
Predictive Parsing,
LL(k) Parsers

Kristopher Micinski

CIS531 — Fall 2025, Syracuse

1

How do we parse a given grammar
• Last week: talked about grammars, talked about derivations

• A grammar is defined via terminals / nonterminals, start symbol, and productions (rules)
• Derivations start with the start with the start symbol, follow productions

• This week: given a grammar, how to implement a parser that recognizes it

2

G → SG | k

S → pS | f

Parser

Manual

Implementation, etc.

ppfk

(In principle…)

Enumerate a derivation…

G→SG→pSG→ppSG

 →ppfG→ppfk

(In practice, equivalently…)

Generate a parse tree

If we have a grammar, how do we recognize it…?
• If we start with a given grammar:

• The question is how to recognize it. We can view this as a search problem (Earley algorithm):
 Start with the start symbol (S, in this case)
Now, consider all possible (branching) derivations, starting from G by running any rule
This yields a large branching space of possible parse trees

When two rules apply—branch, try both, generate all possible derivations in parallel
👍 Intuitive, obviously correct
👎 To recognize “aaaaaaaaaaaaa…ab” we explore O(2^n) branches before seeing the final b!

3

S → "a" S | "a" X

X → "b" | "c"

Derivations: Leftmost, Rightmost…
• Definition: A given grammar may have any number of derivations for a given string. Among

these derivations, we will label two important classes:
• A leftmost derivation is a derivation such that the expanded nonterminal is always in the

leftmost position, lexically
• A rightmost derivation is a derivation such that the expanded nonterminal is always in the

rightmost position, lexically

4

S → A B

A → "x" A | "y"

B → "z" B | "w"

S → A B

 → "x" A B

 → "x" "x" A B

 → "x" "x" “y” B

 → "x" "x" "y" "z" B

 → "x" "x" "y" "z" "w"

S → A B

 → A “z” B

 → A "z" "w"

 → "x" A "z" "w"

 → "x" "x" A "z" "w"

 → "x" "x" "y" "z" "w"

Definition: When a grammar is ambiguous
• A grammar is ambiguous iff there exists some string s in the grammar such that s has two

distinct leftmost derivations (equivalently, two distinct rightmost derivations)
• Below are two grammars—one is ambiguous (this definition), one is not

• Explain which one is ambiguous—you must show multiple leftmost derivations

5

S → A B

A → "x"

B → "y"

G → G G | "a"

Definition: When a grammar is ambiguous
• A grammar is ambiguous iff there exists some string s in the grammar such that s has two

distinct leftmost derivations (equivalently, two distinct rightmost derivations)
• Below are two grammars—one is ambiguous (this definition), one is not

• Explain which one is ambiguous—you must show multiple leftmost derivations

6

S → A B

A → "x"

B → "y" G → G G | "a"

Answer: this one, because
G → G G → “a” G → “a” G G → “a” “a” G → “a” “a” “a”

G → G G → G G G → “a” G G → “a” “a” G → “a” “a” “a”

G -> G + G
G -> G / G
G -> number

Draw a leftmost derivation for…

1 / 2 / 3
Now draw another leftmost derivation

7

More Practice: Ambiguous Grammars…

Why is ambiguity important?
• If our grammar is ambiguous there is no hope to writing a parser other than one which tries

to find a set of derivations, we want derivations to be unique
• Put differently: we don’t want to write in a programming language where one string has

multiple parse trees—it means that there has to be some policy to disambiguate!
• Very confusing—in practice, we disallow ambiguous grammars for programming
• However, ambiguous grammars are common in natural language

• We will focus on unambiguous grammars

8

LL(1), Predictive Parsing
• An LL parser works (a) L—left-to-right and produces the (b) L—leftmost derivation
• An LL(k) parser is an LL parser that uses k tokens of lookahead
• We will expand on these definitions in a few slides, but for now, here is an example of an

LL(1) grammar:

• Intuitively, the grammar has the property that we can look at one token of lookahead (e.g.,
“x” or “y”) and pick which production has to apply
• If we’re trying to parse S and we see “x”, we know we want S → A
• If we’re trying to parse S and we see “y”, we know we want S → BA

9

S → A

S → BA

A → “x”

B → “y”

Motivation: FIRST and FOLLOW sets…
• When a grammar is LL(1), then I can look at a single character and predict which rule I must

apply if a parse tree exists—it could fail, but structure of the grammar commits us to a choice

• Consider any leftmost derivation…
• Begins with… S →
• If I see “x”, then then choosing S → BA will never work, why?

