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This week: from raw bytes to an AST
• I find parsing rather boring: just use (read)! 

• But, some important concepts—and also, more time to practice Racket 
• Two important concepts: 

• Tokenization (“lexing”), breaking the input stream (bytes) into logical “tokens” 
• Akin to what you do in LLMs, for example 

• Parsing: fitting that stream of logical tokens to a hierarchical (tree-shaped) grammar

“2 + 3 * 5”

Lexing

Num(2), Plus(), Num(3), Times(), Num(5) Token stream

Parsing

+
2 *
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Abstract syntax tree 
(Related to parse tree)



The foundations of regular expressions

(Don’t need to remember details)

Introduction to grammars

(Important to get concepts)
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Lexical Analysis, Regular Expressions (regex)

Generally, we specify individual tokens via regular expressions 
Regular expressions allow us to write string matchers from several patterns: 

The empty string ε is a regular expression 
Any literal can be matched, for example: “dog” is a regular expression 
If e0 and e1 are regular expressions, so is e0 | e1 (matches either) 
If e0 and e1 are regular expressions, so is e0e1 (concatenation) 
If e is a regular expression, so is e* 

This is the “Kleene star” and matches “0 or more” occurrences of e 
Practical implementations extend regexes to include other patterns 

Also, common implementations fundamentally extend regex power 
E.g., superlinear regular expressions; crashed the internet several times!!
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RE example 1
Which of the following strings is matched by the regex “ab*cd*” 

ac 
abbbccdddd 
abbbacddd 
abcd 
acdddddda 

Which of the following strings is matched by the regex “he(l | ll)(o | p) 
hello 
hll 
help 
hellp 
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How are REs implemented? (Abbreviated version…)

Every RE can be systematically compiled to a nondeterministic finite automaton
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a | bb 

a

b b“Start” 
state

“Accepting” 
state

Every NFA can be further compiled to a DFA, implemented via a lookup table



Finite Automata Example

Write an NFA for the regular expression a(bc)*d
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(define-lex-abbrev WS     (:+ (char-set " \t\r\n")))
(define-lex-abbrev DIGITS (:+ numeric))

(define expr-lexer
  (lexer
    [WS        (expr-lexer input-port)]
    ["+"       'PLUS]
    ["-"       'MINUS]
    ["*"       'TIMES]
    ["("       'LPAREN]
    [")"       'RPAREN]
    ["read"    'READ]
    ["print"   'PRINT]
    [DIGITS    `(INT ,(string->number lexeme))]
    [(eof)     'EOF]))

(define (tokenize-port in-port)
  (let loop ([acc '()])
    (define t (expr-lexer in-port))
    (if (eq? t 'EOF)
        (reverse (cons t acc))
        (loop (cons t acc)))))

;; Tokenize the string, turning it into a list of tokens.
(define (tokenize-string str) (tokenize-port (open-input-string str)))

;; (pretty-print (tokenize-port (open-input-string "3 + 3 * 5")))
;; (pretty-print (tokenize-string "3 + 3 * 5"))



Lexing vs. Parsing
• Lexing is relatively “easy:” 

• Specify tokens via regular expressions, REs readily translate into finite automata 
• Well-established results tell us of the equivalence of NFAs, DFAs, subset construction, etc. 
• In other words, REs are fast (in principle, at least—when avoiding nonlinear features) 

• By contrast, parsing is harder: 
• Can’t specify most language constructs via REs—e.g., balanced parentheses 
• These require context-free grammars (CFGs) which are strictly more powerful than RE 
• Sometimes easy to implement (e.g., LL(k) grammars, predictive parsing), but in general 

may require using a parser generator (e.g., bottom-up parsing) 
• New innovations, even to this day—but only basic knowledge required for day-to-day 

usefulness, I argue 
• Often using some well-known format anyway (JSON, S-expressions, etc.)



Regular expressions have a nice property…

If you give me a regex and a string, I can check if that string 
matches the regex in linear time
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Can I cook up a regular expression that 
will classify any string?

(No…)
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If I could, it would imply I could solve any 
problem in linear time!
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So what’s an example of a regular 
expression I couldn’t write?

“The set of strings P such that P…?”

14



So what’s an example of a regular 
expression I couldn’t write?

“The set of strings P such that P…?”

