
Preliminaries

Kristopher Micinski

CIS531 — Fall 2025, Syracuse

Preliminary Roadmap

We will cover a few things today:

Lexical analysis (lexing)
Grammars and parsing
Assembly / machine organization crash course

Grammars

• In this class, we’ll often need to describe languages
• We specify the definition of a language using a grammar consisting of terminals

(terms which match exactly), and nonterminals (recursive matching)

• Here’s an example grammar:

P ::= (print e)
e ::= Number
 | e * e
 | e + e

The terminals are *, +, print, (, and); the nonterminals are P, e, and Number
We elide the definition of Number (any regex can be written in grammar form)

Lexical Analysis

• The terminals in the grammar represent atomic tokens
• Traditionally, we separate syntactic analysis into two phases:

• Lexical analysis, which recognizes individual tokens from the input byte
stream and outputs logically-related chunks

• Parsing, which takes these tokens as input (they the terminals of the
grammar) and produces a syntax / parse tree

• The “lexer” is typically written in terms of regular expressions:
• Digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

• The “|” represents logical disjunction—a digit is one of those individual 0-9
• Number = -?Digit+

• Possibly a leading - (the ? means “either zero or one” of the preceding thing)
• At least one digit

• We will put this off until a bit later on in the course!

Parsing

• Parsing is the act of taking an input string and matching it against the grammar:

P ::= (print e)
e ::= Number
 | e * e
 | e + e

Which of the following can be generated by the grammar P:
(print 5)
(print (5 * (2 + 3)))
(print (3 * (print 2)))

Answer: first two

Parsing…

P ::= (print e)
e ::= Number
 | e * e
 | e + e

• In practice, we don’t just care about whether a string matches the grammar
• What we want is to a data structure that tells us how the string matched
• Generally, we want this in the form of a tree

(print (5 + 3))

P

(print e)

Number + Number

5 3

Parse!
Token stream

(Output of lexer)

x86_64 (AT&T/GAS/Clang-style) Assembler

• To build a compiler, you have to learn (some amount of) Assembly code
• We will target AT&T-style x86_64 as used in GAS, clang/LLVM, and similar tools

• This is a very common assembly variant you will often see in practice
• Don’t worry if you have a Mac with an ARM chip—our infrastructure will handle it

• Required reading:
• http://ian.seyler.me/easy_x86-64/
• https://www.cs.cmu.edu/~fp/courses/15213-s07/misc/asm64-

handout.pdf
• http://nickdesaulniers.github.io/blog/2014/04/18/lets-write-

some-x86-64/
• Optional (but strongly encouraged)
• https://cs.brown.edu/courses/cs033/docs/guides/

x64_cheatsheet.pdf
• https://www3.nd.edu/~dthain/courses/cse40243/fall2015/intel-

intro.html

<BEGIN>
Crash Course on x86_64 assembly!

http://ian.seyler.me/easy_x86-64/
https://www.cs.cmu.edu/~fp/courses/15213-s07/misc/asm64-handout.pdf
https://www.cs.cmu.edu/~fp/courses/15213-s07/misc/asm64-handout.pdf
http://nickdesaulniers.github.io/blog/2014/04/18/lets-write-some-x86-64/
http://nickdesaulniers.github.io/blog/2014/04/18/lets-write-some-x86-64/
https://cs.brown.edu/courses/cs033/docs/guides/x64_cheatsheet.pdf
https://cs.brown.edu/courses/cs033/docs/guides/x64_cheatsheet.pdf
https://www3.nd.edu/~dthain/courses/cse40243/fall2015/intel-intro.html
https://www3.nd.edu/~dthain/courses/cse40243/fall2015/intel-intro.html

• Assembly code consists of instruction sequences
• Grouped into “functions” (procedures)

• Each instruction does a very simple task (add, multiply, jump)

• There are a limited number of variables (registers)
• x86-64 has 16 of these! 2 hold pointers to stack (rsp/rbp)

• If you need more memory (e.g., for storing an array), must store in
stack / heap / etc…

