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Static Single Assignment (SSA) Form

Pervasive methodology of IR design: simplifies dataflow reasoning, optimization, 
analysis, register allocation, etc. 
Main rule: every variable defined once (single assignment)  

If a variable x is written multiple times, replace it by several unique xs: x₁, x₂, etc...
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x := read()
y := read()
tmp := x
x := y
y := tmp
print(y)
x := x+1
print(x)

x₀ := read()
y₀ := read()
tmp₀ := x₀
x₁ := y₀
y₁ := tmp₀
print(y₁)
x₂ := x₁+1
print(x₂)

SSA-ify…

Pseudocode SSA Form



SSA Form: who cares?

When ultimately compiling to registers: 
Many machine instructions use source registers as destinations 
Thus, old values of registers will be clobbered, e.g., add %rbx, %r8  
If %r8 was previously holding another variable, it is now replaced by result of add 

SSA makes obvious what version of a variable is currently live at every point 

Benefits: 
One unique definition implies simpler program analysis 
Easy to map SSA variables back to stack locations / registers
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A-Normal Form 
A-Normal Form (ANF) is a functional-style equivalent of SSA 

Not really different, just different ways of seeing SSA 
In ANF, we have “simple” and “complex” expressions 

Atomic (simple) expressions are those which can be evaluated in a 
bounded number of steps 
Complex expressions perform computation, or combine results 

Function applications, conditional branching (if), etc.  

ANF Rule: every complex expression involves only simple arguments
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;; Example R1 expression
(let ([x (+ (+ y y) (- z))])
  (+ x (- x)))

;; ANF Equivalent…
(let ([int0 (+ y y)])
  (let ([int1 (- z)])
    (let ([x (+ int0 int1)])
      (let ([int3 (- x)])
        (+ x int3)))))



Exercise: Convert to ANF
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(let ([z (- (+ (- y) (+ z z)))])
  (- z))



Exercise: Convert to ANF
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(let ([z (- (+ (- y) (+ z z)))])
  (- z))

(let ([t1 (- y)])
  (let ([t2 (+ z z)])
    (let ([t3 (+ t1 t2)])
      (let ([z (- t3)])
        (- z)))))



ANF is SSA

After uniqueify pass, every variable is distinct 
ANF introduces administrative bindings with new (gensym’d) names 
Thus, in ANF, every variable assigned exactly once 

In LVar/R1, all expressions (post-A-normalization) are linear chains of lets 

We can view these as analogous to a flat SSA-style basic block
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(let ([t1 (- y)])
  (let ([t2 (+ z z)])
    (let ([t3 (+ t1 t2)])
      (let ([z (- t3)])
        (- z)))))

t1 := (- y)
t2 := (+ z z)
t3 := (+ t1 t2)
z  := (- t3)
(- z)

Instruction selection flattens the ANF 
to an assignment-based linear IR



We are seeing only some aspects of SSA right now—SSA also involves 
branching control-flow. We will talk about that soon, in this lecture I 
discuss SSA as viewed through the lens of LVar / R1 

In particular, SSA allows us to branch and join 
Phi nodes allow combining variables from different branches / loops 

Branching control-flow is coming up next…
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Continuation Passing Style (CPS)

Continuation Passing Style (CPS) is an idea from functional programming 
A continuation is a function which represents the “rest of the computation” 
Many different styles of continuations: 

Baked into the language itself (call/cc) 
Internal to the compiler (compiler emits continuations) but not exposed 
Delimited continuations 
Exceptions are not continuations, but related 

Important to differentiate them!
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Manual CPS

We can manually write code in CPS by following a calling convention: 
Every function accepts a “continuation” as its last argument 
Every computation returns its result to its continuation 

No longer possible to “evaluate to” a value—must invoke the continuation
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;; Wrong…
(define (foo x k)
  x)

;; Return x to k instead…
(define (foo x k)
  (k x))



Manual CPS is a pain…

Literally everything needs a continuation if we’re pedantic, even builtins 
like +, add1, etc.
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(let ([x (read)])
  (+ (* x 2) 3))

;; This example: just to show we can do it
;; we would never do this for real
(define (read-k k) (k (read)))
(define (*-k x y k) (k (* x y)))
(define (+-k x y k) (k (+ x y)))
(define toplevel-return displayln)
(read-k
 (λ (read-result)
   (let ([x read-result])
     (*-k x 2
          (λ (mul-result)
            (+-k mul-result 3 toplevel-return))))))

Manual CPS Conversion…



Question: what about let?

