Syracuse University

College of Engineering
& Computer Science

Welcome to CIS531!

e Very happy to have youin class! It will be a great semester!
e This course: a tour of compiler design, along with some advanced (not hard!) topics
e We will be following a free book, which you should download:

® There are several versions of the book

e https://brinckerhoff.org/clements/2194-csc431/essentials-of-compilation.pdf
e Please stay in the class even if you think you are not prepared (talk to me if so)
e Grading designed to be somewhat forgiving, projects done in groups (if you want only)

ESSENTIALS OF
COMPILATION

AA

https://brinckerhoff.org/clements/2194-csc431/essentials-of-compilation.pdf

Why take CI1S531?

e Compilers, like OS, involve nearly every aspect of computer science:
e Algorithms (register allocation, program analysis, ...)

Data structures (syntax trees, control-flow graphs, ...)

Computability (grammars, automata, ...)

Programming languages (semantics, type checking, ...)

Systems (assembly code, ABIs, linking, ...)

Security (stack smashing, reverse engineering, ...)

Software Engineering (debugging, testing, specifications, ...)

e We will talk (at least a little) about all of these!

Why take CIS5317?...

Great way to demonstrate to employers that you are capable of doing hard
programming projects

Distinguishing course that tests your knowledge of the rest of the curriculum

Understand the internals of compiler design
Helps teach “how to learn” other languages

Challenging (but very useful) exercise in debugging across layers

Exposure to reading technical papers

(Optional) learn how to work on teams to develop a large project

Grading

® There will be:
e (50%) 4 projects — groups of up to three
® (15%) Present a paper — | have selected papers, you will make slides
e (30%) Exams — two written midterms
e Not quite like traditional exams, we will talk about this
e (5%) Participation — some incentive for you to come to class
® Assessed via participation quizzes:

e You will get 5% if you attend at least 2/3 of participation quizzes

Projects

Project 1 (2 weeks) — Racket warmup, simple interpreter

Project 2 (2 weeks) — Compiling arithmetic + variables to x86
Project 3 (2 weeks) — Branching control-flow,

Project 4 (~2.5 weeks) — set!, assignment conversion, procedures
Project 5 — Final Project

Projects: Details

e You canwork in groups of up to three
e |f youdon’t feel confident, please team up with someone who does
e |f you are more confident, please consider working with someone who is a beginner
e There are some special rules (more work) required for teams
® Projects coded up in either Racket or Python (starter files for both)
e |strongly recommend Racket, and | will teach it during class

o Also, | will give a significant amount of hints, and will code up a significant portion of the
solution in class for students to follow along.

e Racket may look a bit intimidating, but it’s an easy language—I have a set of course videos
which will bring you quickly up to speed if you want to learn.

e Projects graded via autograder

Weekly Topics (first half of course...)

Week 1: Introduction, preliminaries, x86 assembly crash course
Week 2: Compiling basic blocks to straight-line assembly

Week 3: Register allocation, liveness analysis, interference graphs
Week 4: Register allocation via graph coloring

Week 5: Branching control-flow (if/cond/...)

Week 6: Loops and data-flow analysis

Week 7: Program analysis, lattices, abstract interpretation

e Midterm exam here

Weekly Topics (second half of course...)

Week 8: Tuples and Garbage Collection / Allocation
Week 9: More GC, runtime systems

Week 10: Functions, direct calls

Week 11: Multiple parameters, tail calls, indirect calls
Week 12: Advanced topics: Closure conversion

Week 13: Advanced topics: Object orientation

Week 14: Advanced topics: Security and Decompilation

Group Details

e Groups are per-project
e |f youwanttoworkina group, you have to commit to meeting regularly
® You can work asynchronously, but you have to do the following:
e You must spend half of your time writing / reviewing code synchronously, together

e This caninclude debugging, or talking through concepts / white boarding

® Foreach group where you work as a group, each group member must submit an email to me
at the end of the project saying:

What they personally contributed to the project?

Were they satisfied enough with their group’s performance?

What things could they have done personally to improve group performance?
What could others in their group do to improve group performance?

After each project, the group must discuss: what are the top two things we can commit to
doing to improve our collaboration on the next project (if we worked together again)?

What is a compiler?

Historically, compiler separated into “frontend” (lexing, parsing, etc...), “middle-end”
(semantic analysis, IR construction, some optimization), and “backend” (dumping to
machine-specific IR, assembly, linking)

“*Source” code ntermediate Representation Assembly Object Executable
(C,C++ Rust,...) P Code Code File

a~ Assembly
i .0 .exe
<C0de> ﬁ |!Q {M v | ﬁ 11(())1 ﬁ D

; e
Lexical analysis, parsing — Static linking

L « » Optimization, linearization .
(Historically the “front end”) P . . ’ (mushes together .o files)
instruction selection, ...