(Answer: is a program that halts)
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Regular expressions can be implemented 
using finite state machines
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We won’t talk too much about FSMs in this class

All regexes can “compile” (turn to, in systematic way) FSM
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Starting state
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Transition on input
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Accepting state 
(two circles)
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011 S1
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011 S2
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011 S2 Stay!
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011 S2
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011 S2

Reject!
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0110 S1
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0110 S1

Accept!

28



“Any number of 1s, followed by an even 
number of 0s, followed by a single 1”
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1*0(01*0)*1
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Idea: FSMs remember only “one state” 
of memory

It’s kind of like programming with only one 
register (of unbounded width)

31



Theorem: for every regex, a corresponding FSM 
exists, and vice versa
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Q: Why is this useful?

Theoretical A: Bedrock automata theory, 
useful in proving computational bounds

Practical A: Efficient regex implementation 
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Beyond lexing: parsing
• Can we use regular expressions to match a whole language..?  
• No! Interesting languages can not be written as any regex  
• Examples include: balancing parentheses, if/then/else 

• Anything where the program would need to “count” (to an arbitrary  degree) 
• Counting is beyond the power of finite automata—also need a stack 

• Pushdown automata, context-free languages, etc…



{}

{{}}

{{{}}}

{{{{}}}}

Parenthesis are balanced when 
each left matches a right
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Balancing parentheses necessary to check program syntax 
(e.g., for C++)
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{*}* doesn’t work
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Turns out: it is impossible to write a regex to capture this fact

Instead, we will use context-free grammars
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S -> ε
S -> { S }

Here’s a grammar that matches balanced parentheses
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CFG’s are more expressive than regular 
expressions, and commensurately more 

complex to check
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Whereas regular expressions are modeled by finite state machines, CFGs are 
modeled by state machines that also can push / pop a stack
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Context-Free Grammars

• CFGs (context-free grammars) generalize REs 
• Any RE can be written as a CFG 

• Below is an example of a grammar for expressions…

Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr



Formally, a grammar is…
• A set of terminals 

• These are the things you can’t rewrite any further 

• A set of nonterminals 

• These are the things you can rewrite further 

• A set of production rules 

• These are a bunch of rewrite rules 

• A start symbol
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Terminals = {number, +, *}

Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

Nonterminals = {Expr}

Productions = 

Start symbol = Expr
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The “meaning” of a CFG. Definition: derivation

• To determine if a grammar matches an expression, you play a game 
• Start by writing down the start symbol 
• Continue by expanding a nonterminal according to one of the productions 
• This trace (sequence of partial steps) is called a derivation



First, start with a nonterminal and write that on the page

Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

1 + 2
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First, start with a nonterminal and write that on the page

Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

1 + 2

Expr
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First, start with a nonterminal and write that on the page

Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

1 + 2

Expr

To play the game: attempt to apply each production so that you arrive at 
your full expression
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First, start with a nonterminal and write that on the page

Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

1 + 2

Expr -> Expr + Expr
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First, start with a nonterminal and write that on the page

Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

1 + 2

Expr 
-> Expr + Expr 
-> number + Expr 
-> number + number 
-> 1 + number 
-> 1 + 2
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This is a “complete” derivation 
because it ends in a terminal 
string (only terminals left)



First, start with a nonterminal and write that on the page

Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

1 + 2

Some moves don’t lead you to winning the game.
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First, start with a nonterminal and write that on the page

Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

1 + 2

Some moves don’t lead you to winning the game.

Expr 
-> Expr * Expr 
???
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This is an “incomplete” 
derivation because it gets 
stuck—but each step follows 
the rules



Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

1 + 2 * 3
Expr 
-> Expr + Expr

Expr 
-> Expr * Expr

This grammar is ambiguous 

Exercise: complete the derivations from here
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Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

1 + 2 * 3

Expr 
-> Expr + Expr
-> Expr + Expr * Expr
-> number + Expr * Expr
-> number + number * Expr
-> number + number * number

Expr 
-> Expr * Expr
-> Expr + Expr * Expr
-> number + Expr * Expr
-> number + number * Expr
-> number + number * number
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if …
  if …
  else …

Famous example from C, the “dangling else”

Does the else belong to the first if? Or the second?

