Syracuse University

College of Engineering
& Computer Science

How do we parse a given grammar

e |ast week: talked about grammars, talked about derivations
e A grammar is defined via terminals / nonterminals, start symbol, and productions (rules)
e Derivations start with the start with the start symbol, follow productions

e This week: given a grammar, how to implement a parser that recognizes it

(In principle...)
Enumerate a derivation...
Implementation, etc. G2SG—2pSG—ppSG

/ —ppfG— ppfk

(In practice, equivalently...)
Generate a parse tree

~ >

G — SG |k
S —pS|f

If we have a grammar, how do we recognizeit...?

e |f we start with a given grammar:

S — ||a|| S ‘ ||a|| X
X — ||b|| ‘ ||C||

® The questionis how to recognize it. We can view this as a search problem (Earley algorithm):
Start with the start symbol (S, in this case)
Now, consider all possible (branching) derivations, starting from G by running any rule
This yields a large branching space of possible parse trees
When two rules apply—branch, try both, generate all possible derivations in parallel

_ & Intuitive, obviously correct
" To recognize “aaaaaaaaaaaaa...ab” we explore O(2”n) branches before seeing the final b!

Derivations: Leftmost, Rightmost...

e Definition: A given grammar may have any number of derivations for a given string. Among
these derivations, we will label two important classes:

e A leftmost derivation is a derivation such that the expanded nonterminal is always in the
leftmost position, lexically

e A rightmost derivation is a derivation such that the expanded nonterminal is always in the
rightmost position, lexically

S5 AR S—AB S—+ AB
Ao ixt ALy — 'x"AB — A “z ”B
g | — 'x" "x"AB — A"z" "w
B2 BIW ey e AT
- 'x"'x" y" 'z" B — "x""x" A"z" "w
=X Xy Tz we - "x" "x" 'y "z" "w

4

Definition: When a grammar is ambiguous

e A grammar is ambiguous iff there exists some string s in the grammar such that s has two
distinct leftmost derivations (equivalently, two distinct rightmost derivations)

e Below are two grammars—one is ambiguous (this definition), one is not
e Explain which one is ambiguous—you must show multiple leftmost derivations

S—AB

A — ||X|| G — G G ‘ ||a||
B — ||y||

Definition: When a grammar is ambiguous

e A grammar is ambiguous iff there exists some string s in the grammar such that s has two
distinct leftmost derivations (equivalently, two distinct rightmost derivations)

e Below are two grammars—one is ambiguous (this definition), one is not
e Explain which one is ambiguous—you must show multiple leftmost derivations

S— AB
A — ||X||
B — ||y|| G —> G G ‘ "a"

Answer: this one, because
G _} G G _} Ha!! G _’ Ha!! G G _’ Ha!! “a!! G _} Ha!! Ha!! “a!!
G _’ G G _} G G G _} Ha!! G G _’ “a!! “a!! G _} “a!! Ha!! “a!!

More Practice: Ambiguous Grammars...

G ->G+ G
G ->G/ G
G -> number

Draw a leftmost derivation for...

1/ 2/ 3

Now draw another leftmost derivation

Why is ambiguity important?

e |f our grammaris ambiguous there is no hope to writing a parser other than one which tries
to find a set of derivations, we want derivations to be unique

e Put differently: we don’t want to write in a programming language where one string has
multiple parse trees—it means that there has to be some policy to disambiguate!

e Very confusing—in practice, we disallow ambiguous grammars for programming
® However,ambiguous grammars are common in natural language
e We will focus on unambiguous grammars

LL(1), Predictive Parsing

o AnLL parser works (a) L—left-to-right and produces the (b) L—leftmost derivation
e AnLL(k) parserisanLL parser that uses k tokens of lookahead
e We will expand on these definitions in a few slides, but for now, here is an example of an
LL(1) grammar:
S— A
S — BA
A _} “X”
B _} “y”

e [ntuitively, the grammar has the property that we can look at one token of lookahead (e.g.,
“x” or “y”) and pick which production has to apply

® |fwe'retrying to parse S and we see “x”, we know we want S = A
® |f we'retrying to parse S and we see “y”, we know we want S — BA

Motivation: FIRST and FOLLOW sets...

e WhenagrammarisLL(1),then|canlook at a single character and predict which rule | must
apply if a parse tree exists—it could fail, but structure of the grammar commits us to a choice

S — A

S — BA
A —) “X!!
B —) “y”

e Consider any leftmost derivation...
® Beginswith...5S —

¢€__»

® |f|see “x”,thenthen choosing S — BA will never work, why?