Typically a tree, DAG, or similar
structure

We will spend only a little time on the frontend, talking about
parsing/lexing for only a few lectures

“*Source” code , , Assembly Object Executable
Intermediate Representation

(C,C++ Rust,...) Code Code File
a~ - Assembly
. .0 ;
<C0de> — IR m— {23353,’33_)_} 19| — ;
Lexical analysis, parsing < Static linking

Optimization, linearization,

(Historically the “front end”) . . .
instruction selection, ...

(mushes together .o files)

Typically a tree, DAG, or similar
structure

We will spend almost all of our time here. Going from the assembly code to object code is tedious and
not very intellectually interesting: lots of assemblers / linkers exist already

Linking is interesting and hard, but we will not talk about it too much (not my expertise)

“*Source” code ntermediate Representation Assembly Object Executable
(C,C++ Rust,...) P Code Code File
d O _ Assembly
<CO0AQe> ———— ik —p [0 | e [570 —>’§
| -) _")) oy
Lexical analysis, parsing — Static linking

Optimization, linearization,

(Historically the “front end”) . . .
instruction selection, ...

(mushes together .o files)

Typically a tree, DAG, or similar
structure

Compilers are designed in passes

o Lexical analysis — separate out individual tokens from a stream

e Syntactic analysis (parsing) — build AST / parse tree

e Semantic analysis (name resolution, typing, etc...)

e Intermediate Representation (IR) construction

e Machine-independent optimization passes (possibly many) on IR
e Machine-dependent lowering (addressing modes, vector ops, etc.)
e Register allocation, spilling, etc.

e Instruction scheduling, peephole optimization, etc.

e Assembly / object code emission

e Linking and relocation

e Metadata emission (DWAREF, ...) — GC metadata emission, debugging symbols, etc.

Closeness to machine code

The Waterfall (Dragon Book) Approach: Pros/Cons

e Many classes take a top-down approach, but this has several drawbacks:
e Lots of work, need to know whole language up-front, redoing lots of preexisting passes
e Hard to beat modern C/C++/Rust compilers in practice (compile to C/C++/Rust?)
e The payoff is a long time down the road: can’t run any program until the very end

e Several possible solutions:

e Write interpreters for intermediate IRs (unsatisfying, seeing x86 is exciting!)

e Compile to higher-level language (C/C++/Rust)
e Modern compilers (clang, etc.) are amazing in practice
e Downside: you don’t learn to truly compile to assembly, which is still relevant
e But a very popular solution in practice (e.g., Soufflé Datalog)

e Start in the middle (ignore parsing) by using an easily-parsable thing (e.g.,]SON)
e Parsing is interesting but orthogonal to the semantics

We take an incremental approach

e My course follows Jeremy Siek’s approach (replicated at many other unis!)
e Unlike the traditional approach, we build a whole compiler in every project
e This way, you can use the compiler (completely) at every point
e The language is the thing that grows, rather than the compiler
e Also, you have to develop a good debugging strategy (for assembly) early
e |t is crucial to acquire the skills necessary to debug the IR at multiple stages!

A nested tower of increasingly-powerful languages

(Stolen from Jeremy Siek’s slides)

Order of language the book presents:

e | Var —integer +/-, straight-line variables
e LIf —branching control

e LWhile —loops

e | Tup — heap-allocated data, GC

® LFun—functions

® Some more...

We will follow roughly this structure, some
variation toward the end (final project)

We have Racket (Scheme) and Python variants

Racket variant...

(let ([x (* 5 3)])
(let ([y (+ x (* x x))])
(+ (read) 5)))

Python variant...

X 5 * 3
Y X + X*X
read int() + 5

The key insight is that the specific
syntax doesn’t really matter.
We give Racket (Scheme) and
Python variants, but only the

surface syntax differs |
Racket variant...

(let ([x (* 5 3)1])

let + *
We provide starter code and test (?_I_ §£Zaé) 55{) g | X X))])

harnesses in Python and Racket

Python variant...

X =5 * 3
y = X + X*X
read int() + 5

| strongly recommend coding in
Racket! | will offer substantial
help (both in class / OH)!

So what s the language?

o The focus of the course is not functional programming!

o |f you are concerned that you will only be learning useless FP stuff, do not
worry—the principles apply across languages / paradigms!

o We have test cases in Python and Racket (just syntactic differences!)

o | am also open to you doing the class in other languages if you have a strong
preference—though we need to have a conversation beforehand so | can
grade your solutions

o | will program in Racket—not because it is a functional language—because it is the
best tool for the job

o Do not worry if you don’t know Racket—I will keep it very simple, and we will
go slow at first

o All of the topics in the course translate directly to Python, Rust, Java, C++, ...!

Check your Knowledge

A few questions after this lecture:

o |s attendance required? If so, how is it measured?

0 What language will be used for projects?

o Are we using a book? If so, do you have to pay for it?

o Canyou work in groups? If so, what are the parameters?

Ask me (kkmicins@syr.edu) if you want to discuss answers after class

mailto:kkmicins@syr.edu

