Syracuse University

College of Engineering
& Computer Science

set!

Racket feature, allows us to mutate any variable; of course, this is the normin
traditional imperative programming

Also, (begin es ... e-last) evaluates each in order and returns result of e-last

Begin is only useful when you care about the side effects of es...
In project 4 you will implement set!

The trick: use “boxing” to move variables to the heap, then every usage of the
variable becomes a dereference; this allows variables to change over time

(let ([counter 0])
(begin
(displayln counter) ; O
(set! counter (+ counter 1))
(displayln counter) ; 1
(set! counter (* counter 2))
(displayln counter)) ; 2

Vectors

So far, we only have one type of data: a single 64-bit value

In this project, we generalize this to heap-oriented data in the form of vectors
A vector is simply a data array (64-bit chunks) prefixed by a length

64-bit length followed by a flat data array—simplest-possible thing!

O0xAAOQ0018 0x03
typedef struct {
int64_t len; 0xAA0010 0x02
int64 t datal];
} TinyVecPacked; 0xAA0008 0x01
‘#(1 2 3) O0xAA0000 0x03
_/

Represented in memory as...

3

Vector operations

* In Racket, several operations:
% (make-vector e) — build a new (zeroed) vector of size e
* (vector e0 ...) — build a new vector of values €O, ...
% (vector-ref e0 el) — dereference the vector e0 at index el
* (vector-set! e0 el e2) — mutably update the vector e0 at the index el w/ value e2

* In our case, we will support a thinner API:
* (make-vectori) — has to be a constant
* (vector-ref e0 i) — has to be a constant
* (vector-set!e0iel) — has to be constant
* Can generalize this without much issue, but makes things a bit simpler for now...

Implementing make-vector

¢ Why not just allocate on stack?
¢ Don’t want to allocate large data on stack, but more importantly...
We want to anticipate data that outlives its stack frame (next project...)
¢ When the function returns, it pops its stack frame
e |f we return areference to data on the stack, it will be corrupted
Simplest possible thing—just use malloc
e Yes, this will leak memory—we will talk about garbage collection soon

TinyVecPacked* make vector(int64 t len) {
int64 t init val 0;
TinyVecPacked* v (TinyVecPacked*)malloc(sizeof (TinyVecPacked) + len * sizeof(int64 t));

v->len = len;
for (int64 t i = 0; i < len; i++) {
v->data[1i] = 1nit val;

}

return v;

Implementing vector-ref and vector-set!

e Canbeimplemented in a very fast but unsafe manner:
e Vector ref is simply movq!
e (let ([x (vector-ref e 1)]) ..)
-> ... move result into %rax ..
movg 1(%rax), X
e Vector-set!is also movg

e Issue: both of these are unsafe

Safe vector-ref and vector-set!

e If youread from / write to memory outside of the bounds of a buffer, bad
things happen: memory corruption, segfault, security vulnerabilities, etc.

If you know x is a vector, then you at least know that the size is at &x

o Together with a runtime exception handler (which kills the program), you
can thus implement a safe vector-ref and vector-set!

e First check valid access, then read/write as usual
e Butyou need abranch to check if the read is in the bounds of the vector
(Extra code, stresses branch predictor, etc.)

What if we don’t even know if it’s a vector? (Answer: can’t say anything)

A motivation for type systems...

This is why type systems matter: we need to know at least that something is
a vector to even have a safe version of vectors

Otherwise we could treat an integer (or other primitive types) as a vector!

o A type system can also (sometimes) statically ensure that reads/writes are
always to valid parts of the vector

e Not always possible, because arithmetic is undecidable in general
Other program analyses may be used to accomplish this as well
¢ May need run-time tagging on objects:

o Top/lower bit says: “pointer or literal?” (OCaml: 63-bit integers...)

We have a few options to mitigate access to vectors safely...

(A) Just be unsafe, assume that things have the right type (easy, fast, wrong)
If they don’t, it’s a segfault, user error, etc.
o (B) Type system to check shapes / sizes of vectors
At least need to know “vector or not vector,” so we can emit safe checks
If we don’t know this, all operations are destined to be unsafe
o “Vector of a known size” allows us to emit optimized code (no branch)
(C) Dynamically tag all runtime objects
Bottom 4 bits of an 8-byte-aligned value are always zero
¢ We can exploit this: four free bits!
Downside: always have to check tag before unpacking value
OCaml: unboxed 63-bit ints, very bottom bit answers: object or int?
e Ints are very fast, but you give up one bit of representation...
Can always box ints, but then extra memory accesses

Assignment Conversion and Boxing

e Joimplement set!
e [reat every let binding as an allocation:

e (let ([x e]) ..) => (let ([x (box e)]) ..)
e Treat every variable reference an an implicit dereference:
X => (unbox x)

In our compiler, we’ll implement box/unbox

10

Autoboxing / Unboxing in Java (Oracle Java SE docs)...

