
Parsing

Kristopher Micinski

CIS531 — Fall 2025, Syracuse

1

This week: from raw bytes to an AST
• I find parsing rather boring: just use (read)!

• But, some important concepts—and also, more time to practice Racket
• Two important concepts:

• Tokenization (“lexing”), breaking the input stream (bytes) into logical “tokens”
• Akin to what you do in LLMs, for example

• Parsing: fitting that stream of logical tokens to a hierarchical (tree-shaped) grammar

“2 + 3 * 5”

Lexing

Num(2), Plus(), Num(3), Times(), Num(5) Token stream

Parsing

+
2 *

3 5
2

Abstract syntax tree
(Related to parse tree)

The foundations of regular expressions

(Don’t need to remember details)

Introduction to grammars

(Important to get concepts)

3

Lexical Analysis, Regular Expressions (regex)

Generally, we specify individual tokens via regular expressions
Regular expressions allow us to write string matchers from several patterns:

The empty string ε is a regular expression
Any literal can be matched, for example: “dog” is a regular expression
If e0 and e1 are regular expressions, so is e0 | e1 (matches either)
If e0 and e1 are regular expressions, so is e0e1 (concatenation)
If e is a regular expression, so is e*

This is the “Kleene star” and matches “0 or more” occurrences of e
Practical implementations extend regexes to include other patterns

Also, common implementations fundamentally extend regex power
E.g., superlinear regular expressions; crashed the internet several times!!

4

RE example 1
Which of the following strings is matched by the regex “ab*cd*”

ac
abbbccdddd
abbbacddd
abcd
acdddddda

Which of the following strings is matched by the regex “he(l | ll)(o | p)
hello
hll
help
hellp

5

How are REs implemented? (Abbreviated version…)

Every RE can be systematically compiled to a nondeterministic finite automaton

6

a | bb

a

b b“Start”
state

“Accepting”
state

Every NFA can be further compiled to a DFA, implemented via a lookup table

Finite Automata Example

Write an NFA for the regular expression a(bc)*d

7

8

(define-lex-abbrev WS (:+ (char-set " \t\r\n")))
(define-lex-abbrev DIGITS (:+ numeric))

(define expr-lexer
 (lexer
 [WS (expr-lexer input-port)]
 ["+" 'PLUS]
 ["-" 'MINUS]
 ["*" 'TIMES]
 ["(" 'LPAREN]
 [")" 'RPAREN]
 ["read" 'READ]
 ["print" 'PRINT]
 [DIGITS `(INT ,(string->number lexeme))]
 [(eof) 'EOF]))

(define (tokenize-port in-port)
 (let loop ([acc '()])
 (define t (expr-lexer in-port))
 (if (eq? t 'EOF)
 (reverse (cons t acc))
 (loop (cons t acc)))))

;; Tokenize the string, turning it into a list of tokens.
(define (tokenize-string str) (tokenize-port (open-input-string str)))

;; (pretty-print (tokenize-port (open-input-string "3 + 3 * 5")))
;; (pretty-print (tokenize-string "3 + 3 * 5"))

Lexing vs. Parsing
• Lexing is relatively “easy:”

• Specify tokens via regular expressions, REs readily translate into finite automata
• Well-established results tell us of the equivalence of NFAs, DFAs, subset construction, etc.
• In other words, REs are fast (in principle, at least—when avoiding nonlinear features)

• By contrast, parsing is harder:
• Can’t specify most language constructs via REs—e.g., balanced parentheses
• These require context-free grammars (CFGs) which are strictly more powerful than RE
• Sometimes easy to implement (e.g., LL(k) grammars, predictive parsing), but in general

may require using a parser generator (e.g., bottom-up parsing)
• New innovations, even to this day—but only basic knowledge required for day-to-day

usefulness, I argue
• Often using some well-known format anyway (JSON, S-expressions, etc.)

Regular expressions have a nice property…

If you give me a regex and a string, I can check if that string
matches the regex in linear time

10

11

Can I cook up a regular expression that
will classify any string?

(No…)

12

If I could, it would imply I could solve any
problem in linear time!

13

So what’s an example of a regular
expression I couldn’t write?

“The set of strings P such that P…?”

14

So what’s an example of a regular
expression I couldn’t write?

“The set of strings P such that P…?”

