
1

Object-Oriented
Programming
Kristopher Micinski

Syracuse University
CIS531, Fall 2025

2

Object-Oriented Programming (OOP) is an extremely popular software
development methodology

Center design around objects which exchange messages
Original ideas date back to CLU (Liskov), Smalltalk, etc.

Became very widely popular with C++
“C with classes” extension to C, by Stroustrup, Java, etc.

Also, prototype-based polymorphism from JavaScript, etc.
Also involves objects, but implementation quite different than C++, Java, etc.

3

int add1(int x) { return x+1; }

In stored-program machines, all code sits somewhere in memory. 

 
In C/C++, you can obtain pointers to functions at run-time,

and invoke them! The pointer for add1 can be obtained with:

&add1

4

int sort(int* x, int len, bool (*cmp)(int,int))
{
 // …

 // …
 if ((*cmp)(*x,*y))
 {
 swap(*x,*y);

 // …
 }

 // …
}

A function pointer, cmp,
passed to sort as an argument.

The function pointer, cmp,
dereferenced and invoked.

5

{
 // …

 sort(buff, length, &lessthan);

 // …
}

A pointer to function lessthan
is passed into sort.

6

int add1(int x) { return x+1; }

int main()
{
 int (*f)(int) = &add1;

 // …

 int four = (*f)(3);
}

7

In OOP, everything is an object
Even primitive types—but in practice, we might want to work with an unboxed
type; we can see this as kind of an optimization.

Objects have methods which respond to messages
The object is created via a constructor which initializes private fields

Information hiding: can’t see fields directly, only via methods
Enforced via static type system which checks correctness of field usage

Objects

8

In C++ (and other class-based OO langs), an object is built from a class
At runtime, each object is an instance of some class
A class is a blueprint for an object, and can either be abstract or concrete
A class definition specifies both (a) fields, and (b) methods

Fields are data elements, which will be held by each object
Methods are functions which may reference fields

All of the fields are in scope within every method
A class also specifies a constructor which is called when object is created

C++ Classes

class Point {
private:
 int x, y; // private fields
public:
 Point(int a, int b) : x(a), y(b) {} // Constructor, initializes x/y
 void print() { cout << "(" << x << ", " << y << ")\n"; }
};

9

In OOP, we have inheritance, which means that we can define subclasses,
which extend the definition of parent classes to add more features / complexity
An abstract class is a class which has some undefined methods

You cannot instantiate an abstract class, only a concrete class
But you can always treat a concrete class as more abstract

I can always soundly treat a Square as Shape, but not vice-versa…
Can omit a method and—if defined in superclass—it will get used automatically

Inheritance

class Shape {
 virtual uint area() = 0;
}

class Square : Shape {
private:
 uint length;
public:
 Square(uint l) { length = l; }
 virtual uint area() { return length*length; }
}

class Rectangle : Shape {
private:
 uint length, width;
public:
 Rectangle(uint l, uint w) { length=l; width=w; }
 virtual uint area() { return length*width; }
}

10

Directly addresses the question of subtyping, by defining semantic subtyping
If S ⊑ T, i.e., if S is a subtype of T, then every possible property that holds of T
also has to hold of S
I.e., for all properties ϕ, S ⊑ T ⇒ ∀x:T. ϕ(x) → ∀y:S. ϕ(y)

This says that I can always soundly upcast
I.e., if I have an S, I can always treat it as a T

If I have a Square, I can always treat it as a shape
Can’t safely downcast, in general (must check dynamic type!)

From a superficial level, this means that all subclasses respond
to the same messages (implement same methods)
But it also guides how I write my code

Need to be careful to respect LSP!

