
V
V

Heap-Allocated Data and
Assignment Conversion

Kristopher Micinski
CIS531 — Fall 2025, Syracuse

1

set!
Racket feature, allows us to mutate any variable; of course, this is the norm in
traditional imperative programming
Also, (begin es … e-last) evaluates each in order and returns result of e-last
Begin is only useful when you care about the side effects of es…
In project 4 you will implement set!

The trick: use “boxing” to move variables to the heap, then every usage of the
variable becomes a dereference; this allows variables to change over time

2

(let ([counter 0])
 (begin
 (displayln counter) ; 0
 (set! counter (+ counter 1))
 (displayln counter) ; 1
 (set! counter (* counter 2))
 (displayln counter)) ; 2

Vectors
So far, we only have one type of data: a single 64-bit value
In this project, we generalize this to heap-oriented data in the form of vectors
A vector is simply a data array (64-bit chunks) prefixed by a length
64-bit length followed by a flat data array—simplest-possible thing!

3

typedef struct {
 int64_t len;
 int64_t data[];
} TinyVecPacked;

0xAA0000

0xAA0008

0xAA0010

0xAA0018

‘#(1 2 3)

Represented in memory as…

0x03

0x01

0x02

0x03

Vector operations
In Racket, several operations:

(make-vector e) — build a new (zeroed) vector of size e
(vector e0 …) — build a new vector of values e0, …
(vector-ref e0 e1) — dereference the vector e0 at index e1
(vector-set! e0 e1 e2) — mutably update the vector e0 at the index e1 w/ value e2

In our case, we will support a thinner API:
(make-vector i) — has to be a constant
(vector-ref e0 i) — has to be a constant
(vector-set! e0 i e1) — has to be constant

Can generalize this without much issue, but makes things a bit simpler for now…

4

Implementing make-vector

5

TinyVecPacked* make_vector(int64_t len) {
 int64_t init_val = 0;
 TinyVecPacked* v = (TinyVecPacked*)malloc(sizeof(TinyVecPacked) + len * sizeof(int64_t));
 v->len = len;
 for (int64_t i = 0; i < len; i++) {
 v->data[i] = init_val;
 }
 return v;
}

Why not just allocate on stack?
Don’t want to allocate large data on stack, but more importantly…
We want to anticipate data that outlives its stack frame (next project…)

When the function returns, it pops its stack frame
If we return a reference to data on the stack, it will be corrupted

Simplest possible thing—just use malloc
Yes, this will leak memory—we will talk about garbage collection soon

Implementing vector-ref and vector-set!

6

Can be implemented in a very fast but unsafe manner:
Vector ref is simply movq!
(let ([x (vector-ref e i)]) …)  
-> … move result into %rax …  
 movq i(%rax), x
Vector-set! is also movq

Issue: both of these are unsafe

Safe vector-ref and vector-set!

7

If you read from / write to memory outside of the bounds of a buffer, bad
things happen: memory corruption, segfault, security vulnerabilities, etc.

If you know x is a vector, then you at least know that the size is at &x

Together with a runtime exception handler (which kills the program), you
can thus implement a safe vector-ref and vector-set!

First check valid access, then read/write as usual
But you need a branch to check if the read is in the bounds of the vector
(Extra code, stresses branch predictor, etc.)

What if we don’t even know if it’s a vector? (Answer: can’t say anything)

A motivation for type systems…

8

This is why type systems matter: we need to know at least that something is
a vector to even have a safe version of vectors

Otherwise we could treat an integer (or other primitive types) as a vector!

A type system can also (sometimes) statically ensure that reads/writes are
always to valid parts of the vector

Not always possible, because arithmetic is undecidable in general
Other program analyses may be used to accomplish this as well
May need run-time tagging on objects:

Top/lower bit says: “pointer or literal?” (OCaml: 63-bit integers…)

9

We have a few options to mitigate access to vectors safely…

(A) Just be unsafe, assume that things have the right type (easy, fast, wrong)
If they don’t, it’s a segfault, user error, etc.

