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Course Logistics
• Welcome to the course, I’m happy you’re here!


• High-level: this is a seminar course (with some hands-on 
projects) introducing state-of-the-art techniques in the 
analysis of malware.


• Today: introduction to assembly


• Next few weeks: boot-up on C, assembly, debugging, 
traditional attacks (overflows, shell coding, etc..)


• Course website:


• https://kmicinski.com/cis700-f21


• I will be making heavy use of Slack


• Please make sure you join the Slack right now!
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https://kmicinski.com/cis400-f21


Course Grading and Notes
• We expect and trust that graduate students are expending 

significant effort in studying for the course in a way that will 
aid their own individual research efforts.


• Thus, grading for graduate courses is particularly non-
adversarial in the sense that I would like to give everyone 
an A who demonstrates they significantly improved their 
research-level knowledge.


• Grading will be as follows:


• 3 course projects (each worth 10%)


• Paper write-ups and discussions (worth 50%)


• One take-home final (worth 20%)
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Course Delivery
• This course will be part-lecture, part seminar.


• In a lecture, instructor presents material and solicits 
participation. In seminar, students guide discussion 
informed by instructor’s guidance.


• Generally, Tuesdays will be lecture days and Thursdays 
will be paper discussion days.


• Slides will likely be very terse and I expect you will ask 
questions.


• I would like each lecture to have a scribe. Every must scribe 
at least twice. A scribe takes thoughtful notes on the 
lecture so we can post them later.
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Course Grading and Notes
• We expect and trust that graduate students are expending 

significant effort in studying for the course in a way that will 
aid their own individual research efforts.


• Thus, grading for graduate courses is particularly non-
adversarial in the sense that I would like to give everyone 
an A who demonstrates they significantly improved their 
research-level knowledge.


• Grading will be as follows:


• 3 course projects (each worth 10%)


• Paper write-ups and discussions (worth 50%)


• One take-home final (worth 20%)
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Course Projects
• Three projects. I am not quite sure what 

these will be yet. Topics may include:


• Stack overflow exploitation / shell 
coding and stack overflow prevention


• SQL injection or other more modern 
web attacks


• Reproducing an attack from a paper


• (Manual/automated) ROP synthesis 
and exploitation
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Topics (Very tentative)

• Week 1 — C / assembly background


• Week 2 — Spatial and temporal safety


• Week 3 — Shellcoding, ASLR, probabilistic 
defenses


• Week 4 — Return-to-libc and ROP


• Week 5 — Modern ROP synthesis and exploit 
generation


• Week 6 — Symbolic execution and SMT


• Week 7  — Modern binary symbolic execution 
techniques (angr, BAP, etc..)
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• Week 8 — Datalog, Datalog Disassembly, and 
Horn-SAT-based binary analysis


• Week 9 — Decompilation and sound 
decompilation.


• Week 10 — Machine learning for malware 
classification.


• Week 11 — Neural inference of binaries for 
decompilation, identifier reversing, etc…


• Week 12 — Usable reverse engineering tools


• Week 13 — Scriptable, declarative, and 
compilable binary analyses.


• Week 14 — Project presentations



Memory-Based Attacks



Assembly Review

By which I mean x86-64 assembly…



Note: you won’t have to write significant amounts of 
assembly for this course, but you will need to be able to 
read small pieces of it and figure out what it’s doing…



Note: you won’t have to write significant amounts of 
assembly for this course, but you will need to be able to 
read small pieces of it and figure out what it’s doing…

Also note: I will be discussing x86 assembly, although it’s 
arguably a dying language (behold—ARM!). x86 assembly is 
still the bulk of what a reverse engineer would see, so I 

think it makes sense to teach that…



Registers



Traditionally, x86 architectures only had four 
16-bit general purpose registers: ax, bx, cx, dx

Also other registers: bp, sp, di, si

Base pointer

(Start of frame) Stack pointer

(Top of stack)

Originally, 8-bit registers: al, bl, cl, dl



Traditionally, x86 architectures only had four 
16-bit general purpose registers: ax, bx, cx, dx

Also other registers: bp, sp, di, si

Base pointer

(Start of frame) Stack pointer

(Top of stack)

IP: instruction pointer
Points at current instruction, 

incremented after each instruction

FLAGS: holds flags

Set on subtraction, comparison, etc..