Can see let as “left-left” lambda 
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(let ([x e]) e-b) 
=> (e (λ (x) e-b)) 

First compute e, pass it a continuation that binds x and executes e-b



Strings of lets are roughly in CPS…
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(let ([x0 (- 1)])
  (let ([x1 (+ x0 x0)])
    (let ([x2 ...])
      (let ([x3 ...])
        ...))))

If every argument is simple then long 
strings of lets are essentially in CPS: 

• Instead of explicit continuation passed 
to +, -, etc…, the continuation is the 
body of the let 

• In real assembly, primitive functions 
don’t accept continuations as 
arguments 

• Instead, control implicitly continues on 
to the next instruction (in absence of 
branch instructions)

x0 := (- 1)
x1 := (+ x0 x0)
x2 := …
x3 := …
…



Manual CPS: Worked Example

I do not think writing in manual CPS is good style: 
CPS is programming with goto, and goto is to be discouraged 

But I think it is reasonable to show a worked, motivating example… 

Example: tail-recursive tree-traversal / iteration
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;; How can we do a similar accumulator walk over a tree?
(define (tree? t)
  (match t
    ['empty #t]
    [`(node ,v ,(? tree? t0) ,(? tree? t1)) #t]
    [_ #f]))



Easy to write binary search in a tail-recursive fashion

Always know “which way to go,” never need to do backtracking 
By contrast, summing all the nodes requires us to backtrack 

Because we must explore every node, not just single path down the tree
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(define (binary-search t v)
  (match t
    ['empty #f]
    [`(node ,v+ ,t0 ,t1)
     (cond [(equal? v+ v) #t]
           [(< v v+) (binary-search t0 v)]
           [else     (binary-search t1 v)])]))



Direct-style sum-tree

Sum-even-tree sums all even nodes 
Notice it is in direct style: neither call is in tail position
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(define (sum-tree t)
  (match t
    ['empty 0]
    [`(node ,v ,t0 ,t1)
     (+ v (sum-even-tree t0) (sum-even-tree t1))]))



Tail-recursive sum-even-tree, using manual CPS

Notice how sum-tree takes a continuation k 
We still call functions like + in direct style—in practice rarely want full CPS
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(define (sum-tree t k)
  (match t
    ['empty (k 0)]
    [`(node ,v ,t0 ,t1)
     (sum-tree t0
                    (λ (t0s-sum)
                      (sum-tree t1
                                     (λ (t1s-sum)
                                       (k (+ t0s-sum t1s-sum v))))))]))

https://gist.github.com/kmicinski/42abb2faaef4b7b1fb632514f564725b



Converting to ANF / CPS

Basic idea: write a function c-e which takes a continuation as an argument 
Continuation accepts an atom (variable or integer) as an argument 
Algorithm generates administrative bindings 
Uses continuations to flatten the control flow of complex expressions 

What I show is really a CPS conversion algorithm: I will discuss an 
optimization later in class which generates fewer administrative bindings
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;; anf-convert : r1-e? -> r1-anf?
(define (anf-convert expr)
  ;; c-e converts a complex expression e
  ;; whenever it's done, we need to pass
  ;; its result to k.
  (define (c-e e k)
    (match e
      [(? integer? i) (k i)]
      [(? symbol? x)  (k x)]
      [`(- ,e)
       (c-e e (λ (a0)
                (define x (gensym 'int))
                `(let ([,x (- ,a0)])
                   ,(k x))))]
      [`(+ ,e0 ,e1)
       (define e0-res (gensym 'int))
       (c-e e0 (lambda (a0)
                 (c-e e1 (lambda (a1)
                           `(let ([,e0-res (+ ,a0 ,a1)])
                              ,(k e0-res))))))]))
  (c-e expr (lambda (x) x)))