• Answer: because B requires me to first match “y”
• If I see “y”, then choosing S → A will never work, why?

• Answer: because A requires me to first match “x”

10

S → A

S → BA

A → “x”

B → “y”

Definition: FIRST set
• We now present the definitions of the FIRST and FOLLOW sets of a grammar
• Given a grammar G, consisting of terminals, nonterminals, rules, and a symbol…
• FIRST(X) is the set of all terminals that can appear as the first symbol of some string derived

from X, where X is either a nonterminal, a terminal, or a sequence of grammar symbols.
• If X is a terminal, then FIRST(X) = {X}.
• If X can derive ε (the empty string), then ε ∈ FIRST(X).
• If X is a sequence (e.g., YZ…), then FIRST(X) ⊇ FIRST(Y) (excluding ε), and if Y ⇒* ε,

then also FIRST(Z), and so on.
• For example, for the grammar:

11

S → AB
A → ε | a
B → b

FIRST(A) = {ε, a}
FIRST(B) = {b}
FIRST(S) = {a,b}

Definition: FOLLOW set
• For a nonterminal A, FOLLOW(A) is the set of terminals that can appear immediately to the

right of A
• If S is the start symbol then $ ∈ FOLLOW(A), where $ is the end-of-stream symbol
• For any production that looks like B → αAaβ, then a ∈ FOLLOW(A)
• For any production that looks like B → αAXβ, where X is a nonterminal…

• (FIRST(X) \ {ε}) ⊆ FOLLOW(A)
• If there is a production B → αAβ and β is nullable (β can derive ε), then…

• FOLLOW(B) ⊆ FOLLOW(A)
• We apply these rules iteratively until we learn no more information…

12

Example: Calculating a FOLLOW set
• Let’s calculate FOLLOW for our tiny grammar…

S → A B
A → ε | a
B → b

• FOLLOW(S): start symbol, {$}
• FOLLOW(A): in S → A B, we can see that B follows A. So we add FIRST(B), i.e., {b}
• FOLLOW(B): because we have S → A B. Now now that FOLLOW(B) includes

FOLLOW(S), so we conclude that FOLLOW(B) = {$}
• Thus…

FOLLOW(S) = {$}
FOLLOW(A) = {b}
FOLLOW(B) = {$}

13

Definition: LL(1) Condition
• A grammar is LL(1) iff, for each nonterminal in the grammar A:

• For each pair of productions A → α and A → β with α ≠ β…
• FIRST(α) ∩ FIRST(β) = ∅

• Intuitively: “The FIRST sets of each production of A are disjoint”
• Consequence: the first set uniquely determines the production

• If ε ∈ FIRST(α), then…
• (FIRST(α) \ {ε}) ∩ FOLLOW(A) = ∅
• Intuitively: No conflict between choosing A → ε and some other production

14

More Practice: FIRST/FOLLOW sets
• Another grammar to try:
• S → A B

A → x | y
B → z | t

• FIRST(A) = {x,y}, FIRST(B) = {z,t}, FIRST(S) = FIRST(A) = {x,y}
• FOLLOW(S) = {$}, FOLLOW(A)={z,t}, FOLLOW(b)={$}
• Does the grammar have the LL1 property?

• Yes, the first sets for A,B’s alternative branches are disjoint!

15

Writing the code: Recursive Descent Parsers
• If a grammar is LL(1) we can write a very simple parser called a “recursive descent” parser
• Idea: use a function peek() to get the lookahead

• Because rules are disjoint, decide which production to take based on lookahead!
• Each nonterminal A turns into a recursive function, parse_A which:

• Branches on the lookahead using peek():
• Decides which production to apply
• Always possible! LL(1) conditions force productions to have disjoint START sets

• When we expect a terminal, call a function consume(‘a’) which expects the next
character to be ‘a’ and advances the token stream (error if no match for ‘a’)

16

An example: LL(1) parser

17

S → A B
A → ε | 'a'
B → 'b'

def parse_S():
 parse_A()
 parse_B()

def parse_A():
 if peek() == ‘a’:
 consume(‘a’)
 return
 else:
 return

def parse_B():
 consume(‘b’)

Example 2: LL(1) parser….

