
CIS531 — Compiler
Construction

Kristopher Micinski

Fall 2025

Welcome to CIS531!

• Very happy to have you in class! It will be a great semester!
• This course: a tour of compiler design, along with some advanced (not hard!) topics
• We will be following a free book, which you should download:

• There are several versions of the book
• Project starters were rewritten (sometimes changed) by me!

• https://brinckerhoff.org/clements/2194-csc431/essentials-of-compilation.pdf
• Please stay in the class even if you think you are not prepared (talk to me if so)

• Grading designed to be somewhat forgiving, projects done in groups (if you want only)

https://brinckerhoff.org/clements/2194-csc431/essentials-of-compilation.pdf

Why take CIS531?

• Compilers, like OS, involve nearly every aspect of computer science:
• Algorithms (register allocation, program analysis, …)
• Data structures (syntax trees, control-flow graphs, …)
• Computability (grammars, automata, …)
• Programming languages (semantics, type checking, …)
• Systems (assembly code, ABIs, linking, …)
• Security (stack smashing, reverse engineering, …)
• Software Engineering (debugging, testing, specifications, …)

• We will talk (at least a little) about all of these!

Why take CIS531? …

Great way to demonstrate to employers that you are capable of doing hard
programming projects
Distinguishing course that tests your knowledge of the rest of the curriculum
Understand the internals of compiler design

Helps teach “how to learn” other languages
Challenging (but very useful) exercise in debugging across layers
Exposure to reading technical papers
(Optional) learn how to work on teams to develop a large project

Grading

• There will be:
• (50%) 4 projects — groups of up to three
• (15%) Present a paper — I have selected papers, you will make slides
• (30%) Exams — two written midterms

• Not quite like traditional exams, we will talk about this
• (5%) Participation — some incentive for you to come to class

• Assessed via participation quizzes:
• You will get 5% if you attend at least 2/3 of participation quizzes

Projects

• Project 1 (2 weeks) — Racket warmup, simple interpreter
• Project 2 (2 weeks) — Compiling arithmetic + variables to x86
• Project 3 (2 weeks) — Branching control-flow,
• Project 4 (~2.5 weeks) — set!, assignment conversion, procedures
• Project 5 — Final Project

Projects: Details

• You can work in groups of up to three
• If you don’t feel confident, please team up with someone who does
• If you are more confident, please consider working with someone who is a beginner
• There are some special rules (more work) required for teams

• Projects coded up in either Racket or Python (starter files for both)
• I strongly recommend Racket, and I will teach it during class
• Also, I will give a significant amount of hints, and will code up a significant portion of the

solution in class for students to follow along.
• Racket may look a bit intimidating, but it’s an easy language—I have a set of course videos

which will bring you quickly up to speed if you want to learn.
• Projects graded via autograder

Weekly Topics (first half of course…)

• Week 1: Introduction, preliminaries, x86 assembly crash course
• Week 2: Compiling basic blocks to straight-line assembly
• Week 3: Register allocation, liveness analysis, interference graphs
• Week 4: Register allocation via graph coloring
• Week 5: Branching control-flow (if/cond/…)
• Week 6: Loops and data-flow analysis
• Week 7: Program analysis, lattices, abstract interpretation

• Midterm exam here

Weekly Topics (second half of course…)

• Week 8: Tuples and Garbage Collection / Allocation
• Week 9: More GC, runtime systems
• Week 10: Functions, direct calls
• Week 11: Multiple parameters, tail calls, indirect calls
• Week 12: Advanced topics: Closure conversion
• Week 13: Advanced topics: Object orientation
• Week 14: Advanced topics: Security and Decompilation

Group Details
• Groups are per-project
• If you want to work in a group, you have to commit to meeting regularly
• You can work asynchronously, but you have to do the following:

• You must spend half of your time writing / reviewing code synchronously, together
• This can include debugging, or talking through concepts / white boarding

• For each group where you work as a group, each group member must submit an email to me
at the end of the project saying:
• What they personally contributed to the project?
• Were they satisfied enough with their group’s performance?
• What things could they have done personally to improve group performance?
• What could others in their group do to improve group performance?
• After each project, the group must discuss: what are the top two things we can commit to

doing to improve our collaboration on the next project (if we worked together again)?

What is a compiler?

