Loops and Data-Flow Analysis Introduction

CIS531 — Fall 2025, Syracuse

Kristopher Micinski



1

Loops: iterated control flow

- Loops come in many forms: while, do/while, for, etc.
 - Can all be written in terms of one another...
- All loops generally share common aspects:
 - Header—evaluates the guard, yields true/false
 - Body—if the header is true, body executes
 - Conclusion—after the loop is done, jump to the loop's conclusion

```
// C's "for" loop
for (i = 0; i<n; i++) {
    ...
}

// for each in sequence...
for i : sequence {
    ...
}</pre>
```

Loops are the cornerstone of imperative programming

- Many common imperative algorithms use loops in some form
- Equivalent in expressive power to general recursion (>> than structural recursion)
 - Quicksort is not structurally recursive
 - (When translated to use recursion vs. loops)
- Loops can be very fast: branch prediction, etc.

```
// Insertion sort
i = 0
while (i < n):
    m = i
    for j = i+1 ... n-1:
        if a[j] < a[m]: m = j
    tmp = a[i]
    a[i] = a[m]
    a[m] = tmp
    i++</pre>
```

Racket's loops...

```
(for ([i (list 1 2 3)])
(println i))
```

"Named let" loop—can also think of as a small tail-recursive helper function

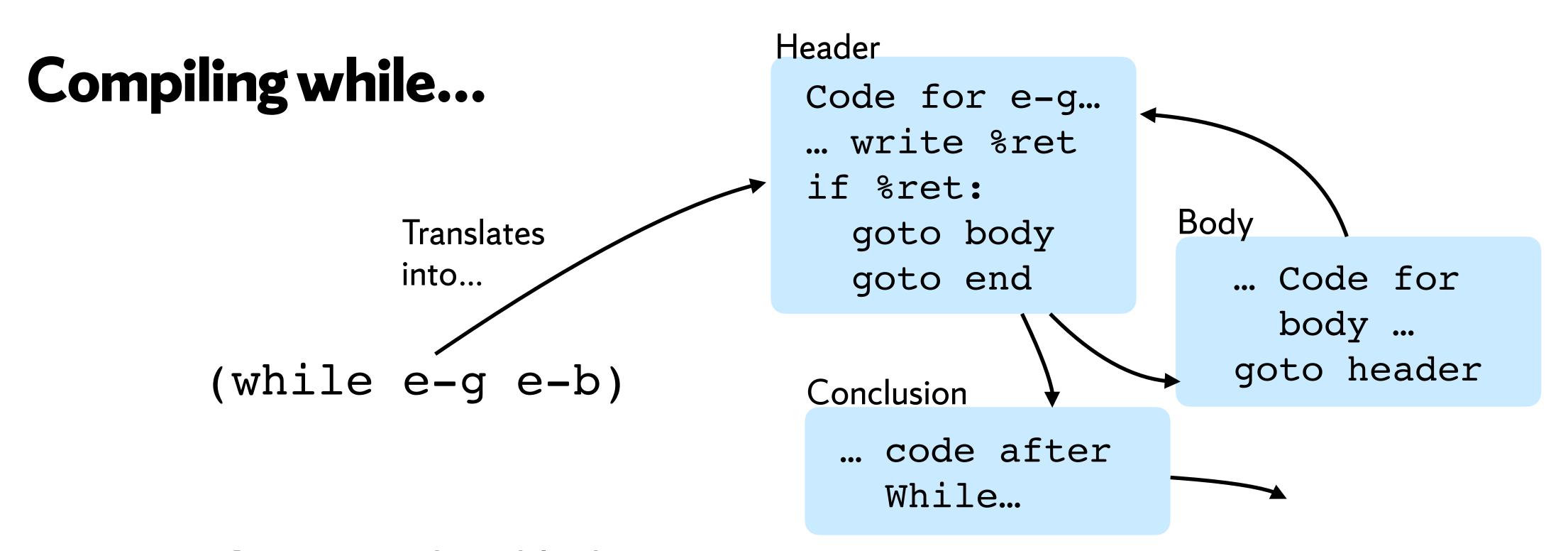
(Tail-recursive functions have the same stack behavior as loops!)

```
Racket's for loop, iterate over lists...
```

for/fold is very powerful and cool but I often forget it...

