Syracuse University

College of Engineering
& Computer Science

Static Single Assignment (SSA) Form

Pervasive methodology of IR design: simplifies dataflow reasoning, optimization,
analysis, register allocation, etc.

Main rule: every variable defined once (single assignment)
If a variable x is written multiple times, replace it by several unique xs: x1, x2, etc...

SSA Form
Pseudocode
Xo := read()
X = read() A-i .= read
-ify... yo : 0)
y := read() SS y tmpo := Xo
tmp := X > x1 := Yo
X =Y y1 := tmpo
y := tmp print(y:)
print(y) X2 1= X1+1
X 1= x+1 print(x2)

print (x)

SSA Form: who cares?

When ultimately compiling to registers:
Many machine instructions use source registers as destinations

Thus, old values of registers will be clobbered, e.g.,add %rbx, %r8
It %r8 was previously holding another variable, it is now replaced by result of add

SSA makes obvious what version of a variable is currently live at every point

Benefits:
One unique definition implies simpler program analysis
Easy to map SSA variables back to stack locations / registers

A-Normal Form

A-Normal Form (ANF) is a functional-style equivalent of SSA
Not really different, just different ways of seeing SSA
In ANF, we have “simple” and “complex” expressions

Atomic (simple) expressions are those which can be evaluated in a
bounded number of steps

Complex expressions perform computation, or combine results
Function applications, conditional branching (if), etc.

ANF Rule: every complex expression involves only simple arguments

;3 ANF Equivalent..
(let ([1int0 (+ ¥y ¥)])
(let ([1intl (- 2)])
(1?2 L[T_(;)gj v y) (=2 (let ([x (+ intO 1intl)])
(let ([int3 (- x)])
(+ x 1nt3)))))

;3 Example R1 expression

Exercise: Convert to ANF

(let ([z (- (+ (- Y) (+ 2 2)))])
(- 2))

Exercise: Convert to ANF

(let ([z (- (+ (- Y) (+ 2 2)))])
(- 2))

(let ([tl (- ¥)])
(let ([t2 (+ z 2)])

(let ([t3 (+ tl t2)])
(let ([z (- t3)])
(= 2)))))

ANF is SSA

After uniqueify pass, every variable is distinct
ANF introduces administrative bindings with new (gensym’d) names
Thus, in ANF, every variable assigned exactly once

In LVar/R1, all expressions (post-A-normalization) are linear chains of lets

We can view these as analogous to a flat SSA-style basic block

Instruction selection flattens the ANF *
to an assignment-based linear IR

(let ([tl (- Y)]) —mm — tl = (- vy)
(let ([t2 (+ z 2)]) t2 := (+ 2 z2)
(let ([t3 (+ t1 t2)]) t3 = (+ tl t2)
(let ([z (- t3)]) z = (- t3)
(- 2))))) (- z)

7 v

We are seeing only some aspects of SSA right now—SSA also involves
branching control-flow. We will talk about that soon, in this lecture |
discuss SSA as viewed through the lens of LVar /R1

In particular, SSA allows us to branch and join
Phi nodes allow combining variables from different branches / loops

Branching control-flow is coming up next...

Continuation Passing Style (CPS)

Continuation Passing Style (CPS) is an idea from functional programming
A continuation is a function which represents the “rest of the computation”
Many different styles of continuations:
Baked into the language itself (call/cc)
Internal to the compiler (compiler emits continuations) but not exposed
Delimited continuations
Exceptions are not continuations, but related
Important to differentiate them!

Manual CPS

We can manually write code in CPS by following a calling convention:
Every function accepts a “continuation” as its last argument
Every computation returns its result to its continuation

No longer possible to “evaluate to” a value—must invoke the continuation

>3 Wrong.. ;7 Return x to k 1nstead..
(define (foo x k) (define (foo x k)
X) (k X))

10

Manual CPS is a pain...

(let
(+

Literally everything needs a continuation if we're pedantic, even builtins

like +, add1, etc.