Liskov Substitution Principle

11

Roughly, polymorphism is the idea that I can write one block of code that will
handle multiple different shapes of data

“Polymorphism” is an extremely overloaded term in programming languages!
In the OO context, we can use virtual methods to enable overloading

Superclasses / abstract classes specify interfaces, and these define the high-
level communication / behavioral patterns that your app speaks

Then, specific implementations of those classes implement the logic
Encourages code reuse, program against the interface:

E.g., LinkedList vs. ArrayList vs. …: tune data structures to workload
Ideal for very “wide” (and “deep”) hierarchies of relationships

Enterprise software: the original slop

Polymorphism in OOP

12

class B
{
 virtual int f() { return 1; }
};
class A : public B
{
 virtual int f() { return 2; }
};

B* a = new A(); // Get a pointer to an A obj
std::cout << a->f() << std::endl;

// Which value is printed out? ANSWER: 2

13

class Cmp
{
 virtual bool cmp(int x, int y) = 0;
};
class LessThan : public Cmp
{
 virtual bool cmp(int x, int y)
 { return x < y; }
};
class GreaterThan : public Cmp
{
 virtual bool cmp(int x, int y)
 { return x > y; }
};

C++ dynamic dispatch: class polymorphism

14

int sort(int* x, int len, const Cmp& cmp)
{
 // …
 if (cmp.cmp(*x,*y))
 {
 swap(*x,*y);
 // …

int main()
{
 // …
 LessThan lessthan;
 sort(buff, length, lessthan);

An instance of type Cmp, cmp, has overloaded method cmp.

Pass in object lessthan
by reference to polymorphic

type Cmp supporting the
Cmp::cmp(int, int) member.

15

class Animal
{
 virtual const char* name() = 0;
 virtual int weight() const = 0;
 virtual void eat(Animal* prey)
 {
 if (this->weight()
 < 2 * prey->weight())
 return;
 delete prey;
 std::cout << prey->name()
 << “ was eaten!\n”;
 }
};

16

class Mouse : public Animal
{
 int grams;

 Mouse(int grams)
 : grams(grams) {}

 virtual const char* name()
 {
 return “Mouse”;
 }

 virtual int weight() const
 {
 return this->grams;
 }
};

17

class Cat : public Animal
{
 Cat() {}

 virtual const char* name()
 {
 return “Cat”;
 }

 virtual int weight() const
 {
 return 4260;
 }
};

18

class Giraffe : public Animal
{
 virtual const char* name()
 {
 return “Giraffe”;
 }
 virtual int weight() const
 {
 return 1570000;
 }
 virtual void eat(Animal* prey)
 {
 std::cout << this->name()
 << “ wont eat that.\n”;
 }
};

Now, the question becomes…
“How do we actually lay out these classes /

objects in memory?”

19

20

In general, object consists of methods and fields
Subclasses might add methods / fields, but can never subtract them (LSP)

How to lay out object?
Class statically enumerates the fields, also methods, use virtual method table
Then, store fields

Class-based languages use virtual method tables:
Each class has vtable, which maps method names to function pointers
Each object has a pointer to the vtable

What are the trade-offs here? Consider: cache, object space, etc.

Object Layout…

21

0xfefd0042

5

vmthd 0

vmthd 1

0

0xd0eff108

Object with virtual methods

A table of virtual methods
with a function pointer for each

vptr

data
members

vmthd 2

Virtual Method Tables

22

// vtable struct for Animal subclasses
struct AnimalVTable
{
 const char* (*name)(void*);
 int (*weight)(const void*);
 void (*eat)(void*,void*);

 AnimalVTable(const char* (*name)(void*),
 int (*weight)(const void*),
 void (*eat)(void*,void*))
 : name(name), weight(weight), eat(eat)
 {}
};

// Allocate a vtable for each concrete Animal
AnimalVTable mouse_vtable(&nameMouse,
 &weightMouse,
 &eatAnimal);

23

// Class Mouse compiled to a struct
struct Mouse
{
 AnimalVTable* vptr;
 int grams;
};

// An allocator/constructor for Mouse
Mouse* newMouse(int grams)
{
 Mouse* m = (Mouse*)malloc(sizeof(Mouse));
 m->vptr = &mouse_vtable;
 m->grams = grams;
 return m;
}

24

// A name method for Mouse instances
const char* nameMouse(void* _ths)
{
 return “Mouse”;
}

// A weight method for Mouse instances
int weightMouse(const void* _ths)
{
 const Mouse* ths = (const Mouse*)_ths;
 return ths->grams;
}

25

// Looks up the vtable for an object
VTable* vtable(void* obj)
{
 return (VTable*)((void**) obj)[0];
}