(while e-g e-b)

- Mostly won't cover Racket's loops; loops not a FP feature
- Instead, we will implement a traditional while loop construct
 - (while e-guard e-body)
- While the guard evaluates to true, then execute the body
- After the loop returns, the guard is definitely false
- Can compile every other form of "C-style" loop into while + goto
- We stick with while because it feels like the most canonical



Basic idea, create three blocks:

- The header, which (a) tests the guard, (b) if true goto body, (c) else goto conclusion
- The body, which (a) executes the guard and then jumps back to the header
- The conclusion (a jump target of the header) continues execution
 - If nothing follows while, evaluate to (void)
 - Otherwise, (while ...) occurs as (let ([_ (while ...)]) e-b), jump to e-b

- Not hard to implement this as an extension of our compiler...
- Need to be able to "catch" the value of the returned value
 - Previously (R2/Lif) all branches simply end in (return ...)
 - Now, we need to be able to take hold of the value generated by the compilation of the guard, and then use that to emit code that branches to the body/conclusion
 - This will require us to extend the explicate-control pass
- Otherwise, we simply add extra forms to support while
 - ANF conversion, etc. generally work out similarly
 - After explicate control, we're in a "blocks" IR full of basic blocks w/ goto
 - Thus, supporting while requires ~no change to the backend

Loops give us Turing-equivalent computation!

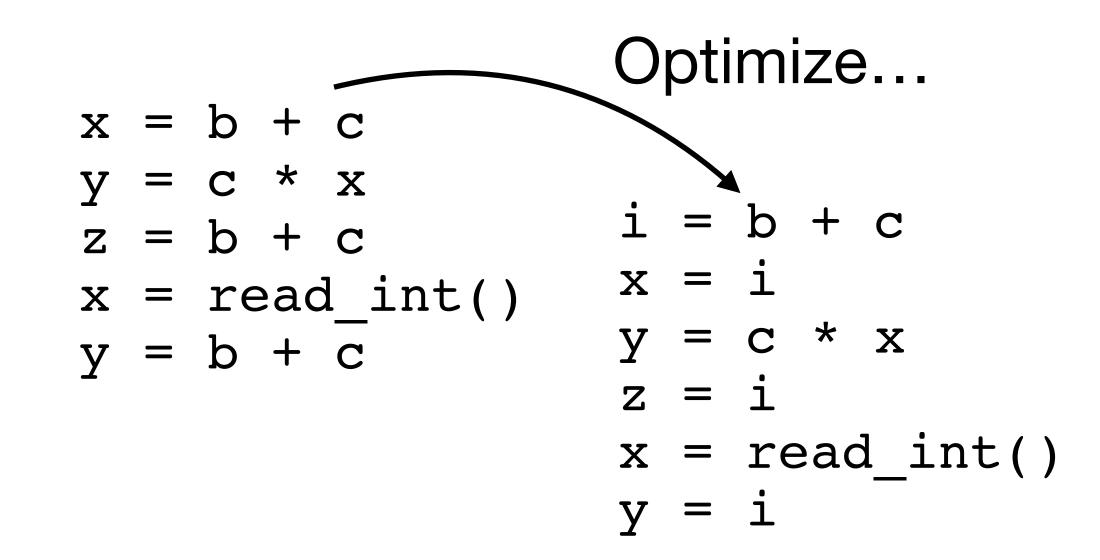
- After understanding Llf/R2, loops are a simple extension
- Mean However, loops unlock significantly more expressive power
 - Our language went from being: "boolean formulas over domains of size n" to being "truly Turing-equivalent computation, capable of expressing any computable function"
- This is a significant accomplishment
 - Mowever, we will need to discuss functions and closures (/ objects) to arrive at a "fully-featured" language—that will be our topic for next week

Static Analysis

- Now that we have loops, we're at the last basic building block that we need to start discussing static analysis
 - Static analysis is the computation of finite approximations of a program's behavior based on looking at (and computing over) its code, without running it
- Why is it bad to run the program?
 - Can't run the program in general—state-space explosion!
 - Fuzzing is great at exploring, but generally doesn't go "deep" into programs
- Thus, static analysis is a requirement if you want to make sound judgments!
 - Necessary for compiler optimizations—absolutely cannot break the program!

Available Expressions Analysis

- Dataflow analysis: a specific kind of static analysis which approximates how data flows through the program.
- Consider this example on the right...
 - The b+c does not need recomputation
 - b/c don't change!
 - Could lift
 - * a+1 needs recomputation
 - a got set to 0!