Originally, 8-bit registers: al, bl, cl, dl



Traditionally, x86 architectures only had four 
16-bit general purpose registers: ax, bx, cx, dx

As time progressed, also added 32-bit registers: eax, 
ebx, ecx, edx

In past few years, 64-bit registers: rax, rbx, rcx, rdx

Also other registers: bp, sp, di, si

(Also 64-bit versions: rip, etc..)

We’ll pretty much exclusively use 
64-bit registers!



Note RAX is an extension of EAX

If you change EAX, you change lower 32 bits of RAX





Special regs: floating-
point / matrix ops



12 34

To represent 0x1234567890abcdef

56 78 90 ab cd ef

Least Significant ByteMost Significant Byte



x86 is a little-endian architecture

If an n-byte value is stored at addresses a to a+(n-1) in memory, 
byte a will hold the least significant byte

0x1234567890abcdef

Exercise with partner



Instructions

Binary code is made up of giant sequences of “instructions”

Modern Intel / AMD chip has hundreds of them, some very complex

Moving memory around Arithmetic Branch / If

Matrix operations Atomic-Instructions

Transactional memory instructions



Encoded as binary (as you may have seen from 
hardware-design course)

We (humans) write in a format named “assembly”

Confusingly: two types of assembly

AT&T Intel

mov 5, %rax mov rax, 5

I will basically always use AT&T

(Since that’s what’s used in GNU toolchain)



Several addressing modes



mov  %rax, %rbx
Opcode name

Source

Destination

“Move the value from register rax into the register rbx”



Plurality of instructions 
are movs

Then push
Then call



Memory: a giant chunk of bytes

You can read from it and write to it in 1/2/4/8/16-byte increments

mov  (%rax), %rbx



mov  (%rax), %rbx
Opcode name

Source

Destination

“Move the value at address %rax into register %rbx”

0xaf23c8a223356ac0xffffffff00000000%rax 0xffffffff00000008

0xdeadbeefdeadbeef0xffffffff00000000
0x1234123412341234%rbx



mov  (%rax), %rbx
Opcode name

Source

Destination

“Move the value at address %rax into register %rbx”

0xaf23c8a223356ac0xffffffff00000000%rax 0xffffffff00000008

0xdeadbeefdeadbeef0xffffffff00000000
0xdeadbeefdeadbeef%rbx



mov  8(%rax), %rbx
Opcode name

Source

Destination

“Move the value at address %rax+8 into register %rbx”

0xaf23c8a223356ac0xffffffff00000000%rax 0xffffffff00000008

0xdeadbeefdeadbeef0xffffffff00000000
0xaf23c8a223356ac%rbx



A few other more complicated ones that allow 
you to add registers, offsets, etc…

Different instructions allow different addressing-modes



Memory is divided into different regions

Name a few?



OS separates these into different segments



Kernel memory

Your OS uses it



Stack: push / pop

Very important:
The stack grows down



Stack: push / pop

Very important:
The stack grows down



mmap segments

Allows you to map a file 
to memory



Heap: dynamic allocation

C++: New / delete

C: Malloc / free



BSS: Uninitialized static 
vars (globals)



Data segment: initialized 
statics—e.g., constant strings



Text segment: program code



Note the permissions



This random offset 
really security feature



Calling conventions

Touch-tone phones, send an acoustic wave over the wire

If Alice wants to call Bob, her phone needs to send the right 
sounds over the wire in the right order



Calling conventions

When function A wants to call function B, it has to do the same

Where do arguments go?

How to store return address?

Who saves registers?

Where is result stored?



Calling conventions

Modern computers use a few different calling conventions

Where do arguments go?

How to store return address?

Who saves registers?

Where is result stored?

De-facto standard (Linux / MacOS / etc..) : x86-64 System V ABI

Note: this is new for the 64 bit API. You might see stuff online 
for the 32-bit API that is different



Calling conventions: x86-64 
System V ABI

Where do arguments go?

