Carnegie Mellon University
Pittshurgh, PA
{sangkilc, thanassis, alexandre.rebert, dbrumley}@ crmu.edu

Abstract—In this paper we present MAYHEM, a new Sys-
tem for automatically finding exploitable hugs in binary (i.e.,
exccutable) programs. Every bug reported by MAYHEM is
accompanicd by a working shell-spawning cxploit. The working
exploits ensure soundness and that each bug report is security-
critical and actionable. MAYHEM works on raw binary code
without debugging information. To make exploil generation
possible at the binary-level, MAYHEM addresses two major
technical challenges: actively managing execution paths without
exhausting memory, and reasoning about symbolic memory
indices, where a load or a store address depends on user
input. To this ¢nd, we propose two novel technigues: 1) hybrid
symbolic execution for combining online and offline (concolic)
execution to maximize the benefits of both techniques, and
2) index-based memory modeling, a technique that allows
MAYHEM to cfficicntly reason ahout symbolic memory at
the binary level. We used MAYHEM to find and demonstrate
29 exploitable vulnerabilities in both Linux and Windows
programs, 2 af which were previously undocumented.

Keywaords-hyhrid execution, symbolic memory, index-hased
memory modeling, exploit generation

I. INTRODUCTION

Bugs are plentiful. For example, the Ubuntu Linux bug
managemenl dalabase currently lists over 90,000 open
bugs [17]. However, bugs that can be exploited by attackers
are typically the most serious, and should be patched first.
Thus, a central question is nol whether a program has bugs,
but which bugs are exploitable.

In this paper we present MAYHIIM, a sound system
lor automaltically finding exploitable bugs in binary (i.e.,
executable) proerams. MAYHEM produces a working control-

In order to tackle this problem, MAYHEM’s design is based
on four main principles: 1) the system should be able to
make forward progress for arbitrarily long times—ideally run
“forever”—without exceeding the given resources (especially
memory), 2) in order to maximize performance, the system
should not repeat work, 3) the system should not throw away
any work—previous analysis results of the system should
be reusable on subsequent runs, and 4) the system should
be able to reason about symbolic memory where a load
or store address depends on user inpul. Handling memory
addresses 1s essential to exploit real-world bugs. Principle #1
is necessary for running complex applications, since most
non-trivial programs will contain a polentially infinite number
of paths to explore.

Current approaches to symbolic execution, e.g., CUTE [26],
BitBlaze [5], KLEE [9], SAGE [13], McVeto |27], AEG [2],
S2E [28], and others [3], [21], do not satisfy all the
above design points. Conceptually, current executors can be
divided into two main categories: offiine executors — which
concretely run a single execution path and then symbaolically
execute it (also known as trace-based or concolic executors,
e.g., SAGE), and online executors — which try to execute
all possible paths in a single run of the system (e.g., S2E).
Neither online nor offline executors satisfy principles #1-#3.
In addition, most symbolic execution engines do not reason
aboul symbolic memory, thus do not meel principle #4.

Offline symbolic executors [5], [13] reason about a single
execution path at a time. Principle #1 is satisfied by iteratively
picking new paths to explore. Further, every run of the

an gr >>> Home Docs APT Install Code Get Invalved!

We're launching an angr blog! The first post, with plans for the upcoming year, is here.

What is angr?

angr is a python framework for gnalyzing binaries. It combines both static and dynamic symbolic {"concolic") analysis,
making it applicable to a variety of tasks.

As an introduction to angr's capabilities, here are some of the things that you can do using angr and the tools built with il:

« Cantrol-flow graph recavery. Show code

. Symbolic execution. shrow code

« Automatic ROP chain building using angrop. $how code

» Automatically binaries hardening using patcherex. sfiow code

« Automatic exploit generation (for DECREE and simple Linux binaries) using rex. Show code

» Use angr-management, a (very alpha state!) GUI for angr, to analyze binaries! Show code
« Achieve cyber-autonomy in the comfort of your own home, using Mechanical Phish, the third-place winner of the DARPA
Cyber Grand Challenge.

angr itself is made up of several subprojects, all of which can be used separately in other projects:

« an executable and library loader, CLE

a library describing various archilectures, archinfo

a Python wrapper around the binary code lifter VEX, PyVYEX

a data backend to abstract away differences between stalic and symbolic domains, Claripy
the program analysis suite itself, angr

How do | learn?

There are a few resources you can use to help you get up o speed!

So my job as an attacker is to find a buffer overflow in the program
and then craft an input that sends the code where | want

Question 2: What if program doesn’t have bugs!?
A: You're hosed, can’t perform this attack

But some other attacks we’ll talk about on Thursday

The best way to prevent these attacks is to write Iin
languages where these bugs can’t occur!!

So my job as an attacker is to find a buffer overflow in the program
and then craft an input that sends the code where | want

Question 3: How do | know what code to execute!
A: Find the code you want in the binary

A: We'll also learn how you can inject your owhn code

So my job as an attacker is to find a buffer overflow in the program
and then craft an input that sends the code where | want

Question 4: How do | know where the code is
A: Use GDB to find it after booting up the binary

But there’s a critical catch!

The compiler includes a variety of protections
against stack smashing

Stack canaries (which we’ll learn about next week)

Address Space Layout Randomization

Loads code into random addr each run!

(We'll see some techniques to help defeat this)