¢€_ %

e Answer: because B requires me to first match “y

¢€_ 7

® |f|see“y”,thenchoosingS — A will never work, why?
e Answer: because A requires me to first match “x”

10

Definition: FIRST set

e We now present the definitions of the FIRST and FOLLOW sets of a grammar
e Givenagrammar G, consisting of terminals, nonterminals, rules, and a symbol...

e FIRST(X) is the set of all terminals that can appear as the first symbol of some string derived
from X, where X is either a nonterminal, a terminal, or a sequence of grammar symbols.

e |f Xisaterminal, then FIRST(X) = {X}.
® |f X canderive € (the empty string), then € € FIRST(X).

® |f Xisasequence(e.g,YZ...),then FIRST(X) 2 FIRST(Y) (excluding €),andif Y =* €,

then also FIRST(Z), and so on.
e Forexample, for the grammar:

S— AB FIRST(A) = {¢, a}
A—¢gla FIRST(B) = {b}
B—b FIRST(S) = {a,b}

11

Definition: FOLLOW set

e Foranonterminal A, FOLLOW(A) is the set of terminals that can appear immediately to the
right of A

e |fSisthestart symbolthen $ € FOLLOW(A), where $ is the end-of-stream symbol

® Forany production that looks like B = aAaf3, thena € FOLLOW/(A)
® Forany production that looks like B = AAX[3, where X is a nonterminal...
o (FIRST(X)\{€}) c FOLLOW(A)

® [fthereisa production B = aA[3 and B is nullable (3 can derive €), then...
e FOLLOW(B) C FOLLOW(A)

e We apply these rules iteratively until we learn no more information...

12

Example: Calculatinga FOLLOW set

® |et’scalculate FOLLOW for our tiny grammar...
S—AB
A—¢€la
B—b
o FOLLOW(S): start symbol, {$}
e FOLLOW(A):inS — A B, we can see that B follows A. So we add FIRST(B), i.e., {b}
e FOLLOW(B): because we have S — A B. Now now that FOLLOW(B) includes
FOLLOW(S), so we conclude that FOLLOW(B) = {$}

e Thus...
FOLLOW(S) = {$}
FOLLOW(A) = {b}
FOLLOW(B) = {$}

13

Definition: LL(1) Condition

e Agrammaris LL(1) iff, for each nonterminal in the grammar A:
® Foreach pair of productions A = aand A = Bwitha # [3...

e FIRST(Q)nFIRST(B) =@

e Intuitively: “The FIRST sets of each production of A are disjoint”
e Consequence: the first set uniquely determines the production

* If £ € FIRST(Q), then...
e (FIRST(a)\{€}) n FOLLOW(A) =2

® |ntuitively: No conflict between choosing A = € and some other production

14

More Practice: FIRST/FOLLOW sets

® Another grammarto try:
e S—AB
A—xly
B—z|t
e FIRST(A) = {x,y}, FIRST(B) = {z,t}, FIRST(S) = FIRST(A) = {x,y}
e FOLLOW(S) =1{%$},FOLLOW(A)={z,t}, FOLLOW(b)=1{%}
® Doesthe grammar have the LL1 property?
® Yes, the first sets for A,B’s alternative branches are disjoint!