First six: rdi,rsi,rdx,rcx,r8,r9

How to store return address?

call instruction puts on top of stack

Who saves registers?

Caller saves caller-save registers

R10,R11, any ones used for args


Where is result stored?

Result stored in %rax



http://slideplayer.com/slide/9679824/



x86-64 System V ABI

Rules for caller:

• Save caller-save registers

• First six args in registers, after that put on 

stack

• Execute call—pushes ret addr

Afterwards:

•Pop saved registers

•Result now in %rax



Rules for callee:

• First six args available in registers

• Push %rbp—caller’s base pointer

• Move %rsp to %rbp—Setup new frame

• Subtract necessary stack space

• Push callee-save registers

• Before exit: restore rbp/callee-saved regs

• leave instruction restores rbp


• When function done, put result in %rax

• Use ret instruction to pop return rip

x86-64 System V ABI



These rules are cumbersome: I frequently look 
them up, they change depending on the kind of 

function you’re calling, etc…

Upshot: don’t feel you have to memorize, just 
get the gist / know how to recognize them



Small examples: interactive demo of x86-64 ABI



Trivia: the red zone
int bar(int a, int b) {

  return a + b;

} bar:


   pushq   %rbp

movq    %rsp, %rbp


   movl    %edi, -4(%rbp)

   movl    %esi, -8(%rbp)

   movl    -4(%rbp), %edx

   movl    -8(%rbp), %eax

   addl    %edx, %eax


popq    %rbp

   ret

Weird! This code using -4(%rbp) before 
decrementing the stack pointer!!

Turns out: x86-64 guarantees there 
are always128 bytes below %rsp 



Upshot: if a function uses at most 
128 bytes below RSP, doesn’t have 

to subtract anything from RSP

This is an optimization for “small” 
functions: so they never have to 

subtract from RSP



Question: why does GCC generate such stupid code?

Answer: code unoptimized, add -O(1/2/3) to optimize it

-O0 generates code that is predictable and easy to read





First attack: Stack Smashing



void foo(char *ptr) {

    char buffer[1000];

    strcpy(buffer, ptr);

    printf(“length: %d\n”, strlen(buffer));

}

This code is bad because it doesn’t check the 
length of the string in ptr…



After foo starts

Stuff from foo…

Return addr

Saved %rbp

buffer[999]

…

buffer[0]%rsp

%rsp+3E8

%rsp+3F0

%rsp+3F8

%rsp+400

%rbp



Callee’s %rbx

Return addr

Saved %rbp

buffer[999]

…

buffer[0]

%rbp

Key observation: the stack grows down

After foo starts

%rsp

%rsp+3E8

%rsp+3F0

%rsp+3F8

%rsp+400



Callee’s %rbx

Return addr

Saved %rbp

buffer[999]

buffer[0]

Consider what happens when strcpy(buffer,ptr)

ptr[0] = ‘H’

ptr[1] = ‘i’buffer[1]

buffer[2]

…

ptr[2] =   0

%rsp

%rsp+3E8

%rsp+3F0

%rsp+3F8

%rsp+400



Callee’s %rbx

Return addr

Saved %rbp

buffer[999]

‘H’

Consider what happens when strcpy(buffer,ptr)

ptr[0] = ‘H’

ptr[1] = ‘i’‘i’

0

…

ptr[2] =   0

(This one is fine..)

%rsp

%rsp+3E8

%rsp+3F0

%rsp+3F8

%rsp+400



Now consider what happens when we provide input ‘A’ * 1008



Callee’s %rbx

0x41414141

0x41414141

‘A’

‘A’

Return addr becomes 0x41414141 (‘A’ four times)

‘A’

…

‘A’

‘A’ * 8 

‘A’ * 8 

%rsp

%rsp+3E8

%rsp+3F0

%rsp+3F8

%rsp+400



Upon return, control goes to 0x41414141

If anything at this address, program will execute it



But falls in here, unmapped memory

Result: most common C crash

Segmentation Fault



The compiler translates binary code into machine code

execve("/bin/sh")

