
S
S

Compiling Arithmetic

Expressions to C

Kristopher Micinski

CIS531 — Fall 2025, Syracuse

Lecture Roadmap

Let’s write an end-to-end compiler, minimal possible overhead!

First, define the language
Write a parser / lexer / etc.

Second, define its semantics
Write an interpreter

Third, compile it to x86_64
Keep it as simple as possible!

By the end of the lecture, we’ll have a complete compiler

The R0 language

• Consists of arithmetic expressions (which may be recursive) wrapped in a single,
top-level ‘(program …) block

• As a grammar (more on this soon), we would write (Fig 1.1 in the book):

exp ::= int | (read) | (- exp) (+ exp exp)
R0 ::= (program exp)

• Only (binary) addition and (unary) negation, can accept user input (integers)
from stdin via (read).

4

(define (exp? sexp)
 (match sexp
 [(? fixnum?) #t]
 [‘(read) #t]
 [‘(- ,e) (exp? e)]
 [‘(+ ,e1 ,e2)
 (and (exp? e1) (exp? e2))]
 [else #f]))

(define (R0? sexp)
 (match sexp
 [‘(program ,e) (exp? e)]
 [else #f]))

(R0? ‘(program (+ (read) (- 8)))) ;; #t
(R0? ‘(program (- (read) (+ 8)))) ;; #f

An interpreter for R0

• Consists of arithmetic expressions (which may be recursive) wrapped in a single,
top-level ‘(program …) block

• As a grammar (more on this soon), we would write (Fig 1.1 in the book):

exp ::= int | (read) | (- exp) (+ exp exp)
R0 ::= (program exp)

• Only (binary) addition and (unary) negation, can accept user input (integers)
from stdin via (read).

Building the interpreter

• We make things simple: no parsing, input program is an S-expression (read)
• Now, we define an interpreter using recursion and pattern matching
• The output of our interpreter is a number

• All programs in this language produce a single number—this makes it easy!
• So now define interp : Expression -> Integer
• Let’s code it up in Racket!

Building the interpreter

(define (interp-R0 e)
 (define (interp e)
 (match e
 [(? fixnum? n) n]
 ['(read) (read)]
 [`(- ,e+) (- (interp e+))]
 [`(+ ,e0 ,e1) (+ (interp e0) (interp e1))]))
 (match e
 [`(program ,e+) (interp e+)]))

Compiling R0 to C

Our main goal is to write an end-to-end compiler, we’ll make it easy by compiling to C
To compile to assembly, we’ll need to first have a crash course on x86_64 assembly
C is a great compilation target—we intentionally compile to x86_64 to learn how
Key: just translate the nested expressions into nested C expressions
Print the result to the screen
Input (from stdin) happens via a utility function we will write

9

(define (r0->c r0)
 (define (translate-expr e)
 (match e
 [(? fixnum? i) (number->string i)]
 ['(read) "read_int64()"]
 [`(- ,e) (format "(- ~a)" (translate-expr e))]
 [`(+ ,e0 ,e1) (format "(~a + ~a)"
 (translate-expr e0)
 (translate-expr e1))]))
 (match r0
 [`(program ,e)
 (format (string-append "#include \"runtime.h\"\n\n"
 "int main(int argc, char **argv) {\n"
 " print_int64(~a);\n"
 "}\n")
 (translate-expr e))]))

Here’s the whole compiler
The language is very simple, using C makes all the hard parts easy

10

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>

int64_t read_int64(void) {
 int64_t value;
 if (scanf("%" SCNd64, &value) != 1) {
 /* handle input error as needed */
 printf("Error: expected an integer. Exiting.");
 exit(1);
 }
 return value;
}

void print_int64(int64_t n) {
 printf("%" PRId64 "\n", n);
}

To make generated code as easy as possible, I use this runtime.h

11

#include "runtime.h"

int main(int argc, char **argv) {
 print_int64(((5 + 3) + (- (2 + read_int64()))));
}

(program (+ (+ 5 3) (- (+ 2 (read)))))

r0->c

Example compilation…

12

example/ # gcc compiled.c -o output
example/ # ./output
… # awaits user input…

Compile and run this code…

Debrief

That was easy! We wrote a whole compiler!?

We skipped all of the hard parts:
C supports features like nested expressions,
Variables,
User input,
Etc…

Parsing was simple: (read)
From now on, we’ll use x86_64 assembly