(Answer: is a program that halts)

15

Regular expressions can be implemented
using finite state machines

16

We won’t talk too much about FSMs in this class

All regexes can “compile” (turn to, in systematic way) FSM

17

18

Starting state

19

Transition on input

20

Accepting state
(two circles)

21

011 S1

22

011 S2

23

011 S2 Stay!

24

011 S2

25

011 S2

Reject!

26

0110 S1

27

0110 S1

Accept!

28

“Any number of 1s, followed by an even
number of 0s, followed by a single 1”

29

1*0(01*0)*1

30

Idea: FSMs remember only “one state”
of memory

It’s kind of like programming with only one
register (of unbounded width)

31

Theorem: for every regex, a corresponding FSM
exists, and vice versa

32

Q: Why is this useful?

Theoretical A: Bedrock automata theory,
useful in proving computational bounds

Practical A: Efficient regex implementation

33

Beyond lexing: parsing
• Can we use regular expressions to match a whole language..?
• No! Interesting languages can not be written as any regex
• Examples include: balancing parentheses, if/then/else

• Anything where the program would need to “count” (to an arbitrary degree)
• Counting is beyond the power of finite automata—also need a stack

• Pushdown automata, context-free languages, etc…

{}

{{}}

{{{}}}

{{{{}}}}

Parenthesis are balanced when
each left matches a right

35

Balancing parentheses necessary to check program syntax
(e.g., for C++)

36

{*}* doesn’t work

37

Turns out: it is impossible to write a regex to capture this fact

Instead, we will use context-free grammars

38

S -> ε
S -> { S }

Here’s a grammar that matches balanced parentheses

39

40

CFG’s are more expressive than regular
expressions, and commensurately more

complex to check

41

Whereas regular expressions are modeled by finite state machines, CFGs are
modeled by state machines that also can push / pop a stack

42

Context-Free Grammars

• CFGs (context-free grammars) generalize REs
• Any RE can be written as a CFG

• Below is an example of a grammar for expressions…

Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

Formally, a grammar is…
• A set of terminals

• These are the things you can’t rewrite any further

• A set of nonterminals

• These are the things you can rewrite further

• A set of production rules

• These are a bunch of rewrite rules

• A start symbol

44

Terminals = {number, +, *}

Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

Nonterminals = {Expr}

Productions =

Start symbol = Expr

45

The “meaning” of a CFG. Definition: derivation

• To determine if a grammar matches an expression, you play a game
• Start by writing down the start symbol
• Continue by expanding a nonterminal according to one of the productions
• This trace (sequence of partial steps) is called a derivation

First, start with a nonterminal and write that on the page

Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

1 + 2

47

First, start with a nonterminal and write that on the page

Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

1 + 2

Expr

48

First, start with a nonterminal and write that on the page

Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

1 + 2

Expr

To play the game: attempt to apply each production so that you arrive at
your full expression

49

First, start with a nonterminal and write that on the page

Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

1 + 2

Expr -> Expr + Expr

50

First, start with a nonterminal and write that on the page

Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

1 + 2

Expr
-> Expr + Expr
-> number + Expr
-> number + number
-> 1 + number
-> 1 + 2

51

This is a “complete” derivation
because it ends in a terminal
string (only terminals left)

First, start with a nonterminal and write that on the page

Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

1 + 2

Some moves don’t lead you to winning the game.

52

First, start with a nonterminal and write that on the page

Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

1 + 2

Some moves don’t lead you to winning the game.

Expr
-> Expr * Expr
???

53

This is an “incomplete”
derivation because it gets
stuck—but each step follows
the rules

Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

1 + 2 * 3
Expr
-> Expr + Expr

Expr
-> Expr * Expr

This grammar is ambiguous

Exercise: complete the derivations from here

54

Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

1 + 2 * 3

Expr
-> Expr + Expr
-> Expr + Expr * Expr
-> number + Expr * Expr
-> number + number * Expr
-> number + number * number

Expr
-> Expr * Expr
-> Expr + Expr * Expr
-> number + Expr * Expr
-> number + number * Expr
-> number + number * number

55

if …
 if …
 else …

Famous example from C, the “dangling else”

Does the else belong to the first if? Or the second?