Available expressions analysis calculates:

What expressions have stayed the same since they were last computed

- (Definition) Analysis Result for AE: an analysis result for available expressions, associates with each program statement, stmt, two sets:
 - In(stmt)—dataflow facts coming into stmt and Out(stmt), going out of stmt
- Definitions (let/assignment/...) generate (GEN) newly-available expressions
- Mean However, they also KILL expressions mentioning the variable
 - (Example): If x is changed, then 2 + y*x is no longer available
- The GEN/KILL sets are associated with each statement
- Sequences of statements work as expected; but the joins are interesting!

```
1: t1 = b + c // GEN {b+c}
2: t2 = a + 1 // GEN {a+1}
header:
3: if (n <= 0) goto end
body:
4: s = b + c // GEN {b+c}
5: t3 = a + 1 // GEN {a+1}
6: a = 0 // KILL exprs mentioning a (kills {a+1})
7: n = n - 1 // KILL exprs mentioning n
8: goto header
end:
9: u = b + c</pre>
```

Definition: Join Pont (where multiple paths join together)

For this exercise, the interesting part is the **join** point (header), where two paths come together

```
1: t1 = b + c // GEN {b+c}

2: t2 = a + 1 // GEN {a+1}

header: // from line 2 {b+c, a+1}, from 8, {b+c}

3: if (n <= 0) goto end

body:

4: s = b + c // GEN {b+c}

5: t3 = a + 1 // GEN {a+1}

6: a = 0 // KILL exprs mentioning a (kills {a+1})

7: n = n - 1 // KILL exprs mentioning n

8: goto header

end:

9: u = b + c
```

The question is: what happens at the join point?

- Coming into header from line 2, the available expressions are {b+c,a+1}
- But coming into header from body, the available expressions are {b+c}
- a+1 is killed by line 5, n-1 (line 7) doesn't get included because n killed by assignment
- Since we know we could have come from either line 2 or line 8: handle the possibility either branch taken!
- In this case, that means combining available expressions using ∩
 - Expression is only available if it is available along **both** branches!

```
1: t1 = b + c // GEN {b+c}
2: t2 = a + 1 // GEN {a+1}
header:
3: if (n <= 0) goto end
body:
4: s = b + c // GEN {b+c}
5: t3 = a + 1 // GEN {a+1}
6: a = 0 // KILL exprs mentioning a (kills {a+1})
7: n = n - 1 // KILL exprs mentioning n
8: goto header
end:
9: u = b + c
```

The analysis result (for this specific example...)

```
1: t1 = b + c // \{b+c\}
2: t2 = a + 1 // \{b+c,a+1\}
// {b+c}
header:
3: if (n \le 0) goto end
// {b+c}
body:
4: s = b + c // \{b+c\}
5: t3 = a + 1 // \{b+c,a+1\}
6: a = 0 // {b+c}
7: n = n - 1 // \{b+c\} - no change to n
8: goto header // {b+c}
end:
// {b+c}
9: u = b + c
```

Traditional, Bit-Vector Dataflow Analysis

Available expressions is an instance of a very common class of dataflow analysis problems:

- Analysis results are "sets of facts" (where facts say specific, concrete things)
 - Set of "all possible facts" must be finite
- Each statement yields a GEN and KILL set
- Paths are combined using either ∪ or ∩
 - $^{\prime\prime\prime}$ AE is \cap , we all these "must" analyses, because the property must hold along all paths to hold along the join of multiple paths
- Can implement these analyses efficiently using bit vectors

Data-flow Equations for Available Expressions

- Given GEN/KILL for each statement, along with the control-flow graph (tells us join points, etc.), we can write out a set of flow analysis equations
- We will call In(S) the set of analysis facts that hold on the entry to the statement S, and Out(S) the set of analysis facts holding after S
- For available expressions...
 - $^{\prime\prime\prime}$ GEN(x = e) = {e} (if no occurrences of x), KILL(x = e) = { e' | e' contains x }
 - In(S) = $\bigcap_{S' \in \text{incoming}(S)} \text{Out}(S)$
 - \bigcirc Out(S) = GEN(S) \cup (In(S) KILL(S))

Example: Computing Available Expressions

Step 1: Initialize all analysis results to {}

Step 2: Run the flow equations forward

Notice that we discover "more" information: some of the analysis result sets get bigger (more results)

This is a key principle: we're always ascending a lattice, monotonically—result sets never shrink