Compiler

    "\x48\x31\xd2"                             // xor    %rdx, %rdx

    "\x48\xbb\x2f\x2f\x62\x69\x6e\x2f\x73\x68" // mov	 $0x68732f6e69622f2f, %rbx

    "\x48\xc1\xeb\x08"                         // shr    $0x8, %rbx

    "\x53"                                     // push   %rbx

    "\x48\x89\xe7"                             // mov    %rsp, %rdi

    "\x50"                                     // push   %rax

    "\x57"                                     // push   %rdi

    "\x48\x89\xe6"                             // mov    %rsp, %rsi

    "\xb0\x3b"                                 // mov    $0x3b, %al

    "\x0f\x05";                                // syscall


We’ll cover this assembly 
later in class!



man execve



All that code is loaded by the kernel at a specific place in memory



Let’s assume for a second that the compiler loads that code at 
0x41414141

In the next few slides we’ll see what happens if it’s not there



    "\x48\x31\xd2"                             // xor    %rdx, %rdx

    "\x48\xbb\x2f\x2f\x62\x69\x6e\x2f\x73\x68" // mov	 $0x68732f6e69622f2f, %rbx

    "\x48\xc1\xeb\x08"                         // shr    $0x8, %rbx

    "\x53"                                     // push   %rbx

    "\x48\x89\xe7"                             // mov    %rsp, %rdi

    "\x50"                                     // push   %rax

    "\x57"                                     // push   %rdi

    "\x48\x89\xe6"                             // mov    %rsp, %rsi

    "\xb0\x3b"                                 // mov    $0x3b, %al

    "\x0f\x05";                                // syscall


0x41414141

// foo’s caller

foo(p);

x = x+1;


void foo(char *ptr) {

    char buffer[ptr];

    strcpy(buffer, ptr);

    printf(“length: %d\n”, strlen(buffer));

}

Return pointer: 0x41414141
After returning, we expect the code 

to go back here



    "\x48\x31\xd2"                             // xor    %rdx, %rdx

    "\x48\xbb\x2f\x2f\x62\x69\x6e\x2f\x73\x68" // mov	 $0x68732f6e69622f2f, %rbx

    "\x48\xc1\xeb\x08"                         // shr    $0x8, %rbx

    "\x53"                                     // push   %rbx

    "\x48\x89\xe7"                             // mov    %rsp, %rdi

    "\x50"                                     // push   %rax

    "\x57"                                     // push   %rdi

    "\x48\x89\xe6"                             // mov    %rsp, %rsi

    "\xb0\x3b"                                 // mov    $0x3b, %al

    "\x0f\x05";                                // syscall


0x41414141

// foo’s caller

foo(p);

x = x+1;


void foo(char *ptr) {

    char buffer[ptr];

    strcpy(buffer, ptr);

    printf(“length: %d\n”, strlen(buffer));

}

Return pointer: 0x41414141
But the return address has been 

overwritten (stack has been smashed)

Instead, return goes here



Now, the computer executes a shell instead!!!

Might not be so bad if it’s a local program

But bad if it’s a connection to a remote server!



In your first project, you’ll mount one of these 
attacks on a vulnerable file server



So my job as an attacker is to find a buffer overflow in the program 
and then craft an input that sends the code where I want

Question 1: How do I find a bug?

A: Dig through the source manually, if source is available

(If source unavailable, use a decompiler)

A: Some automated testing tools







So my job as an attacker is to find a buffer overflow in the program 
and then craft an input that sends the code where I want

Question 2: What if program doesn’t have bugs!?

A: You’re hosed, can’t perform this attack

But some other attacks we’ll talk about on Thursday

The best way to prevent these attacks is to write in 
languages where these bugs can’t occur!!



So my job as an attacker is to find a buffer overflow in the program 
and then craft an input that sends the code where I want

Question 3: How do I know what code to execute?

A: Find the code you want in the binary

A: We’ll also learn how you can inject your own code



So my job as an attacker is to find a buffer overflow in the program 
and then craft an input that sends the code where I want

Question 4: How do I know where the code is

A: Use GDB to find it after booting up the binary

But there’s a critical catch!



The compiler includes a variety of protections 
against stack smashing

Stack canaries (which we’ll learn about next week)

Address Space Layout Randomization

Loads code into random addr each run!

(We’ll see some techniques to help defeat this)