15

Writing the code: Recursive Descent Parsers

e |fagrammarisLL(1)we can write a very simple parser called a “recursive descent” parser
e |dea: use afunction peek() to get the lookahead
e Because rules are disjoint, decide which production to take based on lookahead!
e Each nonterminal A turnsinto a recursive function, parse A which:
e Branches on the lookahead using peek():

® Decides which production to apply
e Always possible! LL(1) conditions force productions to have disjoint START sets

e When we expect a terminal, call a function consume(‘a’) which expects the next
character to be ‘@’ and advances the token stream (error if no match for a’)

16

An example: LL(1) parser

def parse S():
parse A()

parse B()
def parse B():

consume(‘b’)

S - A B

A->¢g | 'a def parse A():

B - 'b 1f peek() == ‘'a’:
consume(‘a’)
return

else:
return

17

Example 2: LL(1) parser....

def parse S():
1f peek() == ’'x':
S - ‘x' S | ‘y' consume(‘x’)
Notice the recursion..
parse S()
elif peek() == ‘y':
consume(‘y"’)
else:
error (“parse error, ..")

18

def parse 1id():
Match current token again
a class of identifiers..

Example 3

def parse S():
parse 1d()
parse Rest()

S -» 1d Rest
Rest -» ‘(' Rest ‘)’ | id
parse Rest():
1f peek() == “(':
consume(‘' (’)
parse Rest ()
consume(‘) ')
else:

parse 1d()

19

Writing recursive descent parsers in Racket

e |n pseudo-code we used peek() and consume()... but they are very mutable
e Advance some globalized notion of the “current token”
e |n Racket, we want to write purely functional code, so no possibility of doing this
e Also, instead of just matching as we did in pseudocode, we want to return a tree
e Key idea: each nonterminal A turns into a function which accepts the input stream (list)
® Returns two values:
e (a)the syntax tree (result), along with...
e (b) the rest of the unconsumed token stream

20

Issue: Left Recursion

® Recursive descent parsers are simple, intuitive, and generally easy to write

® - Unfortunately, not all grammars are LL(1)
® Oneclearissue: LL parsers can not handle left recursion:

A - A - P P
P-P /I T
I - number

e This grammar does have left recursion, and it is helpful in the following way:
e 1-2-3shouldbeparsedas(1l-2)-3:

e A»A-P—>A-P-P—2P-P-P—21-P-P—21-2-P—21-2-3
e |f wedraw the parse tree, we see that we get the intended associativity for -

21

LL parsers cannot handle left recursion...

e Grammars with left recursion are never LL(k) for any k...

A - A - P P
P-P /I T
I - number

® o write parse A we would immediately recuron A
e Yieldsinfinite recursion! Violates LL principles: bounded lookahead predicts production

® 50 noway to write the above grammar using a recursive descent parser...

def parse A():
parse A() # infinite recursion..
consume(‘-') # never get here..
parse A()

22

Grammar Transformations: Left Factoring

In some cases, we can rewrite a grammar to be LL(k), one example is left factoring
For example, if we havearule A = a3: | af3,,

Any grammar including this rule not LL(1): the FIRST sets of both productions include a
We apply left factoring to split the rule into two rules:
A — aA
A — B1] B2
e Common transformation—allows us to make LL(k) parsers LL(1)
e But in practice: much more natural to write the rules as LL(k)
e Some grammars cannot be made LL(k)
® Forthese we use hacks (left association) or (more common) use LR parsing
o | ALR,SLR, etc.

e We will not cover these—but | will demo Yacc a bit

23

LR (shift/reduce) parsing

e We did not talk much about the other large class of parsing algorithms, LR parsers
e | R(k) parsers construct the rightmost derivation, working left-to-right

e Nice advantage—no issue with left recursion in grammars!

e (Handle associativity properly, no factoring/tricks)
e Key idea: maintain a stack of symbols (terminals / nonterminals)

e Atevery (next) input, you can either shift onto the stack, or reduce the stack by
applying a transformation via two tables:

e Action table: shift, reduce, accept, error
e Goto table: jump post-reduction

® - —worksfor most languages you’d want to write, fast to implement

| —

| —

® -~ —requires a parser generator (tables are too tedious to do by hand for any
nontrivial language), shift/reduce, reduce/reduce conflicts are hard to debug!

Parsing: Fin

e My goal was to give you the basics of grammars, along with their key properties
and transformations. Can you define: grammar, LL(k), LR, recursive descent?

e What to know / practice: could you write a simple recursive-descent parser?

® One exam problem (making clear now): given some relatively simple grammar, can
you write a recursive descent parser?
® You can use any language—if you want to use pseudocode, fine, as long as | can

get the idea