So we eventually stop: we can't keep going up forever (bounded set of analysis facts), and we're always either (a) learning more or (b) no changes, thus **done**

```
// {}
1: a = x + y
// {x+y}
2: b = x + y
// {x+y}
3: x = 0
// {}
4: c = x + y
   \{x+y\}
5: print(b)
```

Step 3: The last step discovered some things in the Out sets, which allow us to propagate some information

Specifically: we need to consider newly-added items and how / if they should be in the out set of each statement...

```
// {}
1: a = x + y
// {x+y}
2: b = x + y
// \{x+y\}
3: x = 0
// {}
4: c = x + y
// {x+y}
5: print(b)
// {<u>x+y</u>}
```

Here I have simplified things: in general, Out is not simply equal to the previous statement's In—but in straight-line code, it is...

```
// {}
1: a = x + y
// {x+y}
2: b = x + y
// {x+y}
3: x = 0
4: c = x + y
// {x+y}
5: print(b)
// {<u>x+y</u>}
```

```
// AE: {}
1: a = x + y
                   // GEN {x+y}, KILL {exprs with a}
                      // IN: {}
                      // OUT: \{x+y\}
2: b = a + 1
                     // GEN {a+1}, KILL {exprs with b}
                      // IN: \{x+y\}
                      // OUT: \{x+y, a+1\}
3: while (b < 10) {
                     // IN: {x+y, a+1} <- Merge from 2/6
                      // OUT: {x+y, a+1}
    4: c = x + y // GEN \{x+y\}, KILL \{exprs with c\}
                      // IN: {x+y, a+1}
                      // OUT: \{x+y, a+1\}
                      // GEN {b+2}, KILL {exprs with a}
    5: a = b + 2
                      // IN: {x+y, a+1}
                      // OUT: \{x+y, b+2\}
    6: b = a + 1
                     // GEN {a+1}, KILL {exprs with b}
                      // IN: {x+y, b+2}
                      // OUT: \{x+y, a+1\} <- back to header
8: print(b)
                      // IN: {x+y, a+1}
```

```
// AE: {}
1: p = u * v
                       // GEN {u*v}, KILL {exprs with p}
                       // OUT: {u*v}
                       // GEN {p-v}, KILL {exprs with q}
2: q = p - v
                       // IN: \{u*v\}
                       // OUT: {u*v, p-v}
3: if (flag) {
                       // IN: {u*v, p-v}
                       // OUT: \{u*v, p-v\}
4:
                       // GEN {u+1}, KILL {exprs with u}
       u = u + 1
                       // IN: {u*v, p-v}
                       // OUT: \{p-v, u+1\}
   } else {
6:
                      // GEN {v+0}, KILL {exprs with v}
      \Delta = \Delta + 0
                       // IN: {u*v, p-v}
                       // OUT: {v+0}
8: r = u * v
                       // GEN {u*v}, KILL {exprs with r}
                       // IN (join of 4 & 6): {}
                       // OUT: {u*v}
9: while (r < 50) {
                      // IN (loop header fixpoint): {u*v}
                       // OUT: {u*v}
10:
       s = u * v
                       // GEN {u*v}, KILL {exprs with s}
                       // IN: \{u*v\}
                       // OUT: {u*v}
11:
                       // GEN {v+2}, KILL {exprs with v}
       v = v + 2
                       // IN: \{u*v\}
                       // OUT: {v+2}
12:
                       // GEN {u*v}, KILL {exprs with r}
       r = u * v
                       // IN: \{v+2\}
                      // OUT: \{v+2, u*v\} \leftarrow back to header
13: print(r)
                   // IN (after loop): {u*v}
```

Live Variable Analysis

- Asks: which variables are "live" at each program point?
- Variable live when it is later used along some program path
 - Used in register allocation
- Analysis facts: set of program variables
- GEN(s) = {all varaibles read by s}
- $KILL(x=e) = \{x\}$
- Live variables propagates informationbackward rather than forward
 - $\operatorname{In}(S) = \operatorname{GEN}(S) \cup (\operatorname{Out}(S) \operatorname{KILL}(S))$
- It's a May (∪) analysis
 - Live if a var used along any future path

```
1: a = 1
// {a}
2: b = a + 2
// {b,a}
3: c = b + a
// {c}
4: b = read()
// {c,b}
5: c = b + c
// {c}
6: print(c)
```

