Syracuse University

College of Engineering
& Computer Science

Lecture Roadmap

Let’s write an end-to-end compiler, minimal possible overhead!

o First, define the language
o Write a parser / lexer / etc.
0 Second, define its semantics
o Write an interpreter

a Third, compileit to x86 64
o Keep it as simple as possible!

By the end of the lecture, we’ll have a complete compiler

The Rg language

e Consists of arithmetic expressions (which may be recursive) wrapped in a single,
top-level ‘(program ...) block

e As a grammar (more on this soon), we would write (Fig 1.1 in the book):

exp ::=int| (read) | (- exp) (+ exp exp)
Ro::= (program exp)

e Only (binary) addition and (unary) negation, can accept user input (integers)
from stdin via (read).

(define (exp? sexp)

(match sexp

[(? fixnum?) #t]

[(read) #t]

‘(= ,e) (exp? e)]

[
[‘(+ ,el ,e2)

(and (exp? el) (exp? e2))]

[else #f]))

(define (RO? sexp)
(match sexp
[(program ,e)
[else #f]))

(RO? ' (program (+
(RO? ' (program (-

(exp? e)]

(read) (-
(read) (+

An interpreter for Rg

e Consists of arithmetic expressions (which may be recursive) wrapped in a single,
top-level ‘(program ...) block

e As a grammar (more on this soon), we would write (Fig 1.1 in the book):

exp ::=int| (read) | (- exp) (+ exp exp)
Ro::= (program exp)

e Only (binary) addition and (unary) negation, can accept user input (integers)
from stdin via (read).

Building the interpreter

e We make things simple: no parsing, input program is an S-expression (read)
e Now, we define an interpreter using recursion and pattern matching
e The output of our interpreter is a number

e All programs in this language produce a single number—this makes it easy!
e Sonow defineinterp : Expression -> Integer
e Let’s codeitupinRacket!

Building the interpreter

(define (i1nterp-R0O e)
(define (1nterp e)
(match e
[(? fixnum? n) n]
[' (read) (read)]

[(- ,et) (- (interp e+))]
[(+ ,e0 ,el) (+ (interp e0) (interp el))]))
(match e

[(program ,e+) (interp e+)]))

Compiling Roto C

o QOur main goal is to write an end-to-end compiler, we’ll make it easy by compiling to C
o To compile to assembly, we’ll need to first have a crash course on x86 64 assembly

o (Cisagreat compilation target—we intentionally compile to x86_64 to learn how

o Key: just translate the nested expressions into nested C expressions

® Print the result to the screen

o |nput (from stdin) happens via a utility function we will write

Here’s the whole compiler
The language is very simple, using C makes all the hard parts easy

(define (r0->c r0)
(define (translate-expr e)
(match e

(? fixnum? 1) (number->string 1)]

' (read) "read 1int64()"]

(- ,e) (format "(- ~a)" (translate-expr e))]

' (+ ,e0 ,el) (format "(~a + ~a)"
(translate-expr e0)
(translate-expr el))]))

(match r0
[(program ,e)
(format (string-append "#include \"runtime.h\"\n\n"
"int main(int argc, char **argv) {\n"
" print int64(~a);\n"
"I\n")

(translate-expr e))]))

To make generated code as easy as possible, | use this runtime.h

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>

int64 t read int64(void) {
int64 t value;
1f (scanf("%" SCNd64, &value) != 1) {
/* handle input error as needed */
printf("Error: expected an integer. Exiting.");
exit(1l);
}

return value;

}

void print int64(int64 t n) {
printf("%" PRId64 "\n", n);
}

10

Example compilation...

(program (+ (+ 5 3) (- (+ 2 (read)))))
r0->c

#include "runtime.h"
int main(int argc, char **argv) {

print int64(((5 + 3) + (- (2 + read int64()))));
'

11

Compile and run this code...

example/ # gcc compiled.c -o output
example/ # ./output
.. # awalts user input..

12

That was easy! We wrote a whole compiler!?

o We skipped all of the hard parts:
o C supports features like nested expressions,
o Variables,
o Userinput,
o Etc...
o Parsing was simple: (read)
o From now on, we’'ll use x86 64 assembly

