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How do we parse a given grammar
• Last week: talked about grammars, talked about derivations 

• A grammar is defined via terminals / nonterminals, start symbol, and productions (rules) 
• Derivations start with the start with the start symbol, follow productions 

•  This week: given a grammar, how to implement a parser that recognizes it
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G → SG | k


S → pS | f

Parser

Manual

Implementation, etc. 

ppfk

(In principle…)

Enumerate a derivation…

G→SG→pSG→ppSG

   →ppfG→ppfk

(In practice, equivalently…)

Generate a parse tree



If we have a grammar, how do we recognize it…?
• If we start with a given grammar: 

 
 
 

• The question is how to recognize it. We can view this as a search problem (Earley algorithm): 
 Start with the start symbol (S, in this case) 
Now, consider all possible (branching) derivations, starting from G by running any rule 
This yields a large branching space of possible parse trees 

When two rules apply—branch, try both, generate all possible derivations in parallel 
👍 Intuitive, obviously correct 
👎 To recognize “aaaaaaaaaaaaa…ab” we explore O(2^n) branches before seeing the final b! 
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S → "a" S | "a" X

X → "b" | "c"



Derivations: Leftmost, Rightmost…
• Definition: A given grammar may have any number of derivations for a given string. Among 

these derivations, we will label two important classes:  
• A leftmost derivation is a derivation such that the expanded nonterminal is always in the 

leftmost position, lexically 
• A rightmost derivation is a derivation such that the expanded nonterminal is always in the 

rightmost position, lexically 
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S → A B

A → "x" A | "y"

B → "z" B | "w"

S → A B

   → "x" A B

   → "x" "x" A B

   → "x" "x" “y” B

   →  "x" "x" "y" "z" B

   → "x" "x" "y" "z" "w"

S → A B

  → A “z” B

  → A "z" "w"

  →  "x" A "z" "w"

  → "x" "x" A "z" "w"

  → "x" "x" "y" "z" "w"




Definition: When a grammar is ambiguous
• A grammar is ambiguous iff there exists some string s in the grammar such that s has two 

distinct leftmost derivations (equivalently, two distinct rightmost derivations) 
• Below are two grammars—one is ambiguous (this definition), one is not 

• Explain which one is ambiguous—you must show multiple leftmost derivations
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S → A B

A → "x"

B → "y"

G → G G | "a"



Definition: When a grammar is ambiguous
• A grammar is ambiguous iff there exists some string s in the grammar such that s has two 

distinct leftmost derivations (equivalently, two distinct rightmost derivations) 
• Below are two grammars—one is ambiguous (this definition), one is not 

• Explain which one is ambiguous—you must show multiple leftmost derivations
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S → A B

A → "x"

B → "y" G → G G | "a"

Answer: this one, because 
G → G G → “a” G → “a” G G → “a” “a” G → “a” “a” “a”

G → G G → G G G → “a” G G → “a” “a” G → “a” “a” “a”



G -> G + G
G -> G / G
G -> number

Draw a leftmost derivation for…

1 / 2 / 3
Now draw another leftmost derivation

7

More Practice: Ambiguous Grammars…



Why is ambiguity important?
• If our grammar is ambiguous there is no hope to writing a parser other than one which tries 

to find a set of derivations, we want derivations to be unique 
• Put differently: we don’t want to write in a programming language where one string has 

multiple parse trees—it means that there has to be some policy to disambiguate! 
• Very confusing—in practice, we disallow ambiguous grammars for programming  
• However, ambiguous grammars are common in natural language 

• We will focus on unambiguous  grammars
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LL(1), Predictive Parsing
• An LL parser works (a) L—left-to-right and produces the (b) L—leftmost derivation 
• An LL(k) parser is an LL parser that uses k tokens of lookahead 
• We will expand on these definitions in a few slides, but for now, here is an example of an 

LL(1) grammar: 
 
 
 
 

• Intuitively, the grammar has the property that we can look at one token of lookahead (e.g., 
“x” or “y”) and pick which production has to apply 
• If we’re trying to parse S and we see “x”, we know we want S → A 
• If we’re trying to parse S and we see “y”, we know we want S → BA
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S → A

S → BA

A → “x”

B → “y”



Motivation: FIRST and FOLLOW sets…
• When a grammar is LL(1), then I can look at a single character and predict which rule I must 

apply if a parse tree exists—it could fail, but structure of the grammar commits us to a choice 
 
 
 
 

• Consider any leftmost derivation… 
• Begins with… S → 
• If I see “x”, then then choosing S → BA will never work, why? 

