Syracuse University

College of Engineering
& Computer Science

Branching Control-Flow

Branching control-flow necessary for making decisions
R2 is the language of decision diagrams over finite input streams
R2 also includes several more forms, along with type checking

a := (read)
b :(= a + 3
cmp b, O
(pfigiaT[(1) ///// Jjmp-1f eq when true
e a (rea
4
let b (+ a 3 -
((if(Eeqi b 0))]) _wben_true. ~when false:
b) intl := - b ri= b
(- b))))) Lo = intl jmp return
Jmp return
N /
returnz = @(ro,r1)
_return:
srax = return:

> .. // return

R2: new syntactic forms

» Boolean literals true/false

cmp is a syntactic set of comparators, which yield true/false
And/or (short circuit) and not

|f allows branching

#+ Language power: decision trees

cmp = eq? |<|[<=]|>]>=

exp = | (- ezp ezp)
#t | #f | (and exp exp) | (or exp exp) | (not exp)
(cmp exp exp) | (if exp exp exp)

Ry = (program info exp)

Figure 4.1: The syntax of R», extending R; (Figure 2.1) with Booleans and
conditionals.

Type Checking Expressions

In this setting, we can see type checking as very simple

We can write a recursive function, type-check-exp—which returns the
expression’s type

(define (type-check-exp env)
(lambda (e)
(define recur (type-check-exp env))
(match e
(? fixnum?) ’'Integer]
 (? boolean?) ’'Boolean]
[(? symbol? x) (dict-ref env x)]
‘' (read) 'Integer]
[‘(let ([,x ,e]) ,body)
(define T (recur e))
(define new-env (cons (cons X T) env))
(

type-check-exp new-env body)]

[“(not ,e)
(match (recur e)
[' Boolean ’'Boolean]
[else (error 'type-check-exp "'not’ expects a ,Boolean" e)])]

While | find type theory very interesting, | do not think this setting is a particularly
rich one in which to explore type theory:

We can’t do much interesting with type theory until we have arrows / implication,
which (via Curry Howard) correspond to functions

In this case, there is never any need for type inference, since every expression’s
type is immediately apparent via looking “down” the AST

Type checking becomes much harder when we deal with parameters: in that case,
we need to look at every function callsite to determine the type:

This is what leads to different notions of polymorphism, etc.

Type checking is a small part of p3

The pass shrink

Compilers often have relatively high-level passes whose goal is to eliminate forms
Why it’s good: fewer forms means fewer cases to handle in lower passes
Why it’s bad: might add complexity that makes optimization more difficult

The pass shrink gets rid of several more complex features...
Removes subtraction (x -y = x + (-y))
and / or (implement using if)
<=,> and >= (express in terms of and/or and <)—end up with only <

x86 language must expand...

arg =
| (byte-reg register)

cc = e|l|le|g|ge

instr =
(xorq arg arg) | (cmpq arg arg) | (set cc arg)
(movzbq arg arg) | (jmp label) | (jmp-if cc label)
(Label label)

86, ::= (program info (type type) instr™)

Figure 4.4: The x86; language (extends x86(of Figure 2.7).

C1 language...

arg = | #t | #£
cmp = eq?|<
exp = | (not arg) | (cmp arg arg)
stmt =
tail =
| (gotolabel) | (if (cmp arg arg) (goto label) (goto label))
C1 = (program info ((label . tail)™))

Figure 4.5: The C language, extending Cy with Booleans and conditionals.

explicate-control

(program ()
(if (if (eq? (read) 1)
(eq? (read) 0)
(eq? (read) 2))
(+ 10 32)
(+ 700 77)))

4

(program () =
(if (if (let ([tmp52 (read)])
(eq? tmp52 1))
(let ([tmp53 (read)])
(eq? tmp53 0))
(let ([tmp54 (read)])
(eq? tmp54 2)))
(+ 10 32)
(+ 700 77)))

(program ()
((block62 .

(seq (assign tmp54 (read))
(if (eq? tmp54 2)

(goto blockb9)
(goto block60))))
(block61 .

(seq (assign tmp53 (read))
(if (eq? tmp53 0)

(block60 .
(block59 .
(block58 .
(block57 .
(block56 .
(block5b5 .

(start .

(goto blockb57)
(goto block58))))

(goto block56))
(goto block55))
(goto block56))
(goto block55))
(return (+ 700 77)))
(return (+ 10 32)))

(seq (assign tmp52 (read))
(if (eq? tmp52 1)

(goto block61)
(goto block62))))))

End-to-end example...

(program ()
(if (eq? (read) 1) 42 0))
U
(program ()
((block32 . (return 0))
(block31 . (return 42))
(start .

(seq (assign tmp30 (read))
(if (eq? tmp30 1)
(goto block31)
(goto block32))))))

4
(program ((locals . (tmp30)))
((block32 .
(block ()
(movqg (int 0) (reg rax))
(jmp conclusion)))
(block31 .
(block ()
(movq (int 42) (reg rax))
(jmp conclusion)))
(start .

(block ()
(callq read_int)
(movq (reg rax) (var tmp30))
(cmpq (int 1) (var tmp30))
(jmp-if e block31)
(jmp block32)))))

10

_block31:
movq $42, Jrax
jmp _conclusion
_block32:
movq $0, Yrax
jmp _conclusion
_start:
callq _read_int
movq Arax, Arcx
cmpq $1, Jrcx
je _block3l
jmp _block32
.globl _main
_main:
pushq ’%rbp
movq Arsp, Arbp
pushq %ril2
pushq ’%rbx
pushq %ri13
pushq %ri4
subqg $0, Jrsp
jmp _start
_conclusion:
addqg $0, %rsp
popq 4ril4
popq %ril3
popq Arbx
popq 4ri2
popq %4rbp
retq

typecheck shrink uniquify remove-complex.

R~ *R,~ *R,~ *R,~ *R,

uncover-locals xplicate-control

v G

SeleCt-inStI'. assign_homes
patch-instr. print-x86

x86* X86* > x86* > xs6t

We are not doing register allocation in this project...

11