- What variables live before line 3? {x,y}
 - x (used at 10 & 4)
 - y (used line 3)
- Before line 8? {x,y}
 - 3 is successor
 - y is used on line 8 before assignment
- After line 8? Also {x,y}
 - y used by guard, x by print(x)

Live Variables is a **backwards may** analysis:

- Information flows backwards
- Analysis facts: sets of variables
- When joining paths (backwards), combine w/ ∪

```
1: x = 0
2: y = 10
3: while (y > 0) {
4: z = x + y
5: if (z > 10)
6: x = z - 1
else
8: y = y - 1
9: }
10: print(x)
```

```
1: x = 1 + y
                      // GEN {y}, KILL {x}
                      // OUT: {x}
                      // IN: \{y\}
                      // GEN {x}, KILL {z}
2: z = x + 2
                      // OUT: {z}
                      // IN: \{x\}
3: y = z + 3
                      // GEN {z}, KILL {y}
                      // OUT: {y}
                      // IN: \{z\}
                      // GEN {y}, KILL {}
4: print(y)
                      // OUT: {}
                      // IN: {y}
```

```
1: i = 0
                     // GEN {}, KILL {i}
                     // OUT: {i,sum}
                     // IN: {sum}
2: sum = 0
                     // GEN {}, KILL {sum}
                      // OUT: {i,sum}
                      // IN: {i}
3: while (i < 3) \{ // GEN \{i\}, KILL \{\}\}
                     // OUT: {i,sum}
                      // IN: {i,sum}
4:
      sum = sum + i // GEN \{sum, i\}, KILL \{sum\}
                     // OUT: {i,sum}
                      // IN: {i,sum}
      i = i + 1
5:
                     // GEN {i}, KILL {i}
                     // OUT: {i,sum} <- feeds back to 3</pre>
                      // IN: {i,sum}
                     // GEN {sum}, KILL {}
6: print(sum)
                      // OUT: {}
                      // IN: {sum}
```

There is a general framework...

- Big observation—all of these different analyses are fundamentally doing the same thing: iterating a set of dataflow equations until they get an answer
- Gives us a systematic **recipe** for how to design dataflow analyses:
 - Pick a set of "possible analysis facts," must be bounded for termination
 - Pick GEN/KILL sets
 - Decide: forward or backward?
 - If forward, then $Out(S) = GEN(S) \cup (In(S) KILL(S))$
 - If backwards, then $In(S) = GEN(S) \cup (Out(S) KILL(S))$
 - \clubsuit Decide: may (combine using \cup) or must (combine using \cap)
- Once we have these, we get the analysis for free

Standard Intraprocedural Data Flow Analyses...

	May	Must
Forward	Reaching Definitions	Available Expresisons
Backward	Live Variables	Very Busy Expressions

And what they mean...

- Available expressions: which expressions have not changed since they were last computed — forward MUST analysis (must have been the same along all branches)
 - Common-subexpression elimination—compute a value once
 - But what about 2 * x = x * 2? (Can't handle this entirely, not possible)
- Reaching definitions: which variables may reach a point without being overwritten
 - Dead code elim, constant propagation, computing use/def chains
- Live variables: which variables are demanded and unchanged since last assignment
 - Register allocation: non-live variables don't need to be in registers
- Wery busy expressions: expressions which will necessarily be used along all paths
 - Loop invariant code motion—no need to recompute in the loop body

Now, let's generalize...!

- Can compute any analysis by computing the fixed point of functions
- Definition (Fixed Point of a Function):
 - A fixed point of a function is a point X such that f(X) = X
- **Key issue**: need to know type of X for this statement to have any meaning!
 - Intuitively, X is FlowSolution (AnalysisResult, etc...)
- For the case of bit-vector dataflow analyses, X represents:
 - All of the In/Out sets for each statement in the program
 - (Avil. Expr.) X is finite map from statement (in/out) to set of AEs
- ** X (the type) must posses a notion of "no information" (written as \perp)
 - For AE \perp is this map: "for every statement X, the In/Out set are both $\{\}$ "

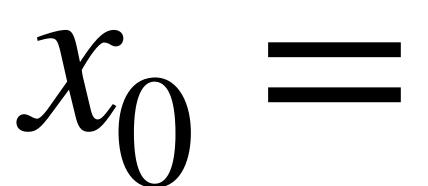
What is f...?