• Answer: because B requires me to first match “y” 
• If I see “y”, then choosing S → A will never work, why? 

• Answer: because A requires me to first match “x”
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S → A

S → BA

A → “x”

B → “y”



Definition: FIRST set
• We now present the definitions of the FIRST and FOLLOW sets of a grammar 
• Given a grammar G, consisting of terminals, nonterminals, rules, and a symbol… 
• FIRST(X) is the set of all terminals that can appear as the first symbol of some string derived 

from X, where X is either a nonterminal, a terminal, or a sequence of grammar symbols. 
• If X is a terminal, then FIRST(X) = {X}. 
• If X can derive ε (the empty string), then ε ∈ FIRST(X). 
• If X is a sequence (e.g., YZ…), then FIRST(X) ⊇ FIRST(Y) (excluding ε), and if Y ⇒* ε, 

then also FIRST(Z), and so on. 
• For example, for the grammar:
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S → AB 
A → ε | a 
B → b

FIRST(A) = {ε, a} 
FIRST(B) = {b} 
FIRST(S) = {a,b}



Definition: FOLLOW set
• For a nonterminal A, FOLLOW(A) is the set of terminals that can appear immediately to the 

right of A 
• If S is the start symbol then $ ∈ FOLLOW(A), where $ is the end-of-stream symbol 
• For any production that looks like B → αAaβ, then a ∈ FOLLOW(A) 
• For any production that looks like B → αAXβ, where X is a nonterminal… 

• (FIRST(X) \ {ε}) ⊆ FOLLOW(A) 
• If there is a production B → αAβ and β is nullable (β can derive ε), then… 

• FOLLOW(B) ⊆ FOLLOW(A) 
• We apply these rules iteratively until we learn no more information…
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Example: Calculating a FOLLOW set
• Let’s calculate FOLLOW for our tiny grammar… 

S → A B 
A → ε | a 
B → b 

• FOLLOW(S): start symbol, {$} 
• FOLLOW(A): in S → A B, we can see that B follows A. So we add FIRST(B), i.e., {b} 
• FOLLOW(B): because we have S → A B. Now now that FOLLOW(B) includes 

FOLLOW(S), so we conclude that FOLLOW(B) = {$} 
• Thus… 

FOLLOW(S) = {$} 
FOLLOW(A) = {b} 
FOLLOW(B) = {$}
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Definition: LL(1) Condition
• A grammar is LL(1) iff, for each nonterminal in the grammar A: 

• For each pair of productions A → α and A → β with α ≠ β… 
• FIRST(α) ∩ FIRST(β) = ∅ 

• Intuitively: “The FIRST sets of each production of A are disjoint” 
• Consequence: the first set uniquely determines the production  

• If ε ∈ FIRST(α), then… 
• (FIRST(α) \ {ε}) ∩ FOLLOW(A) = ∅ 
• Intuitively: No conflict between choosing A → ε and some other production
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More Practice: FIRST/FOLLOW sets
• Another grammar to try: 
• S → A B 

A → x | y 
B → z | t 

• FIRST(A) = {x,y}, FIRST(B) = {z,t}, FIRST(S) = FIRST(A) = {x,y} 
• FOLLOW(S) = {$}, FOLLOW(A)={z,t}, FOLLOW(b)={$} 
• Does the grammar have the LL1 property? 

• Yes, the first sets for A,B’s alternative branches are disjoint!

15



Writing the code: Recursive Descent Parsers
• If a grammar is LL(1) we can write a very simple parser called a “recursive descent” parser 
• Idea: use a function peek() to get the lookahead 

• Because rules are disjoint, decide which production to take based on lookahead! 
• Each nonterminal A turns into a recursive function, parse_A which: 

• Branches on the lookahead using peek(): 
• Decides which production to apply 
• Always possible! LL(1) conditions force productions to have disjoint START sets 

• When we expect a terminal, call a function consume(‘a’) which expects the next 
character to be ‘a’ and advances the token stream (error if no match for ‘a’)
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An example: LL(1) parser
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S → A B
A → ε | 'a'
B → 'b'

def parse_S():
  parse_A()
  parse_B()

def parse_A():
  if peek() == ‘a’:
    consume(‘a’)
    return
 else:
   return

def parse_B():
  consume(‘b’)