The basics…

• Ugly instruction set: decades of development and extensions
• In practice, you can deal with a very small subset of x86_64
• We will write code to generate the boilerplate
• For a while, we will focus on compiling only a single function

x86_64 is huge, but you only need to know a little bit…

11

.data
_hello:
 .asciz "Hello, world!\n"

.text

.globl _main
_main:
 subq $8, %rsp

 movq $0, %rax
 leaq _hello(%rip), %rdi
 call _printf

 movq $0, %rdi
 call _exit

12

This is not code, you are telling the processor to put some
data somewhere and name it _hello.data

_hello:
 .asciz "Hello, world!\n"

.text

.globl _main
_main:
 subq $8, %rsp

 movq $0, %rax
 leaq _hello(%rip), %rdi
 call _printf

 movq $0, %rdi
 call _exit

13

Commands starting with dots (.) are directives that tell the
assembler how to lay out your program

.data
_hello:
 .asciz "Hello, world!\n"

.text

.globl _main
_main:
 subq $8, %rsp

 movq $0, %rax
 leaq _hello(%rip), %rdi
 call _printf

 movq $0, %rdi
 call _exit

14

.text says “put this in the text segment”

.data
_hello:
 .asciz "Hello, world!\n"

.text

.globl _main
_main:
 subq $8, %rsp

 movq $0, %rax
 leaq _hello(%rip), %rdi
 call _printf

 movq $0, %rdi
 call _exit

15

.globl means “make this global”

.data
_hello:
 .asciz "Hello, world!\n"

.text

.globl _main
_main:
 subq $8, %rsp

 movq $0, %rax
 leaq _hello(%rip), %rdi
 call _printf

 movq $0, %rdi
 call _exit

16

OS assumes you will have a function named _main

.data
_hello:
 .asciz "Hello, world!\n"

.text

.globl _main
_main:
 subq $8, %rsp

 movq $0, %rax
 leaq _hello(%rip), %rdi
 call _printf

 movq $0, %rdi
 call _exit

17

The %rsp variable (register) is a 64-bit pointer to
the stack.

Remember, the stack grows down

First command subtracts 8 from %rsp

This “allocates” 8 bytes on the stack, so that our
program can store data there.

This is complicated! More on it later

.data
_hello:
 .asciz "Hello, world!\n"

.text

.globl _main
_main:
 subq $8, %rsp

 movq $0, %rax
 leaq _hello(%rip), %rdi
 call _printf

 movq $0, %rdi
 call _exit

18

Moves 0 into %rax (general purpose 8-
bit register)

Note:
opcode, source, dest

(This is the convention in AT&T syntax)

.data
_hello:
 .asciz "Hello, world!\n"

.text

.globl _main
_main:
 subq $8, %rsp

 movq $0, %rax
 leaq _hello(%rip), %rdi
 call _printf

 movq $0, %rdi
 call _exit

19

Loads address of _hello into rdi

printf is a special “variadic” function, so #
extra arguments has to be put into rax

.data
_hello:
 .asciz "Hello, world!\n"

.text

.globl _main
_main:
 subq $8, %rsp

 movq $0, %rax
 leaq _hello(%rip), %rdi
 call _printf

 movq $0, %rdi
 call _exit

20

Actually performs the function call!

.data
_hello:
 .asciz "Hello, world!\n"

.text

.globl _main
_main:
 subq $8, %rsp

 movq $0, %rax
 leaq _hello(%rip), %rdi
 call _printf

 movq $0, %rdi
 call _exit

21

Returns here!
Since we want to call exit(0), need to

put 0 in %rdi

.data
_hello:
 .asciz "Hello, world!\n"

.text

.globl _main
_main:
 subq $8, %rsp

 movq $0, %rax
 leaq _hello(%rip), %rdi
 call _printf

 movq $0, %rdi
 call _exit

22

kkmicins@laptop ∂ → clang -target x86_64-apple-darwin -c ex0.s
kkmicins@laptop ∂ → clang -target x86_64-apple-darwin ex0.o -o prog
kkmicins@laptop ∂ → ./prog
Hello, world!

Cross-compiling on a Mac (M1/2/3/…)

We use clang’s cross-compiler to build a Mach-O x86_64 object file
Then, we use clang to link the object (.o) file into a Mach-O executable
Finally, we run it: Rosetta loads it and translates it on-the-fly to run on ARM!