- Definition (Fixed Point of a Function):
 - \clubsuit A fixed point of a function is a point X such that f(X) = X
- Established that X is a map from statement In/Out sets to sets
 - I.e., X = Statement -> Set × Set = FlowSolution
- What is f?
 - Needs to be of type FlowSolution -> FlowSolution
 - fruns the **whole** analysis, for each statement, all at once
- Per-statement flow functions discussed previously:
 - Fwd: Out(S) = GEN(S) \cup (In(S) KILL(S)), In(S) = $\cap_{S' \in \text{Incoming}(S)}$ Out(S)
 - Lift per-statement flows to "whole procedure" flows (not whole program)

Live Variables: Computing the Fixpoint

We can compute fix point via iteration

 x_0 is \bot , which (for live variables) maps everything to $\{\}$



```
// IN: {}
1: i := 0
// OUT: {}
// IN: {}
2: j := 1
// OUT: {}
// IN: {}
3: sum := 0
// OUT: {}
// IN: {}
Header: sum := sum + i
// OUT: {}
// IN: {}
5: i := i + 1
// OUT: {}
// IN: {}
6: if (i < j) goto Header
// OUT: {}
// IN: {}
7: print sum
// OUT: {}
```

Available expressions backwards propagates perstatement information on the first iteration...

$$f(x_0) = x_1 =$$

```
// IN: {}
1: i := 0
// OUT: {}
// IN: {}
2: j := 1
// OUT: {}
// IN: {}
3: sum := 0
// OUT: {}
// IN: \{\underline{sum, i}\}
Header: sum := sum + i
// OUT: {}
// IN: \{\underline{i}\}
5: i := i + 1
// OUT: {}
// IN: \{\underline{i},\underline{j}\}
6: if (i < j) goto Header
// OUT: {}
// IN: {<u>sum</u>}
7: print sum
// OUT: {}
```

In available expressions, we propagate backwards, from in (back to) out...

$$f(x_1) = x_2 =$$

```
// IN: {}
1: i := 0
// OUT: {}
// IN: {}
2: j := 1
// OUT: {}
              Notice how In flows to Out
// IN: \{\underline{i}\}
3: sum := 0
// OUT: {<u>sum, i</u>}
        {sum,i}
Header: sum := sum + i
// OUT: {<u>i</u>}
// IN: \{i, j\} i and j propagated from 6->5
5: i := i + 1
// OUT: {i, j}◄
// IN: {i, j}
6: if (i < j) goto Header
// OUT: {<u>sum</u>}
// IN: {sum}
7: print sum
// OUT: {}
```

sum propagated from 7->6

Because we're running the analysis backwards, we propagate information from In sets of branch targets to Out sets of branches

$$f(x_2) = x_3 =$$

Since this is a "May" analysis, we merge In sets via U to calculate Out set

In set is calculated by GEN/KILL

```
1: i := 0
// OUT: {}
                 i propagated up
2: j := 1
// OUT: \{\underline{i}\}
3: sum := 0
// OUT: {sum, i}
                           backward propagates...
// OUT: {i, j}
6: if (i < j) goto Header
// OUT: {sum, <u>i</u>}
         {sum}
7: print sum
// OUT: {}
```

Continued propagation of results eventually yields this analysis result...

$$f(x_N) =$$

```
// IN: {}
1: i := 0
                  Usages of i/j eventually flow all the way
// OUT: {i}
                 up...
// IN: {i}
2: j := 1
// OUT: {i,j}
// IN: {i,j}
// OUT: {sum, i, j} jeventually reaches Header's In set—
                       propagates back to Out of 6...
// IN: {sum, i, j}
Header: sum := sum + i
// OUT: {i, j, sum}
// IN: {i, j, sum}
5: i := i + 1
// OUT: {i, j, sum}
// IN: {i, j, sum}
6: if (i < j) goto Header
// OUT: {sum, i, j} ◀
// IN: {sum}
7: print sum
// OUT: {}
```