{
 // To call a member function f:
 // e.g., obj->f(arg0, arg1, …);

 vtable(obj)->f(obj, arg0, arg1, …);
}

26

// Looks up the vtable for an Animal object
AnimalVTable* vtable(void* obj)
{
 return (AnimalVTable*)((void**) obj)[0];
}

// A default eat method for Animals
void eatAnimal(void* ths, void* prey)
{
 if (vtable(ths)->weight(ths)
 < 2 * vtable(prey)->weight(prey))
 return;
 delete prey; // vtable(prey)->~Animal…
 std::cout << vtable(prey)->name(prey)
 << “ was eaten!\n”;
}

Try an example:
How do you define the constructor

for Giraffe?

27

28

// Class Giraffe compiled to a struct
struct Giraffe
{
 AnimalVTable* vptr;
 // No data members
};

AnimalVTable giraffe_vtable(&nameGiraffe,
 &weightGiraffe,
 &eatGiraffe);

// An allocator/constructor for Giraffe
Giraffe* newGiraffe()
{
 Giraffe* g = new Giraffe();
 g->vptr = giraffe_vtable;
 return g;
}

29

const char* nameGiraffe(void* _ths)
{
 return “Giraffe”;
}

int weightGiraffe(const void* _ths)
{
 return 1570000;
}

void eatGiraffe(void* _ths)
{
 Giraffe* ths = (Giraffe*)_ths;
 std::cout << vtable(ths)->name(ths)
 << “ wont eat that.\n”;
}

30

IMO, OOP is oppositional to pure FP
FP is pure matching+recursion+algebraic data (lists)
In OOP, need to use something like visitor pattern
Scatters handling of AST cases across lots of different
methods, separates implementations…
More complex AST processing means that there is
hidden state / order dependence when writing visitor /
processing passes…

For small things, algebraic data + pattern matching is a
clear, obvious win to me (Kris) personally

For big APIs, with a huge number of cases, a giant
pattern match would become unwieldy…
(Each visitor is complex, lots of code, vs. Racket)
In these cases, visitors clearly win!
LLVM / etc: lots of visitors

Algebraic Data + Pattern Matching + Recursion
(i.e., FP) vs. OOP

interface Expr { <R> R accept(ExprVisitor<R> v); }

interface ExprVisitor<R> {
 R visitNum(Num n);
 R visitVar(Var v);
 R visitAdd(Add a);
 R visitMul(Mul m);
}

final class Num implements Expr {
 final int value;
 Num(int value) { this.value = value; }
 public <R> R accept(ExprVisitor<R> v) { return v.visitNum(this); }
}

final class Var implements Expr {
 final String name;
 Var(String name) { this.name = name; }
 public <R> R accept(ExprVisitor<R> v) { return v.visitVar(this); }
}

final class Add implements Expr {
 final Expr left, right;
 Add(Expr left, Expr right) { this.left = left; this.right = right; }
 public <R> R accept(ExprVisitor<R> v) { return v.visitAdd(this); }
}

final class Mul implements Expr {
 final Expr left, right;
 Mul(Expr left, Expr right) { this.left = left; this.right = right; }
 public <R> R accept(ExprVisitor<R> v) { return v.visitMul(this); }
}

final class Eval implements ExprVisitor<Integer> {
 private final Map<String,Integer> env;
 Eval(Map<String,Integer> env) { this.env = env; }
 public Integer visitNum(Num n) { return n.value; }
 public Integer visitVar(Var v) { return env.getOrDefault(v.name, 0); }
 public Integer visitAdd(Add a) { return a.left.accept(this) + a.right.accept(this); }
 public Integer visitMul(Mul m) { return a(m.left) * a(m.right); }
 private int a(Expr e){ return e.accept(this); }
}

final class Print implements ExprVisitor<String> {
 public String visitNum(Num n) { return Integer.toString(n.value); }
 public String visitVar(Var v) { return v.name; }
 public String visitAdd(Add a) { return "(" + a.left.accept(this) + " + " + a.right.accept(this) + ")"; }
 public String visitMul(Mul m) { return "(" + m.left.accept(this) + " * " + m.right.accept(this) + ")"; }
}

31