“Source” code
(C, C++, Rust, …)

Intermediate Representation

Lexical analysis, parsing
(Historically the “front end”)

Typically a tree, DAG, or similar
structure

Optimization, linearization,
instruction selection, …

Assembly
Code

Assembly

Object
Code

Static linking
(mushes together .o files)

Executable
File

Historically, compiler separated into “frontend” (lexing, parsing, etc…), “middle-end”
(semantic analysis, IR construction, some optimization), and “backend” (dumping to
machine-specific IR, assembly, linking)

“Source” code
(C, C++, Rust, …)

Intermediate Representation

Lexical analysis, parsing
(Historically the “front end”)

Typically a tree, DAG, or similar
structure

Optimization, linearization,
instruction selection, …

Assembly
Code

Assembly

Object
Code

Static linking
(mushes together .o files)

Executable
File

We will spend only a little time on the frontend, talking about
parsing/lexing for only a few lectures

“Source” code
(C, C++, Rust, …)

Intermediate Representation

Lexical analysis, parsing
(Historically the “front end”)

Typically a tree, DAG, or similar
structure

Optimization, linearization,
instruction selection, …

Assembly
Code

Assembly

Object
Code

Static linking
(mushes together .o files)

Executable
File

We will spend almost all of our time here. Going from the assembly code to object code is tedious and
not very intellectually interesting: lots of assemblers / linkers exist already

Linking is interesting and hard, but we will not talk about it too much (not my expertise)

Compilers are designed in passes

• Lexical analysis — separate out individual tokens from a stream
• Syntactic analysis (parsing) — build AST / parse tree
• Semantic analysis (name resolution, typing, etc…)
• Intermediate Representation (IR) construction
• Machine-independent optimization passes (possibly many) on IR
• Machine-dependent lowering (addressing modes, vector ops, etc.)
• Register allocation, spilling, etc.
• Instruction scheduling, peephole optimization, etc.
• Assembly / object code emission
• Linking and relocation
• Metadata emission (DWARF, …) — GC metadata emission, debugging symbols, etc.C

lo
se

ne
ss

 to
 m

ac
hi

ne
 c

od
e

The Waterfall (Dragon Book) Approach: Pros/Cons

• Many classes take a top-down approach, but this has several drawbacks:
• Lots of work, need to know whole language up-front, redoing lots of preexisting passes
• Hard to beat modern C/C++/Rust compilers in practice (compile to C/C++/Rust?)
• The payoff is a long time down the road: can’t run any program until the very end

• Several possible solutions:
• Write interpreters for intermediate IRs (unsatisfying, seeing x86 is exciting!)
• Compile to higher-level language (C/C++/Rust)

• Modern compilers (clang, etc.) are amazing in practice
• Downside: you don’t learn to truly compile to assembly, which is still relevant
• But a very popular solution in practice (e.g., Soufflé Datalog)

• Start in the middle (ignore parsing) by using an easily-parsable thing (e.g., JSON)
• Parsing is interesting but orthogonal to the semantics

We take an incremental approach

• My course follows Jeremy Siek’s approach (replicated at many other unis!)
• Unlike the traditional approach, we build a whole compiler in every project
• This way, you can use the compiler (completely) at every point

• The language is the thing that grows, rather than the compiler
• Also, you have to develop a good debugging strategy (for assembly) early

• It is crucial to acquire the skills necessary to debug the IR at multiple stages!

A nested tower of increasingly-powerful languages

Lvar

LIf

LWhile

LTup

LFun

(Stolen from Jeremy Siek’s slides)

Order of language the book presents:
LVar — integer +/-, straight-line variables
LIf — branching control
LWhile — loops
LTup — heap-allocated data, GC
LFun — functions
Some more…

We will follow roughly this structure, some
variation toward the end (final project)

We have Racket (Scheme) and Python variants

Lvar

LIf

LWhile

LTup

LFun

(let ([x (* 5 3)])
 (let ([y (+ x (* x x))])
 (+ (read) 5)))

x = 5 * 3
y = x + x*x
read_int() + 5

Racket variant…

Python variant…

(let ([x (* 5 3)])
 (let ([y (+ x (* x x))])
 (+ (read) 5)))

x = 5 * 3
y = x + x*x
read_int() + 5

Racket variant…

Python variant…

The key insight is that the specific
syntax doesn’t really matter.
We give Racket (Scheme) and
Python variants, but only the
surface syntax differs

We provide starter code and test
harnesses in Python and Racket

I strongly recommend coding in
Racket! I will offer substantial
help (both in class / OH)!

So what is the language?

The focus of the course is not functional programming!
If you are concerned that you will only be learning useless FP stuff, do not
worry—the principles apply across languages / paradigms!
We have test cases in Python and Racket (just syntactic differences!)
I am also open to you doing the class in other languages if you have a strong
preference—though we need to have a conversation beforehand so I can
grade your solutions

I will program in Racket—not because it is a functional language—because it is the
best tool for the job

Do not worry if you don’t know Racket—I will keep it very simple, and we will
go slow at first
All of the topics in the course translate directly to Python, Rust, Java, C++, …!

Check your Knowledge

A few questions after this lecture:

Is attendance required? If so, how is it measured?
What language will be used for projects?
Are we using a book? If so, do you have to pay for it?
Can you work in groups? If so, what are the parameters?

Ask me (kkmicins@syr.edu) if you want to discuss answers after class

mailto:kkmicins@syr.edu