Example 2: LL(1) parser….
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S → ‘x’ S | ‘y'

def parse_S():
  if peek() == ‘x’:
    consume(‘x’)
    # Notice the recursion…
    parse_S()
  elif  peek() == ‘y’:
    consume(‘y’)
  else: 
    error(“parse error, …”)



Example 3
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S    → id Rest
Rest → ‘(‘ Rest ‘)’ | id

def parse_id():
  # Match current token again 
  # a class of identifiers…

def parse_S():
  parse_id()
  parse_Rest()

parse_Rest():
  if peek() == ‘(‘:
    consume(‘(‘)
    parse_Rest()
    consume(‘)’)
  else:
    parse_id()



Writing recursive descent parsers in Racket
• In pseudo-code we used peek() and consume()… but they are very mutable 

• Advance some globalized notion of the “current token”  
• In Racket, we want to write purely functional code, so no possibility of doing this 

• Also, instead of just matching as we did in pseudocode, we want to return a tree 
• Key idea: each nonterminal A turns into a function which accepts the input stream (list)  

• Returns two values:  
• (a) the syntax tree (result), along with… 
• (b) the rest of the unconsumed token stream
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Issue: Left Recursion
• Recursive descent parsers are simple, intuitive, and generally easy to write 

• 👎 Unfortunately, not all grammars are LL(1) 
• One clear issue: LL parsers can not handle left recursion: 

 
 
 
 

• This grammar does have left recursion, and it is helpful in the following way: 
• 1 - 2 - 3 should be parsed as (1 - 2) - 3: 

• A → A - P → A - P - P → P - P - P → 1 - P - P → 1 - 2 - P → 1 - 2 - 3 
• If we draw the parse tree, we see that we get the intended associativity for -  
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A → A - P | P
P → P / I | I
I → number



LL parsers cannot handle left recursion…
• Grammars with left recursion are never LL(k) for any k… 

• To write parse_A we would immediately recur on A 
• Yields infinite recursion! Violates LL principles: bounded lookahead predicts production 

• So no way to write the above grammar using a recursive descent parser…
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A → A - P | P
P → P / I | I
I → number

def parse_A():
  parse_A() # infinite recursion…
  consume(‘-‘) # never get here…
  parse_A()



Grammar Transformations: Left Factoring
• In some cases, we can rewrite a grammar to be LL(k), one example is left factoring 
• For example, if we have a rule A → αβ1 | αβ2 ,  
• Any grammar including this rule not LL(1): the FIRST sets of both productions include α 
• We apply left factoring to split the rule into two rules: 

 A → αA’ 
A’ → β1 | β2 

• Common transformation—allows us to make LL(k) parsers LL(1) 
• But in practice: much more natural to write the rules as LL(k)  

• Some grammars cannot be made LL(k) 
• For these we use hacks (left association) or (more common) use LR parsing 

• LALR, SLR, etc. 
• We will not cover these—but I will demo Yacc a bit
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LR (shift/reduce) parsing

• We did not talk much about the other large class of parsing algorithms, LR parsers 
• LR(k) parsers construct the rightmost derivation, working left-to-right 

• Nice advantage—no issue with left recursion in grammars! 
• (Handle associativity properly, no factoring/tricks) 

• Key idea: maintain a stack of symbols (terminals / nonterminals)  
• At every (next) input, you can either shift onto the stack, or reduce the stack by 

applying a transformation via two tables: 
• Action table: shift, reduce, accept, error 
• Goto table: jump post-reduction 

• 👍 — works for most languages you’d want to write, fast to implement 
• 👎 — requires a parser generator (tables are too tedious to do by hand for any 

nontrivial language), shift/reduce, reduce/reduce conflicts are hard to debug!



Parsing: Fin

• My goal was to give you the basics of grammars, along with their key properties 
and transformations. Can you define: grammar, LL(k), LR, recursive descent? 

• What to know / practice: could you write a simple recursive-descent parser? 
• One exam problem (making clear now): given some relatively simple grammar, can 

you write a recursive descent parser? 
• You can use any language—if you want to use pseudocode, fine, as long as I can 

get the idea