23

Traditionally, x86 architectures only had four 16-
bit general purpose registers: ax, bx, cx, dx

Also other registers: bp, sp, di, si

Base pointer
(Start of frame) Stack pointer

(Top of stack)

Originally, 8-bit registers: al, bl, cl, dl

Registers: very fast, on-chip data

24

Registers: very fast, on-chip data

Also some special registers you can’t modify directly: instruction pointer, flags
Registers are a precious commodity: you want to store local variables in registers

Historically: ensuring something certain values kept in registers was a reason to write
manually-tuned Assembly code (not as common in modern times)

Preview: register allocation (several weeks from now…)
You will eventually run out of registers, at which point you have to “spill” to the stack

Stack stores local values: medium-sized chunk of memory that you can push/pop
Push on function entry, pop on function exit—local values disappear once function done

25

Example: Register Allocation (yourself)
Consider the following code. If you only have 3 registers, can you keep every
variable in a register?

int foo(int arg1, int arg2) {
 x = arg1;
 y = arg2;
 z = 0;
 if (x > y) {
 a = y;
 z = a+1;
 print(z);
 } else {
 b = x;
 z = x + b;
 print(z);
 }
}

26

%rax is one of the most common general-purpose registers
But, if you use %eax, you’re really using the lower 32 bits of %rax
In this class, we’ll make it easy: everything is 64 bits!

Changing this is an interesting exercise, potential final project?

Smaller registers are nested inside bigger ones

063 31 15 7

%rax %eax %ah %al

{%ax

• Today we mostly have 64-bit ISAs
• 32-bit registers still used (e.g., int in C++ on my machine)
• 16-bit basically gone, 8-bit totally gone

• Some code out there that still works with the 32/16/8 bit registers, though
• Assembly instructions have suffixes: denote which bit-width they’re working on

• E.g., movq says “move into a quadword (8-bytes)”
• movl says “move into a long (4-bytes)”
• We will try to keep things simple by working with 64-bit values values!

Modern x86: x86_64

28

x86_64 register map

https://commons.wikimedia.org/wiki/File:Table_of_x86_Registers_svg.svg

29

12 34

To represent 0x1234567890abcdef

56 78 90 ab cd ef

Least Significant ByteMost Significant Byte

30

x86 is a little-endian architecture
If an n-byte value is stored at addresses a to a+(n-1) in memory, byte a will
hold the least significant byte
Note: values within bytes do not change—only the byte order changes
How would 0x1234567890abcdef be stored in memory on a big/little-
endian machine, starting at address 0xAA00?

Endianness

31

Instruction types

Moving memory around: mov, load, store, etc…
Arithmetic: add, mul, div, shift, etc…
Tests: (in)equality, comparison (less/greater than), etc.
Branch: conditional or unconditional
Call: direct (target hardcoded into the call) or indirect (function being called
isn’t known until runtime—costlier to implement, harder to analyze!)
Floating point, matrix instructions, etc: won’t talk a ton about these!
More esoteric instructions: atomics, cache-bypassing instructions, …

32

Addressing modes

Instructions take operands as arguments, and these operands may not always
be allowed to be (for example) immediate values.

For example, you can’t add two immediate values, have to mov in a register
first, followed by add of immediate to register
Question: why enforce this restriction?
Answer (several): encoding space of instructions is precious—don’t waste
space on redundant computation (why would you not just manually do the
calculation?), among others…

33

mov %rax, %rbx
Opcode name

Source

Destination

“Move the value from register rax into the register rbx”

Addressing modes (register)

34

Plurality of instructions
are movs

Then push
Then call

35

Example: average two integers

How would you find avg of rax & rbx?

.text

.globl _main
_main:
 pushq %rbp
 movq $28, %rbx
 movq $23, %rax
 addq %rbx, %rax
 cqto
 movq $2, %rbx
 idivq %rbx
 movq %rax, %rdi
 call _exit

36

Example: average two integers

How would you find avg of rax & rbx?