Most real languages handle these in hacky one-off ways

(Ans: in C, the second)

56

We can turn a derivation into a parse tree

57

Expr
-> Expr + Expr
-> number + Expr
-> number + number
-> 1 + number
-> 1 + 2

Expr

+Expr Expr

Number Number

1 2

58

This parse tree is a hierarchical representation of the data

A parser is a program that automatically generates a parse tree

A parser will generate an abstract syntax tree for the language

59

Expr
-> Expr + Expr
-> Expr + Expr * Expr
-> number + Expr * Expr
-> number + number * Expr
-> number + number * number

Expr
-> Expr * Expr
-> Expr + Expr * Expr
-> number + Expr * Expr
-> number + number * Expr
-> number + number * number

Exercise: draw the parse trees for the following derivations

60

Question: Why are parse trees useful?

Answer: We can use them to define the meaning of programs

61

Parsing Algorithms

• Although we can write down a grammar, and I can define to you what a derivation
is, this doesn’t immediately yield a parsing algorithm
• “Here’s a grammar, now go find a derivation”

• The goal of a parsing algorithm is to take your grammar and realize it as a program
that says either:
• (a) YES, the string matches, and here’s a parse tree
• (b) NO, the string doesn’t match, (maybe) and here’s where I got stuck

• Some grammars are easy to parse, some will be harder

General idea: why not try everything possible!?

• In a certain way, parsing is not too bad:
• “Just simulate all possible derivations in parallel”

• The famous Early parsing algorithm does this—it is very general
• But what is the downside? Answer: very high computational complexity!

• Other variants:
• CYK, GLR parsing, LL(*) with infinite backtracking

• For most grammars, we can exploit some of the structure to do better…

There are a lot of different parsing algorithms, I will focus on the simpler case…
We will learn one fairly useful and easy-to-code one

(Recursive descent parsing, or LL(1) parsing)

64

Here’s an example of a grammar that is not ambiguous

Expr -> MExpr
Expr -> MExpr + MExpr
MExpr -> MExpr * MExpr
MExpr -> number

65

Two kinds of derivations

Leftmost derivation: The leftmost nonterminal is expanded first at each step

Rightmost derivation: The rightmost nonterminal is expanded first at each step

66

G -> GG
G -> a

Draw the leftmost derivation for…
aaa

Draw the rightmost derivation for…
aaa

67

G -> G + G
G -> G / G
G -> number

Draw a leftmost derivation for…

1 / 2 / 3
Now draw another leftmost derivation

68

Draw the parse trees for each derivation

What does each parse tree mean?

69

A grammar is ambiguous if there is a string
with more than one leftmost derivation

(Equiv: has more than one parse tree)

70

Parsing algorithms require that our
grammar be unambiguous

(If not, the parser has to return a set
of derivations)

71

There’s another problem with this grammar (OOO)

G -> G + G
G -> G / G
G -> number

72

We need to tackle ambiguity

73

Idea: introduce extra nonterminals that
force you to get left-associativity

(Also force OOP)

74

Add -> Add + Mul | Mul
Mul -> Mul / Term | Term
Term -> number

Draw the parse tree for 5 / 3 / 1

Write derivation for 5 / 3 / 1

75

Add -> Add + Mul | Mul
Mul -> Mul / Term | Term
Term -> number

This grammar is left recursive

76

Add -> Add + Mul | Mul
Mul -> Mul / Term | Term
Term -> number

A grammar is left-recursive if any nonterminal A has
a production of the form A -> A…

77

Add -> Add + Mul | Mul
Mul -> Mul / Term | Term
Term -> number

This will turn out to be bad for one class of parsing
algorithms

78

Let’s say I want to parse the following grammar

S -> aSa | bb

79

Recursive Descent and LL(k) parsing

• In a recursive descent parser, often called a “predictive parser,” I translate my
grammar into a set of recursive functions which use lookahead to predict which
branch of the derivation needs to be taken.

• Each nonterminal E is translated into a function, parse_E

E -> b | cAc

A -> aAa | d

def parse_E():
 if (next_tok() == “b”):
 consume(“b”)
 return
 elif (next_tok() == “c”):
 consume(“c”)
 parse_A()
 consume(“c”)
 return

def parse_A():
 if (next_tok() == “a”):
 consume(“a”)
 parse_A()
 consume(“a”)
 return
 elif (next_tok == “d”):
 consume(“d”)
 return

First, a few questions

S -> aSa | bb

If I were matching the string bb, what would my derivation look like?

If I were matching the string abba, what would my derivation look like?

Is this grammar ambiguous?