Most real languages handle these in hacky one-off ways

(Ans: in C, the second)
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We can turn a derivation into a parse tree
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Expr 
-> Expr + Expr 
-> number + Expr 
-> number + number 
-> 1 + number 
-> 1 + 2

Expr

+Expr Expr

Number Number

1 2
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This parse tree is a hierarchical representation of  the data

A parser is a program that automatically generates a parse tree

A parser will generate an abstract syntax tree for the language
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Expr 
-> Expr + Expr
-> Expr + Expr * Expr
-> number + Expr * Expr
-> number + number * Expr
-> number + number * number

Expr 
-> Expr * Expr
-> Expr + Expr * Expr
-> number + Expr * Expr
-> number + number * Expr
-> number + number * number

Exercise: draw the parse trees for the following derivations
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Question: Why are parse trees useful?

Answer: We can use them to define the meaning of programs
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Parsing Algorithms

• Although we can write down a grammar, and I can define to you what a derivation 
is, this doesn’t immediately yield a parsing algorithm 
• “Here’s a grammar, now go find a derivation” 

• The goal of a parsing algorithm is to take your grammar and realize it as a program 
that says either: 
• (a) YES, the string matches, and here’s a parse tree 
• (b) NO, the string doesn’t match, (maybe) and here’s where I got stuck 

• Some grammars are easy to parse, some will be harder



General idea: why not try everything possible!?

• In a certain way, parsing is not too bad: 
• “Just simulate all possible derivations in parallel” 

• The famous Early parsing algorithm does this—it is very general 
• But what is the downside? Answer: very high computational complexity! 

• Other variants: 
• CYK, GLR parsing, LL(*) with infinite backtracking 

• For most grammars, we can exploit some of the structure to do better…



There are a lot of different parsing algorithms, I will focus on the simpler case…
We will learn one fairly useful and easy-to-code one

(Recursive descent parsing, or LL(1) parsing)
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Here’s an example of a grammar that is not ambiguous

Expr -> MExpr
Expr -> MExpr + MExpr
MExpr -> MExpr * MExpr
MExpr -> number
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Two kinds of derivations

Leftmost derivation: The leftmost nonterminal is expanded first at each step

Rightmost derivation: The rightmost nonterminal is expanded first at each step
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G -> GG
G -> a

Draw the leftmost derivation for…
aaa

Draw the rightmost derivation for…
aaa
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G -> G + G
G -> G / G
G -> number

Draw a leftmost derivation for…

1 / 2 / 3
Now draw another leftmost derivation
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Draw the parse trees for each derivation

What does each parse tree mean?
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A grammar is ambiguous if there is a string 
with more than one leftmost derivation

(Equiv: has more than one parse tree)
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Parsing algorithms require that our 
grammar be unambiguous 


(If not, the parser has to return a set 
of derivations)
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There’s another problem with this grammar (OOO)

G -> G + G
G -> G / G
G -> number
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We need to tackle ambiguity
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Idea: introduce extra nonterminals that 
force you to get left-associativity

(Also force OOP)
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Add -> Add + Mul | Mul
Mul -> Mul / Term | Term
Term -> number

Draw the parse tree for 5 / 3 / 1

Write derivation for 5 / 3 / 1
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Add -> Add + Mul | Mul
Mul -> Mul / Term | Term
Term -> number

This grammar is left recursive
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Add -> Add + Mul | Mul
Mul -> Mul / Term | Term
Term -> number

A grammar is left-recursive if any nonterminal A has 
a production of the form A -> A…
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Add -> Add + Mul | Mul
Mul -> Mul / Term | Term
Term -> number

This will turn out to be bad for one class of parsing 
algorithms
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Let’s say I want to parse the following grammar

S -> aSa | bb
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Recursive Descent and LL(k) parsing

• In a recursive descent parser, often called a “predictive parser,” I translate my 
grammar into a set of recursive functions which use lookahead to predict which 
branch of the derivation needs to be taken. 

• Each nonterminal E is translated into a function, parse_E

E -> b | cAc

A -> aAa | d

def parse_E():
  if (next_tok() == “b”):
    consume(“b”)
    return
  elif (next_tok() == “c”):
    consume(“c”)
    parse_A()
    consume(“c”)
    return

def parse_A():
  if (next_tok() == “a”):
    consume(“a”)
    parse_A()
    consume(“a”)
    return
  elif (next_tok == “d”):
    consume(“d”)
    return 



First, a few questions

S -> aSa | bb

If I were matching the string bb, what would my derivation look like?

If I were matching the string abba, what would my derivation look like?