18

S → ‘x’ S | ‘y'

def parse_S():
 if peek() == ‘x’:
 consume(‘x’)
 # Notice the recursion…
 parse_S()
 elif peek() == ‘y’:
 consume(‘y’)
 else:
 error(“parse error, …”)

Example 3

19

S → id Rest
Rest → ‘(‘ Rest ‘)’ | id

def parse_id():
 # Match current token again
 # a class of identifiers…

def parse_S():
 parse_id()
 parse_Rest()

parse_Rest():
 if peek() == ‘(‘:
 consume(‘(‘)
 parse_Rest()
 consume(‘)’)
 else:
 parse_id()

Writing recursive descent parsers in Racket
• In pseudo-code we used peek() and consume()… but they are very mutable

• Advance some globalized notion of the “current token”
• In Racket, we want to write purely functional code, so no possibility of doing this

• Also, instead of just matching as we did in pseudocode, we want to return a tree
• Key idea: each nonterminal A turns into a function which accepts the input stream (list)

• Returns two values:
• (a) the syntax tree (result), along with…
• (b) the rest of the unconsumed token stream

20

Issue: Left Recursion
• Recursive descent parsers are simple, intuitive, and generally easy to write

• 👎 Unfortunately, not all grammars are LL(1)
• One clear issue: LL parsers can not handle left recursion:

• This grammar does have left recursion, and it is helpful in the following way:
• 1 - 2 - 3 should be parsed as (1 - 2) - 3:

• A → A - P → A - P - P → P - P - P → 1 - P - P → 1 - 2 - P → 1 - 2 - 3
• If we draw the parse tree, we see that we get the intended associativity for -

21

A → A - P | P
P → P / I | I
I → number

LL parsers cannot handle left recursion…
• Grammars with left recursion are never LL(k) for any k…

• To write parse_A we would immediately recur on A
• Yields infinite recursion! Violates LL principles: bounded lookahead predicts production

• So no way to write the above grammar using a recursive descent parser…

22

A → A - P | P
P → P / I | I
I → number

def parse_A():
 parse_A() # infinite recursion…
 consume(‘-‘) # never get here…
 parse_A()

Grammar Transformations: Left Factoring
• In some cases, we can rewrite a grammar to be LL(k), one example is left factoring
• For example, if we have a rule A → αβ1 | αβ2 ,
• Any grammar including this rule not LL(1): the FIRST sets of both productions include α
• We apply left factoring to split the rule into two rules:

 A → αA’
A’ → β1 | β2

• Common transformation—allows us to make LL(k) parsers LL(1)
• But in practice: much more natural to write the rules as LL(k)

• Some grammars cannot be made LL(k)
• For these we use hacks (left association) or (more common) use LR parsing

• LALR, SLR, etc.
• We will not cover these—but I will demo Yacc a bit

23

LR (shift/reduce) parsing

• We did not talk much about the other large class of parsing algorithms, LR parsers
• LR(k) parsers construct the rightmost derivation, working left-to-right

• Nice advantage—no issue with left recursion in grammars!
• (Handle associativity properly, no factoring/tricks)

• Key idea: maintain a stack of symbols (terminals / nonterminals)
• At every (next) input, you can either shift onto the stack, or reduce the stack by

applying a transformation via two tables:
• Action table: shift, reduce, accept, error
• Goto table: jump post-reduction

• 👍 — works for most languages you’d want to write, fast to implement
• 👎 — requires a parser generator (tables are too tedious to do by hand for any

nontrivial language), shift/reduce, reduce/reduce conflicts are hard to debug!

Parsing: Fin

• My goal was to give you the basics of grammars, along with their key properties
and transformations. Can you define: grammar, LL(k), LR, recursive descent?

• What to know / practice: could you write a simple recursive-descent parser?
• One exam problem (making clear now): given some relatively simple grammar, can

you write a recursive descent parser?
• You can use any language—if you want to use pseudocode, fine, as long as I can

get the idea