.text

.globl _main
_main:
 pushq %rbp
 movq $28, %rbx
 movq $23, %rax
 addq %rbx, %rax
 cqto
 movq $2, %rbx
 idivq %rbx
 movq %rax, %rdi
 call _exit

Save %rbp onto the stack (need to do this
for alignment)

37

Example: average two integers

How would you find avg of rax & rbx?

.text

.globl _main
_main:
 pushq %rbp
 movq $28, %rbx
 movq $23, %rax
 addq %rbx, %rax
 cqto
 movq $2, %rbx
 idivq %rbx
 movq %rax, %rdi
 call _exit

Move 28 into rbx

38

Example: average two integers

How would you find avg of rax & rbx?

.text

.globl _main
_main:
 pushq %rbp
 movq $28, %rbx
 movq $23, %rax
 addq %rbx, %rax
 cqto
 movq $2, %rbx
 idivq %rbx
 movq %rax, %rdi
 call _exit

Move 23 into rax

39

Example: average two integers

How would you find avg of rax & rbx?

.text

.globl _main
_main:
 pushq %rbp
 movq $28, %rbx
 movq $23, %rax
 addq %rbx, %rax
 cqto
 movq $2, %rbx
 idivq %rbx
 movq %rax, %rdi
 call _exit

Add rax to rbx, store result in rax

40

Example: average two integers

How would you find avg of rax & rbx?

.text

.globl _main
_main:
 pushq %rbp
 movq $28, %rbx
 movq $23, %rax
 addq %rbx, %rax
 cqto
 movq $2, %rbx
 idivq %rbx
 movq %rax, %rdi
 call _exit

“Sign extend” %rax into %rdx:%rax

(The idivq instructions expects its
arguments to be in both rdx and rax! So

must sign extend!)

41

Example: average two integers

How would you find avg of rax & rbx?

.text

.globl _main
_main:
 pushq %rbp
 movq $28, %rbx
 movq $23, %rax
 addq %rbx, %rax
 cqto
 movq $2, %rbx
 idivq %rbx
 movq %rax, %rdi
 call _exit

Move 2 into rbx

42

Example: average two integers

How would you find avg of rax & rbx?

.text

.globl _main
_main:
 pushq %rbp
 movq $28, %rbx
 movq $23, %rax
 addq %rbx, %rax
 cqto
 movq $2, %rbx
 idivq %rbx
 movq %rax, %rdi
 call _exit

Integer divide %rdx:%rax by %rbx

(Since %rdx will be 0 here, this basically
means: %rax/%rbx, store result in %rax,

remainder stored in %rdx)

43

Example: average two integers

How would you find avg of rax & rbx?

.text

.globl _main
_main:
 pushq %rbp
 movq $28, %rbx
 movq $23, %rax
 addq %rbx, %rax
 cqto
 movq $2, %rbx
 idivq %rbx
 movq %rax, %rdi
 call _exit

Move result into %rdi in preparation to call
exit

44

Quiz: What would equiv C++ code look like?

.text

.globl _main
_main:
 pushq %rbp
 movq $28, %rbx
 movq $23, %rax
 addq %rbx, %rax
 cqto
 movq $2, %rbx
 idivq %rbx
 movq %rax, %rdi
 call _exit

int x = 28;
int y = 23;
x += y;
x /= 2;
exit(x);

Many other solns possible!

45

.text

.globl _main
_main:
 pushq %rbp
 movq $8, %rax
 movq $7, %rbx
 cmp %rax, %rbx
 jg _mov_needed
 jmp _no_mov_needed
_mov_needed:
 movq %rbx, %rax
_no_mov_needed:
 movq %rax, %rdi
 call _exit

Example: finding max of two ints

Push %rbp

Move 8 into rax

Move 7 into rbx

Compare rax and rbx
If %rax is greater, go to _mov_needed

Unconditional jump to _no_mov_needed

Label for _mov_needed

Join point for computation

Move rax into rdi to call _exit

46

.text

.globl _main
_main:
 pushq %rbp
 movq $8, %rax
 movq $7, %rbx
 cmp %rax, %rbx
 jg _mov_needed
 jmp _no_mov_needed
_mov_needed:
 movq %rbx, %rax
_no_mov_needed:
 movq %rax, %rdi
 call _exit

Quiz: what would C++ code look like?