Autoboxing and Unboxing

Autoboxing is the automatic conversion that the Java compiler makes between the primitive types and their corresponding
object wrapper classes. For example, converting an int to an Integer, a double to a Double, and so on. If the conversion
goes the other way, this is called unboxing.

Here is the simplest example of autoboxing:

Java automatically boxes integers
and other primitives

Character ch = 'a';

The rest of the examples in this section use generics. If you are not yet familiar with the syntax of generics, see the
Generics (Updated) lesson.

. . . Consider the following code:
» Automatic coercions of int => Integer e elowns

List<Integer> 1li = new ArrayList<>();
for (int i = 1; i < 50; 1 += 2)
li.add(1i);

» Wrapper class: “boxed” integer

Although you add the int values as primitive types, rather than Integer objects, to 1i, the code compiles. Because 1li is a
list of Integer objects, not a list of int values, you may wonder why the Java compiler does not issue a compile-time error.
The compiler does not generate an error because it creates an Integer object from i and adds the object to 1i. Thus, the

compiler converts the previous code to the following at runtime:

List<Integer> 1i = new ArraylList<>();
for (int 1 = 1; i <50; i += 2)
li.add(Integer.valueOf(i));

Converting a primitive value (an int, for example) into an object of the corresponding wrapper class (Integer) is called
autoboxing. The Java compiler applies autoboxing when a primitive value is:

o Passed as a parameter to a method that expects an object of the corresponding wrapper class.
e Assigned to a variable of the corresponding wrapper class.

Consider the following method:

public static int sumEven(List<Integer> 1i) {
int sum = 0; 11
for (Integer i: 1i)

(assignment-convert p)

e In P4, you will implement the pass (assignment-convert p)
Basic idea: walk over any expression e:
o Replace every variable x reference with a dereference: (vector-ref x 0)

e Replace every let-binding (places where variables originate) with an
allocation: (let ([x e]) ...) becomes (let ([x (vectore)]) ...)

¢ We don’t have this vector form in our language
Instead, use a combo of vector followed by a vector-set!

12

(void) and Side-effecting expressions

What should the return value of (vector-set!) be?
(let ([x (vector-set!y 2 2)]) ...)

Introduce a new value, (void), the “unit value.”

Expressions such as vector-set! and set! return (void)

Another idea: since we know these expressions will be void, why bind them
at all? Instead, just use...

(let ([(vector-set! 22)])...)
This form of let says: execute RHS for the effect, but drop the return value
| use this form of let pervasively in project 4

CAUTION: Make sure to always match this first!!!

13

(Begin...)

e Notice that now we can have chains of expressions executed for their effect
¢ Instead, we can use begin; begin readily translates into nested (let ([_...]) ...)

(begin (set! tmp X)
(set! y X)
(set! X tmp)

Y) (let ([(vector-set! tmp 0 x)])
(let ([(vector-set! y 0 (vector-ref x 0))])
(let ([(vector-set! x 0 (vector-ref tmp 0))])
(vector-ref y 0))))

14

Allocation details

Previously, we used malloc to allocate memory
https://danluu.com/malloc-tutorial/ (just something | found...)
Swiss-army-knife of memory allocation:
But expensive! ~100s of cycles, varies a lot depending on if we need to mmap

Fact: whenever you read any memory address, you pull in a whole cache line
64 bytes (8 register-sized words) on modern CPUs

Fundamental tension of malloc: allocating varying-size objects is tough to do
Can often do much better if we know things about object’s shape and lifetime

E.g., custom allocator for cons cells (pairs); However, modern allocators (like
those in modern glibc) have fast-paths for small fixed-size objects

C++: custom allocators not uncommon for media-style applications

15

https://danluu.com/malloc-tutorial/

A Potential Criticism of This Approach

One obvious criticism: all “local” variables will now be allocated on the heap
Is this “just the price we pay for set!?”
Answer: no, obviously not, in C local variables are stack allocated

So why can’t we simply stack allocate things as well?

Answer: we totally can do that in instances where we can show the data does not
escape (get returned from the function)

In this case, there are no functions, so no risk of escaping
Can’t return a buffer / vector—return value has to fit in register
So in general, we need to return references to things...
To make things easy, we box everything in P4
Possible to write an optimization pass which puts them on the stack
(Is this really faster than on the heap? They’re both movgs...)
Answer: yes, better locality due to cache lines

16

What to know from this lecture

make-vector, vector-ref, and vector-set! — mutable vectors
How is make-vector implemented? (Malloc)
What are the safety concerns around interacting w/ vectors wrt assembly?
Not even sureif it’s a vector without type checking
(Either runtime or static—trade offs)
Once we know it’s a vector, we can check length—avoid segfault
What is “boxing” and how is it implemented?
What does the “assignment-convert” pass do?
What happens to set! after this pass?

17