This result has an interesting property...

```
// IN: {}
                                              // IN: {}
                                              1: i := 0
1: i := 0
// OUT: {i}
                                              // OUT: {i}
// IN: {i}
                                              // IN: {i}
2: j := 1
                                              2: j := 1
// OUT: {i,j}
                                              // OUT: {i,j}
// IN: {i,j}
                                              // IN: {i,j}
3: sum := 0
                                              3: sum := 0
// OUT: {sum, i, j}
                                              // OUT: {sum, i, j}
// IN: {sum, i, j}
                                              // IN: {sum, i, j}
Header: sum := sum + i
                                              Header: sum := sum + i
                                              // OUT: {i, j, sum}
// OUT: {i, j, sum}
// IN: {i, j, sum}
                                              // IN: {i, j, sum}
5: i := i + 1
                                              5: i := i + 1
// OUT: {i, j, sum}
                                              // OUT: {i, j, sum}
// IN: {i, j, sum}
                                              // IN: {i, j, sum}
6: if (i < j) goto Header
                                              6: if (i < j) goto Header
// OUT: {sum, i, j}
                                              // OUT: {sum, i, j}
                                              // IN: {sum}
// IN: {sum}
                                              7: print sum
7: print sum
                                              // OUT: {}
// OUT: {}
```

This is the fixed point of the analysis

At this point, no new analysis results are discoverable

$$f(x_{Result}) = f(x_{Result}) =$$

```
// IN: {}
1: i := 0
// OUT: {}
// IN: {}
2: j := 1
// OUT: {}
// IN: {i}
3: sum := 0
// OUT: {sum, i}
// IN: {sum,i, j}
Header: sum := sum + i
// OUT: {i, j, sum}
// IN: {i, j, sum}
5: i := i + 1
// OUT: {i, j, sum}
// IN: {i, j, sum}
6: if (i < j) goto Header
// OUT: {sum, i, j}
// IN: {sum}
7: print sum
// OUT: {}
```

How do we make this rigorous?

- I just described one way of computing analysis solutions
 - The method I presented is called "chaotic iteration"
 - Claim: the process always terminates and always yields a fixed point
- **But**: How do we make this claim rigorous? Need a bit more formalism...
- We will show...
 - Monotonic functions always have a fixed-point
 - Which can always be computed via chaotic iteration!
 - First must define what a "monotonic" function is...

Definition: Lattice

- A lattice is a set E of lattice elements, along with...
 - \triangle A partial order \sqsubseteq , which relates elements (e₀ \sqsubseteq e₁) or not
 - Reflexive, antisymmetric, and transitive
 - An operation eo u e1, the "join" (least upper bound) of eo and e1
 - The least upper bound: the least element e's.t., $e_0 \sqsubseteq e'$ and $e_1 \sqsubseteq e'$
 - An operation eo ne1, the "meet" (greatest lower bound) of eo and e1
 - The greatest lower bound: the greatest element e's.t., e' \sqsubseteq eo and e' \sqsubseteq e1
 - Two named elements: \top ("top") and \bot ("bot"), s.t., $e \sqsubseteq \top$ and $\bot \sqsubseteq e$ for all e
- (Trivia—Complete lattice: arbitrary joins/meets, every subset rather than binary joins/meets)

- You can think of a lattice as an "Interface" or "Typeclass" from programming
 - Q: Why do we care to generalize?
 - A: Many results hold over **any** lattice—gives us reusable framework, you bring the lattice, get the program analysis "for free" (induced by construction)
- For any set S, the power set (set of subsets of S) is a lattice:
 - \Downarrow \sqcup is \cup , \sqcap is \cap , \top is S, \bot is $\{\}$
- Positive integers, ordered as follows: $x \sqsubseteq y$ iff x divides y
 - $^{\prime\prime\prime}$ Meet (glb) x \sqcap y = gcd(x,y)
 - Join (lub) $x \sqcup y = lcm(x,y)$
 - \clubsuit All integers, ordered by divisor does **not** work (why? Ask: is \sqsubseteq antisymmetric?)
- $\{0,1\}$ is a lattice (Boolean lattice): min is \sqcap , max is \sqcup , \top is $1, \bot$ is 0

- \clubsuit Propositional formulas ordered by logical implication: \Rightarrow , \sqcap is \land , $\sqcup = \lor$, $\top = \text{True}$, ...
- The lattice of integer intervals: [a,b] s.t., a≤b

 - \top is $[-\infty, +\infty]$ (largest possible interval)
 - \bot is the empty interval $[+\infty, -\infty]$ (impossible interval)
 - $[x_1,x_2] \sqcup [y_1,y_2] = [min(x_1,y_1), max(x_2,y_2)]$
 - $[x_1,x_2] \sqcap [y_1,y_2] = [max(x_1,y_1), min(x_2,y_2)]$

The constant propagation lattice (right)