47

.text

.globl _main
_main:
 pushq %rbp
 movq $8, %rax
 movq $7, %rbx
 cmp %rax, %rbx
 jg _mov_needed
 jmp _no_mov_needed
_mov_needed:
 movq %rbx, %rax
_no_mov_needed:
 movq %rax, %rdi
 call _exit

Quiz: what would C++ code look like?

int x = 8; // rax
int y = 7; // rbx
if (y > x)
 x = y;
exit(x);

48

.text

.globl _main
_main:
 pushq %rbp
 movq $1, %rax
 movq $6, %rbx
 movq $0, %rcx
_loop_begin:
 cmp %rcx, %rbx
 je _loop_end
 addq %rax, %rax
 addq $1, %rcx
 jmp _loop_begin
_loop_end:
 movq %rax, %rdi
 call _exit

Example: using a loop

%rax will accumulate a value

%rbx is going to track when to exit

%rcx will count up by one until it hits %rbx

_ starts a label
Compare %rcx and %rbx

If previous comparison was =, jump to …

Unconditional jump to _loop_begin

Target of jump after cmp
Move %rax into %rdi to call _exit

49

.text

.globl _main
_main:
 pushq %rbp
 movq $1, %rax
 movq $6, %rbx
 movq $0, %rcx
_loop_begin:
 cmp %rcx, %rbx
 je _loop_end
 addq %rax, %rax
 addq $1, %rcx
 jmp _loop_begin
_loop_end:
 movq %rax, %rdi
 call _exit

Quiz: what does this
program compute?

50

.text

.globl _main
_main:
 pushq %rbp
 movq $1, %rax
 movq $6, %rbx
 movq $0, %rcx
_loop_begin:
 cmp %rcx, %rbx
 je _loop_end
 addq %rax, %rax
 addq $1, %rcx
 jmp _loop_begin
_loop_end:
 movq %rax, %rdi
 call _exit

Quiz: write corresponding
C++ code for this

51

.text

.globl _main
_main:
 pushq %rbp
 movq $1, %rax
 movq $6, %rbx
 movq $0, %rcx
_loop_begin:
 cmp %rcx, %rbx
 je _loop_end
 addq %rax, %rax
 addq $1, %rcx
 jmp _loop_begin
_loop_end:
 movq %rax, %rdi
 call _exit

int x = 0; // rax
int y = 6; // rbx
int z = 0; // rcx
while (y != z) {
 x += x;
 ++z;
}
exit(x);

52

Memory: a giant chunk of bytes

You can read from it and write to it in 1/2/4/8/16-byte increments

mov (%rax), %rbx

53

mov (%rax), %rbx
Opcode name

Source

Destination

“Move the value at address %rax into register %rbx”

0xaf23c8a223356ac0xffffffff00000000%rax 0xffffffff00000008

0xdeadbeefdeadbeef0xffffffff00000000
0x1234123412341234%rbx

54

mov (%rax), %rbx
Opcode name

Source

Destination

“Move the value at address %rax into register %rbx”

0xaf23c8a223356ac0xffffffff00000000%rax 0xffffffff00000008

0xdeadbeefdeadbeef0xffffffff00000000
0xdeadbeefdeadbeef%rbx

55

mov 8(%rax), %rbx
Opcode name

Source

Destination

“Move the value at address %rax+8 into register %rbx”

0xaf23c8a223356ac0xffffffff00000000%rax 0xffffffff00000008

0xdeadbeefdeadbeef0xffffffff00000000
0xaf23c8a223356ac%rbx

56

A few other more complicated ones that allow
you to add registers, offsets, etc…

Different instructions allow different addressing-modes

57

Full example: load *(ebp + (edx * 4) - 8) into eax
movq -8(%ebp, %edx, 4), %eax
Typical example: load a stack variable into eax
movq -4(%ebp), %eax
No index: copy the target of a pointer into a register
movq (%ecx), %edx
Arithmetic: multiply eax by 4 and add 8
leaq 8(,%eax,4), %eax
Arithmetic: multiply eax by 2 and add edx
leaq (%edx,%eax,2), %eax