81

First, a few questions

S -> aSa | bb
Key idea: if I look at the next input, at most one of these

productions can “fire”

If I see an a I know that I must use the first production

If I see a b, I know I must be in second production

82

Slight transformation..

S -> A | B
A -> aAa
B -> bb

83

Slight transformation..

S -> A | B
A -> aAa
B -> bb

Now, I write out one function to parse each nonterminal

84

FIRST(A)
FIRST(A) is the set of terminals that could

occur first when I recognize A

Note: ε cannot be a member of FIRST because
it is not a character

85

NULLABLE
Is the set productions which could generate ε

86

FOLLOW(A)
FOLLOW(A) is the set of terminals that
appear immediately to the right of A in

some form

87

What is FIRST for each nonterminal

What is NULLABLE for the grammar

What is FOLLOW for each nonterminal

S -> A | B
A -> aAa
B -> bb

88

E → TE'
E' → +TE'
E' → ε
T → FT'
T' → *FT'
T' → ε
F → (E)
F → id

What is FIRST for each nonterminal

What is NULLABLE for the grammar

What is FOLLOW for each nonterminal

More practice…

89

Let’s say I want to parse S

A -> aAa | B
B -> bb

I look at the next token, and I have two possible choices

If I see an a, I must parse an A
If I see a b, I must parse a B

90

We use the FIRST set to help us
design our recursive-descent parser!

91

Livecoding this parser in class

92

The recursive-descent parsers we will cover are generally
called predictive parsers, because they use lookahead to

predict which production to handle next

93

LL(1)
A grammar is LL(1) if we only have to look at the next

token to decide which production will match!

I.e., if S -> A | B, FIRST(A) ∩ FIRST(B) must be empty

94

L
L

eft to right

eft derivation

1token of lookahead

95

Recursive-descent is called top-down
parsing because you build a parse tree

from the root down to the leaves

96

There are also bottom-up parsers,
which produce the rightmost derivation

Won’t talk about them, in general they’re impossibly-
hard to write / understand, easier to use

97

What about this grammar?

E -> E - T | T
T -> number

98

This grammar is left recursive

E -> E - T | T
T -> number

What happens if we try to write recursive-descent parser?

99

Infinite loop!

100

We can remove left recursion

101

E -> E - T | T
T -> number

E -> T E’
E’ -> - T E’
E’ -> ε

Factor!

102

In general, if we have

A -> Aa | bB

Rewrite to…
A -> bB A’
A’ -> a A’ | ε

Generalizes even further
https://en.wikipedia.org/wiki/LL_parser#Left_Factoring

103

But this still doesn’t give us what we want!!!

E -> T E’
E’ -> - T E’
E’ -> ε

E -> T E’
 -> T - T E’
 -> T - T - T E’
 -> T - T - T

104

So how do we get left associativity?

Answer: Basically, stupid hack in implementation

105

Sub -> num Sub’
Sub’ -> + num Sub’ | epsilon

Sub -> num Sub’ (+ num)*

Is basically…

106

Intuition: treat this as while loop, then when
building parse tree, put in left-associative order

Sub -> num Sub’ (+ num)*

107

Sub -> num Sub’
Sub’ -> + num Sub’ | epsilon

108

LR (shift/reduce) parsing

• We did not talk much about the other large class of parsing algorithms, LR parsers
• LR(k) parsers construct the rightmost derivation, working left-to-right

• Nice advantage—no issue with left recursion in grammars!
• (Handle associativity properly, no factoring/tricks)

• Key idea: maintain a stack of symbols (terminals / nonterminals)
• At every (next) input, you can either shift onto the stack, or reduce the stack by

applying a transformation via two tables:
• Action table: shift, reduce, accept, error
• Goto table: jump post-reduction

• 👍 — works for most languages you’d want to write, fast to implement
• 👎 — requires a parser generator (tables are too tedious to do by hand for any

nontrivial language), shift/reduce, reduce/reduce conflicts are hard to debug!

Parsing: Fin

• My goal was to give you the basics of grammars, along with their key properties
and transformations. Can you define: grammar, LL(k), LR, recursive descent?

• What to know / practice: could you write a simple recursive-descent parser?
• One exam problem (making clear now): given some relatively simple grammar, can

you write a recursive descent parser?
• You can use any language—if you want to use pseudocode, fine, as long as I can

get the idea