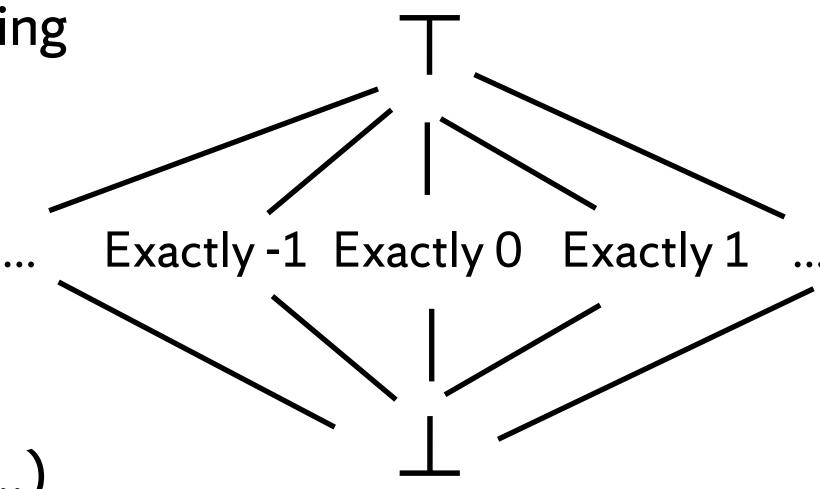
- \blacksquare T is "all possible values," \bot is "no possible values."
- Also, "exactly N" for all values N:
 - "exactly N" \sqcup "exactly N" is "exactly N", "exactly N" \sqcup "exactly K" = \top

Hasse Diagrams

Can visualize any lattice as a "Hasse diagram" as sketched on right

Joins / meets are apparent by organization

Things higher on the page are larger in the ordering



(Constant propagation lattice pictured...)

Definition: Monotonicity

- Lattices give us "information orders," allowing us to compare / join information
- We now define monotonic functions...
 - Let L be a lattice
 - If f is a function over L, i.e., $L \rightarrow L$, then f is **monotonic** precisely when:
 - For all $e \in L$, f(e) = e' implies $e \sqsubseteq e'$
- A monotonic function never moves you down the lattice
 - It may not move you up, either—when f(e)=e, e is a fixed point!
 - But, if $f(e) \neq e$, then we **know** that $e \sqsubseteq f(e)$
 - I.e., running f will always yield more information

Big Result: The Knaster-Tarski theorem

- \clubsuit Let (L, \sqsubseteq) be a lattice, and let f: L → L be a monotonic function over L
 - The set of fixed points of f also forms a lattice
 - \clubsuit Since it's a lattice, there is a *least* fixed point (lattices always have \bot)
 - In particular, f has a least fixed point in L
 - Which may be computed $f(...(f(\bot)...))$
- Trivial to prove: if L is finite then analysis will definitely terminate
 - There are no infinite increasing chains \bot , $f(\bot)$, $f(f(\bot))$, ...
 - f is monotone, and L is finite—either you hit a fix point, or you "run out" of L

Computing Fixed Points

Easy: compute via "Chaotic iteration:"

```
(define (fix f)
  (define (h x)
      (if (equal? x (f x)) x (h (f x))))
  h)
```

- Unfortunately, this is slow:
 - Everything from every previous iteration rediscovered each iteration
 - Observation: we can often incrementalize the analysis
 - Great for bit-vector analyses; more on this later

What is not covered by this lecture...

- Mildall-style dataflow analyses are inherently intraprocedural
 - Useful for some common compiler tasks (register allocation, use/def chains)
 - They offer **no** story for heap-allocated data
 - Issue is aliasing: pointer writes *(x) = y might totally invalidate analysis facts
 - In general, need to reason about aliasing via pointer analysis
 - Not possible to reason across functions in general:
 - What do you do with recursive functions?
 - What if called function invalidates analysis facts?
- We'll cover functions next, then we'll discuss a bit of interprocedural analysis!

Summary

- Introduction to lattices, monotonic functions, fix points
- Kildall-style dataflow analysis is a great story:
 - You tell me: analysis fact structure, forward / backward, GEN/KILL functions
 - Get analysis "for free," efficient implementation via bit vectors
 - May vs. Must (how to combine analysis results at join points)
- Mow the popular analyses: reaching definitions, available expressions, very busy expressions, and live variables
- What is a lattice, why do we care about them?
 - What are top, bottom, meet, and join?
- How do we use lattices in dataflow analysis? (Why did we learn them?)
 - The Fixed-Point Theorem: every monotonic function has a fixed point
 - <u>kkmicins@syr.edu</u>