58

Full example: load *(ebp + (edx * 4) - 8) into eax
movq -8(%ebp, %edx, 4), %eax
Typical example: load a stack variable into eax
movq -4(%ebp), %eax
No index: copy the target of a pointer into a register
movq (%ecx), %edx
Arithmetic: multiply eax by 4 and add 8
leaq 8(,%eax,4), %eax
Arithmetic: multiply eax by 2 and add edx
leaq (%edx,%eax,2), %eax

leaq is “load effective address (quad).” You can think of it as
the assembly analogue of C++’s & (address of) operator

What happens after the executable is generated

Static linking
(mushes together .o files)

Executable

Compiler

The executable is written in a very specific format which the OS understands
Examples: Windows Portable Executables (PE .exes), Linux ELF, Mac Mach-O, other lesser-known

The OS typically organizes process memory into segments
The loader (roughly: what happens after execve) knows how to populate the processes memory from
the .exe file. The loader and dynamic linker collaborate to load the .exe into memory
At runtime, some calls to externally-defined functions may need to be resolved by the dynamic linker—
this is accomplished by some technical systems tricks which I will not explain in detail now

Operating System

In-memory process

Dynamic
Linker

Linker and
Loader

Shared Object
File

60

61

Kernel memory

Your OS uses it

62

Stack: push / pop

Very important:
The stack grows down

63

mmap segments

Allows you to map a file
to memory

64

Heap: dynamic allocation

C++: New / delete

C: Malloc / free

65

BSS: Uninitialized static
vars (globals)

66

Data segment: initialized
statics—e.g., constant strings

67

Text segment: program code

68

Note the permissions

69

This random offset
really security feature

70

.text

.globl _main
_main:
 pushq %rbp
 leaq data(%rip), %rax # rax -- Pointer to count
 movq $5, %rbx # rbx -- Size of count array
 movq $0, %rcx # rcx -- Index var for loop
 movq $0, %rdx # rdx -- Sum total of array
_loop:
 cmp %rcx, %rbx
 je _end_of_loop
 mov (%rax, %rcx, 8), %r8 # Loads *(rax + %rcx * 8) -> %r8
 addq %r8, %rdx
 addq $1, %rcx
 jmp _loop
_end_of_loop:
 movq %rdx, %rdi
 call _exit

.data
data:
 .quad 4, 2, -3, 1, 8 # Declares an array of 8-byte values

Example: Summing an array

71

What do you do when you run out of registers..?

(There are only a limited number, so you will run out!)

72

What do you do when you run out of registers..?

(There are only a limited number, so you will run out!)

Observation: can also use the stack to store data!

73

data

“Top” of the stack%rsp

data

data

data

The stack pointer %rsp points at the top of the stack

74

data

“Top” of the stack%rsp

data

data

data

The stack pointer %rsp points at the top of the stack

If you want to store data on the stack, just subtract from %rsp and store there!

75

data

Space for you to use%rsp+16

data

data

data

The stack pointer %rsp points at the top of the stack

If you want to store data on the stack, just subtract from
%rsp and store there!

Space for you to use

New “Top” of the stack

%rsp+8

%rsp

76

data

Space for you to use%rsp+16

data

data

data

The stack pointer %rsp points at the top of the stack

If you want to store data on the stack, just subtract from
%rsp and store there!

Space for you to use

New “Top” of the stack

%rsp+8

%rsp

Empty space to use!

77

data

data

%rsp

8

7

%rsp+8

The “push” opcode decrements the stack and
puts new data onto it

pushq %rbp

78

data

data

%rsp+8

8

7

%rsp+16

The “push” opcode decrements the stack and
puts new data onto it

pushq %rbp

%rsp Contents of %rbp

79

data

“Top” of the stack%rsp

.text

.globl _main
_main:
 pushq %rbp
 subq $16, %rsp # Reserve 16 bytes on the stack
 movq $7, (%rsp) # Move 7 onto the top of the stack
 movq $3, 8(%rsp) # Move 3 onto the next qword on the stack
 movq (%rsp), %rax # Move *rsp into %rax
 movq 8(%rsp), %rbx # Move *(rsp+8) into %rbx
 addq %rax, %rbx
 movq %rbx, %rdi
 call _exit

