
C
s

Control Flow and the R2
language

Kristopher Micinski
CIS531 — Fall 2025, Syracuse

1

a := (read)
b := a + 3
cmp b, 0
jmp-if eq _when_true

Branching Control-Flow
Branching control-flow necessary for making decisions

R2 is the language of decision diagrams over finite input streams
R2 also includes several more forms, along with type checking

2

(program
 (let ([a (read)])
 (let ([b (+ a 3)])
 (if (eq? b 0)
 b
 (- b)))))

_when_false:
 r₁= b
 jmp _return

_when_true:
 int1 := - b
 r₀ = int1
 jmp _return

return₂ = ϕ(r₀,r₁)
_return:
 %rax = return₂
 … // return

R2: new syntactic forms
Boolean literals true/false
cmp is a syntactic set of comparators, which yield true/false
And/or (short circuit) and not
If allows branching
Language power: decision trees

3

Type Checking Expressions
In this setting, we can see type checking as very simple

We can write a recursive function, type-check-exp—which returns the
expression’s type

4

(define (type-check-exp env)
 (lambda (e)
 (define recur (type-check-exp env))
 (match e
 [(? fixnum?) ’Integer]
 [(? boolean?) ’Boolean]
 [(? symbol? x) (dict-ref env x)]
 [‘(read) ’Integer]
 [‘(let ([,x ,e]) ,body)
 (define T (recur e))
 (define new-env (cons (cons x T) env))
 (type-check-exp new-env body)]
 ...
 [‘(not ,e)
 (match (recur e)
 [’Boolean ’Boolean]
 [else (error ’type-check-exp "’not’␣expects␣a␣Boolean" e)])]
 ...
)))

While I find type theory very interesting, I do not think this setting is a particularly
rich one in which to explore type theory:

We can’t do much interesting with type theory until we have arrows / implication,
which (via Curry Howard) correspond to functions

In this case, there is never any need for type inference, since every expression’s
type is immediately apparent via looking “down” the AST
Type checking becomes much harder when we deal with parameters: in that case,
we need to look at every function callsite to determine the type:

This is what leads to different notions of polymorphism, etc.

Type checking is a small part of p3

5

The pass shrink

Compilers often have relatively high-level passes whose goal is to eliminate forms
Why it’s good: fewer forms means fewer cases to handle in lower passes
Why it’s bad: might add complexity that makes optimization more difficult

The pass shrink gets rid of several more complex features…
Removes subtraction (x - y = x + (-y))
and / or (implement using if)
<=, >, and >= (express in terms of and/or and <)—end up with only <

6

x86 language must expand…

7

C1 language…

8

explicate-control

9

End-to-end example…

10

S

11

assign-homes

We are not doing register allocation in this project…