Is this grammar ambiguous?
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First, a few questions

S -> aSa | bb
Key idea: if I look at the next input, at most one of these 

productions can “fire”

If I see an a I know that I must use the first production

If I see a b, I know I must be in second production
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Slight transformation..

S -> A | B
A -> aAa
B -> bb
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Slight transformation..

S -> A | B
A -> aAa
B -> bb

Now, I write out one function to parse each nonterminal
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FIRST(A)
FIRST(A) is the set of terminals that could 

occur first when I recognize A

Note: ε cannot be a member of FIRST because 
it is not a character
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NULLABLE
Is the set productions which could generate ε
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FOLLOW(A)
FOLLOW(A) is the set of terminals that 
appear immediately to the right of A in 

some form
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What is FIRST for each nonterminal

What is NULLABLE for the grammar

What is FOLLOW for each nonterminal

S -> A | B
A -> aAa
B -> bb
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E → TE'
E' → +TE'
E' → ε
T → FT'
T' → *FT'
T' → ε
F → (E)
F → id

What is FIRST for each nonterminal

What is NULLABLE for the grammar

What is FOLLOW for each nonterminal

More practice…
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Let’s say I want to parse S

A -> aAa | B
B -> bb

I look at the next token, and I have two possible choices

If I see an a, I must parse an A
If I see a b, I must parse a B
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We use the FIRST set to help us 
design our recursive-descent parser!
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Livecoding this parser in class
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The recursive-descent parsers we will cover are generally 
called predictive parsers, because they use lookahead to 

predict which production to handle next
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LL(1)
A grammar is LL(1) if we only have to look at the next 

token to decide which production will match!

I.e., if S -> A | B, FIRST(A) ∩ FIRST(B) must be empty
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L
L

eft to right

eft derivation

1token of lookahead
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Recursive-descent is called top-down 
parsing because you build a parse tree 

from the root down to the leaves
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There are also bottom-up parsers, 
which produce the rightmost derivation

Won’t talk about them, in general they’re impossibly-
hard to write / understand, easier to use
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What about this grammar?

E -> E - T | T
T -> number
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This grammar is left recursive

E -> E - T | T
T -> number

What happens if we try to write recursive-descent parser?
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Infinite loop!
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We can remove left recursion
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E -> E - T | T
T -> number

E  -> T E’
E’ -> - T E’
E’ -> ε

Factor!

102



In general, if we have

A -> Aa | bB

Rewrite to…
A -> bB A’
A’ -> a A’ | ε

Generalizes even further
https://en.wikipedia.org/wiki/LL_parser#Left_Factoring
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But this still doesn’t give us what we want!!!

E  -> T E’
E’ -> - T E’
E’ -> ε

E -> T E’
  -> T - T E’
  -> T - T - T E’
  -> T - T - T 
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So how do we get left associativity?

Answer: Basically, stupid hack in implementation
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Sub -> num Sub’
Sub’ -> + num Sub’ | epsilon

Sub -> num Sub’ (+ num)*

Is basically…
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Intuition: treat this as while loop, then when 
building parse tree, put in left-associative order

Sub -> num Sub’ (+ num)*

107



Sub -> num Sub’
Sub’ -> + num Sub’ | epsilon
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LR (shift/reduce) parsing

• We did not talk much about the other large class of parsing algorithms, LR parsers 
• LR(k) parsers construct the rightmost derivation, working left-to-right 

• Nice advantage—no issue with left recursion in grammars! 
• (Handle associativity properly, no factoring/tricks) 

• Key idea: maintain a stack of symbols (terminals / nonterminals)  
• At every (next) input, you can either shift onto the stack, or reduce the stack by 

applying a transformation via two tables: 
• Action table: shift, reduce, accept, error 
• Goto table: jump post-reduction 

• 👍 — works for most languages you’d want to write, fast to implement 
• 👎 — requires a parser generator (tables are too tedious to do by hand for any 

nontrivial language), shift/reduce, reduce/reduce conflicts are hard to debug!



Parsing: Fin

• My goal was to give you the basics of grammars, along with their key properties 
and transformations. Can you define: grammar, LL(k), LR, recursive descent? 

• What to know / practice: could you write a simple recursive-descent parser? 
• One exam problem (making clear now): given some relatively simple grammar, can 

you write a recursive descent parser? 
• You can use any language—if you want to use pseudocode, fine, as long as I can 

get the idea