80

data

data

%rsp

junk..

junk…

%rsp+8

.text

.globl _main
_main:
 pushq %rbp
 subq $16, %rsp # Reserve 16 bytes on the stack
 movq $7, (%rsp) # Move 7 onto the top of the stack
 movq $3, 8(%rsp) # Move 3 onto the next qword on the stack
 movq (%rsp), %rax # Move *rsp into %rax
 movq 8(%rsp), %rbx # Move *(rsp+8) into %rbx
 addq %rax, %rbx
 movq %rbx, %rdi
 call _exit

81

data

data

%rsp

junk..

7

%rsp+8

.text

.globl _main
_main:
 pushq %rbp
 subq $16, %rsp # Reserve 16 bytes on the stack
 movq $7, (%rsp) # Move 7 onto the top of the stack
 movq $3, 8(%rsp) # Move 3 onto the next qword on the stack
 movq (%rsp), %rax # Move *rsp into %rax
 movq 8(%rsp), %rbx # Move *(rsp+8) into %rbx
 addq %rax, %rbx
 movq %rbx, %rdi
 call _exit

82

data

data

%rsp

.text

.globl _main
_main:
 pushq %rbp
 subq $16, %rsp # Reserve 16 bytes on the stack
 movq $7, (%rsp) # Move 7 onto the top of the stack
 movq $3, 8(%rsp) # Move 3 onto the next qword on the stack
 movq (%rsp), %rax # Move *rsp into %rax
 movq 8(%rsp), %rbx # Move *(rsp+8) into %rbx
 addq %rax, %rbx
 movq %rbx, %rdi
 call _exit

8

7

%rsp+8

83

In many compilers (especially nonoptimizing ones),
local variables are stored on the stack

(Even when they could be in registers!).text
.globl _main
_main:
 pushq %rbp
 subq $16, %rsp # Reserve 16 bytes on the stack
 movq $7, (%rsp) # Move 7 onto the top of the stack
 movq $3, 8(%rsp) # Move 3 onto the next qword on the stack
 movq (%rsp), %rax # Move *rsp into %rax
 movq 8(%rsp), %rbx # Move *(rsp+8) into %rbx
 addq %rax, %rbx
 movq %rbx, %rdi
 call _exit

int main() {
 int x = 7;
 int y = 3;
 exit(x+y);
}

84

Because the stack often grows up and down,
programmers sometimes use %rbp

.text

.globl _main
_main:
 pushq %rbp
 subq $16, %rsp # Reserve 16 bytes on the stack
 movq %rsp, %rbp # Move %rsp into the base pointer %rbp
 movq $7, (%rbp) # Move 7 onto the top of the stack
 movq $3, 8(%rbp) # Move 3 onto the next qword on the stack
 movq (%rbp), %rax # Move *rsp into %rax
 movq 8(%rbp), %rbx # Move *(rsp+8) into %rbx
 addq %rax, %rbx
 movq %rbx, %rdi
 call _exit

(“base pointer:” points at base of local variables)

(Dereferences can use %rbp even when %rsp changes)

85

Because functions often store their local variables on the stack, a
common “recipe” for writing a function is:
• Push %rbp onto the stack (save the caller’s %rbp)
• Subtract x bytes from the stack
• Where x is the number of bytes taken by local variables
• Often padded to the nearest 16-byte value for alignment

• Move %rsp into %rbp
• Each local variable is now at (%rbp), 8(%rbp), …

int foo() {
 int x; // 4 bytes
 int y; // 4 bytes
 char foo[16]; // 16 bytes
 double z; // 8 bytes
}

_foo:
 pushq %rbp
 subq $16, %rsp
 movq %rsp, %rbp
 # z is (%rbp)
 # foo is 8(%rbp)
 # y is 24(%rbp)
 # z is 28(%rbp)

86

Important aside: Alignment

Concept of laying out data in memory to respect
constraints of the ISA’s memory access conventions

Typically, an n-byte datatype will be aligned on an n-byte
boundary (where n is 1,2,4,8,16,…)