(B) Type system to check shapes / sizes of vectors
At least need to know “vector or not vector,” so we can emit safe checks

If we don’t know this, all operations are destined to be unsafe
“Vector of a known size” allows us to emit optimized code (no branch)

(C) Dynamically tag all runtime objects
Bottom 4 bits of an 8-byte-aligned value are always zero

We can exploit this: four free bits!
Downside: always have to check tag before unpacking value
OCaml: unboxed 63-bit ints, very bottom bit answers: object or int?

Ints are very fast, but you give up one bit of representation…
Can always box ints, but then extra memory accesses

Assignment Conversion and Boxing

10

To implement set!
Treat every let binding as an allocation:
(let ([x e]) …) => (let ([x (box e)]) …)

Treat every variable reference an an implicit dereference:
x => (unbox x)  

In our compiler, we’ll implement box/unbox

Autoboxing / Unboxing in Java (Oracle Java SE docs)…

11

Java automatically boxes integers
and other primitives

Automatic coercions of int => Integer

Wrapper class: “boxed” integer

(assignment-convert p)

12

In P4, you will implement the pass (assignment-convert p)
Basic idea: walk over any expression e:

Replace every variable x reference with a dereference: (vector-ref x 0)
Replace every let-binding (places where variables originate) with an
allocation: (let ([x e]) …) becomes (let ([x (vector e)]) …)

We don’t have this vector form in our language
Instead, use a combo of vector followed by a vector-set!

(void) and Side-effecting expressions

13

What should the return value of (vector-set!) be?
(let ([x (vector-set! y 2 z)]) …)

Introduce a new value, (void), the “unit value.”
Expressions such as vector-set! and set! return (void)

Another idea: since we know these expressions will be void, why bind them
at all? Instead, just use…

(let ([_ (vector-set! 2 z)]) …)
This form of let says: execute RHS for the effect, but drop the return value
I use this form of let pervasively in project 4

CAUTION: Make sure to always match this first!!!

(Begin …)

14

Notice that now we can have chains of expressions executed for their effect

Instead, we can use begin; begin readily translates into nested (let ([_ …]) …)

(begin (set! tmp x)
 (set! y x)
 (set! x tmp)

 y) (let ([_ (vector-set! tmp 0 x)])
 (let ([_ (vector-set! y 0 (vector-ref x 0))])
 (let ([_ (vector-set! x 0 (vector-ref tmp 0))])
 (vector-ref y 0))))

Allocation details

15

Previously, we used malloc to allocate memory
https://danluu.com/malloc-tutorial/ (just something I found…)
Swiss-army-knife of memory allocation:

But expensive! ~100s of cycles, varies a lot depending on if we need to mmap

Fact: whenever you read any memory address, you pull in a whole cache line
64 bytes (8 register-sized words) on modern CPUs

Fundamental tension of malloc: allocating varying-size objects is tough to do
Can often do much better if we know things about object’s shape and lifetime
E.g., custom allocator for cons cells (pairs); However, modern allocators (like
those in modern glibc) have fast-paths for small fixed-size objects
C++: custom allocators not uncommon for media-style applications

https://danluu.com/malloc-tutorial/

A Potential Criticism of This Approach

16

One obvious criticism: all “local” variables will now be allocated on the heap
Is this “just the price we pay for set!?”
Answer: no, obviously not, in C local variables are stack allocated

So why can’t we simply stack allocate things as well?
Answer: we totally can do that in instances where we can show the data does not
escape (get returned from the function)
In this case, there are no functions, so no risk of escaping
Can’t return a buffer / vector—return value has to fit in register
So in general, we need to return references to things…
To make things easy, we box everything in P4

Possible to write an optimization pass which puts them on the stack
(Is this really faster than on the heap? They’re both movqs…)
Answer: yes, better locality due to cache lines

What to know from this lecture

make-vector, vector-ref, and vector-set! — mutable vectors
How is make-vector implemented? (Malloc)
What are the safety concerns around interacting w/ vectors wrt assembly?

Not even sure if it’s a vector without type checking
(Either runtime or static—trade offs)

Once we know it’s a vector, we can check length—avoid segfault
What is “boxing” and how is it implemented?
What does the “assignment-convert” pass do?

What happens to set! after this pass?

17