([X (read)

1)
(* X 2) 3))

\5“‘--______>(read—k

Manual CPS Conversion...

;3 This example: just to show we can do it
++ we would never do this for real

(read-k k) (k (read)))

(*-k x y k) (k (* x ¥)))

(+-k x y k) (k (+ X y)))
toplevel-return displayln)

(define
(define
(define
(define

(A (read-result)

([X read-result])
(*-k x 2

(let

11

(A (mul-result)
(+-kK mul-result 3 toplevel-return))))))

Question: what about let?

Can see let as “left-left” lambda

(let ([x e]) e-Db)
=> (e (A (x) e-Db))

First compute e, pass it a continuation that binds x and executes e-b

12

Strings of lets are roughly in CPS...

(let ([x0 (- 1)])
(let ([x1 (+ x0 x0)1])
(let ([xX2 ...])

e Instead of explicit continuation passed (let ([x3 ...])
to +, -, etc..., the continuation is the cee))))
body of the let

It every argument is simple then long
strings of lets are essentially in CPS:

e Inreal assembly, primitive functions

e |Instead, control implicitly continues on
to the next instruction (in absence of
branch instructions)

don’t accept continuations as x0 := (- 1)
arguments x1l := (+ x0 x0)
X2 =

X3

13

Manual CPS: Worked Example

| do not think writing in manual CPS is good style:
CPSis programming with goto, and goto is to be discouraged
But | think it is reasonable to show a worked, motivating example...

#» Example: tail-recursive tree-traversal / iteration

;7 How can we do a similar accumulator walk over a tree?
(define (tree? t)
(match t
empty #t]
" (node ,v ,(? tree? t0) ,(? tree? tl)) #t]
_ #£1))

14

Easy to write binary search in a tail-recursive fashion

Always know “which way to go,” never need to do backtracking
By contrast, summing all the nodes requires us to backtrack
Because we must explore every node, not just single path down the tree

(define (binary-search t v)
(match t
['empty #f]
[(node ,v+ ,t0 ,tl)
(cond [(equal? v+ v) #t]
(< v v+) (binary-search t0 v)]
‘else (binary-search tl v)]1)]))

15

Direct-style sum-tree

Sum-even-tree sums all even nodes
Noticeitisin direct style: neither call is in tail position

(define (sum-tree t)
(match t
[empty 0]
[(node ,v ,t0 ,tl)
(+ v (sum-even-tree t0) (sum-even-tree tl))]))

16

Tail-recursive sum-even-tree, using manual CPS

Notice how sum-tree takes a continuation k
We still call functions like + in direct style—in practice rarely want full CPS

(define (sum-tree t k)
(match t

[empty (k 0)]

[(node ,v ,t0 ,tl)

(sum-tree t0

(A (tOs-sum)
(sum-tree tl
(A (tls-sum)
(k (+ tOs-sum tls-sum v))))))]1))

https://gist.github.com/kmicinski/42abb2faaef4b7b1fb632514f564725b

17

Converting to ANF / CPS

Basic idea: write a function c-e which takes a continuation as an argument
Continuation accepts an atom (variable or integer) as an argument
Algorithm generates administrative bindings

Uses continuations to flatten the control flow of complex expressions

What | show is really a CPS conversion algorithm: | will discuss an
optimization later in class which generates fewer administrative bindings

18

++» anf-convert : rl-e? -> rl-anf?
(define (anf-convert expr)

;3 C—e converts a complex expression e

;3 whenever 1t's done, we need to pass

++ 1ts result to k.

(define (c-e e k)

(match e
(? 1nteger? 1) (k 1)]
(? symbol? Xx) (k x)]
:\(_ Ie)
(c-e e (A (a0)
(define x (gensym 'int))
“(let ([,x (- ,a0)])
r (K X))))]
[(+ ,e0 ,el)
(define el0-res (gensym 'int))
(c-e e0 (lambda (a0)
(c-e el (lambda (al)
“(let ([,e0-res (+ ,a0 ,al)])
, (k e0-res))))))1))

(c-e expr (lambda (x) x)))

19