E.g., a double in C++ is 8-bytes in size, meaning it must sit at a
memory address which is divisible by 8 (0x00, 0x08, 0x10, …)

87

1 Byte 1 Byte 1 Byte 1 Byte

32 bits

1 Byte 1 Byte 1 Byte 1 Byte

64 bits

0xF000 0xF001 0xF002 0xF003 0xF004 0xF005 0xF006 0xF007

Your processor talks to RAM via a bus

88

1 Byte 1 Byte 1 Byte 1 Byte

32 bits

1 Byte 1 Byte 1 Byte 1 Byte

64 bits

0xF000 0xF001 0xF002 0xF003 0xF004 0xF005 0xF006 0xF007

Your processor talks to RAM via a bus
The memory controller interfaces the RAM banks to the CPU

Memory
Controller

(E.g., what if multiple CPUs access same RAM at once)

89

1 Byte 1 Byte 1 Byte 1 Byte

32 bits

1 Byte 1 Byte 1 Byte 1 Byte

64 bits

0xF000 0xF001 0xF002 0xF003 0xF004 0xF005 0xF006 0xF007

Memory
Controller

It makes the memory controller circuitry simpler when it only allows accessing
memory at an address which is a multiple of 8 (etc..)

90

1 Byte 1 Byte 1 Byte 1 Byte

32 bits

1 Byte 1 Byte 1 Byte 1 Byte

64 bits

0xF000 0xF001 0xF002 0xF003 0xF004 0xF005 0xF006 0xF007

Memory
Controller

Valid start of an 8-byte datatype

91

1 Byte 1 Byte 1 Byte 1 Byte

32 bits

1 Byte 1 Byte 1 Byte 1 Byte

64 bits

0xF000 0xF001 0xF002 0xF003 0xF004 0xF005 0xF006 0xF007

Memory
Controller

Invalid: address (0xF001) is not multiple of 8

92

1 Byte 1 Byte 1 Byte 1 Byte

32 bits

1 Byte 1 Byte 1 Byte 1 Byte

64 bits

0xF000 0xF001 0xF002 0xF003 0xF004 0xF005 0xF006 0xF007

Memory
Controller

Invalid: address (0xF001) is not multiple of 8
(In this case, the processor actually does two fetches.

One from 0xF000 to get 0xF001-0xF007, One to get 0xF008-…)

93

struct Foo {
 int x;
 int y;
 char *z;
 char a;
 int *num;
}

x — 4 bytes

y — 4 bytes

a — 1 byte

z — 8 bytes

z — 8 bytes
Empty space for alignment

0xF000

0xF004

0xF008

0xF010

0xF018

0xF011-F017

Structs laid out sequentially in memory,
but alignment must be maintained!

94

struct Foo {
 char y;
 int z;
 int *num;
}

Quiz: Which takes less space?

struct Foo {
 int *num;
 int z;
 char y;
}

95

struct Foo {
 char y; // 1 byte
 // 3 bytes empty space
 // int must be at addr
 // divisible by 4
 int z;
 // 4 bytes empty space
 // after z, int* must
 // be on 8-byte boundary
 int *num;
}

Quiz: Which takes less space?

struct Foo {
 int *num;
 // No empty space
 int z;
 // No empty space
 char y;
}

Answer: right takes less, since plays
better with alignment!

• Assembly language is not complicated, but it is tedious and
technical; you don’t need much beyond the basics here

• There is always a question: target LLVM, MLIR, ARM, etc.?
• We target x86_64; why?
• Answer: lots of x86_64 desktop / server code out there,

common, real, and ugly ISA; prevalent documentation and
examples online for things like ABI, etc.

<END>
Crash Course on x86_64 assembly!

Check your Knowledge

A few questions after this lecture:

Explain the difference between lexical analysis and parsing
What is the difference between source, object, and executable code?
What is an ABI?
Is there a difference between the ABI and the file format (ELF, Mach-O,
Windows PE)?
What is an addressing mode?
Why do certain instructions support only a subset of addressing modes?

Ask me (kkmicins@syr.edu) if you want to discuss answers after class

mailto:kkmicins@syr.edu

