Interpreting call/cc

The CEK machine

CIS400 (Compiler Construction)
Kris Micinski, Fall 2021

 call/ccis a very powerful control construct

e Can use it to iImplement exceptions, coroutines,
etc. ..

* Implementing call/cc requires that we be able to
materialize continuations as values at runtime

e Just as lambdas require us to represent closures
at runtime

e Also need to handle continuation invocation

Normal Racket exceptions...

with-handlers adds an exception handler

(define (my-exception?
(match e

[(my-except1i

[#f1))

,(? number? n)) #t]

(with-handlers ([my-exception?
(match-1lambda [(my-exception ,n) (displayln n)])])
(+ 5 (raise (my-exception 8))))

\

Within evaluation of body, exceptions may be raised

=xceptions (one encoding) via call/cc

(define (my-exception? e)
(match e
[(my-exception ,(? number? n)) #t]
[#f1))

(with-handlers ([my-exception?
(match-lambda [(my-exception ,n) (displayln n)])])
(+ 5 (raise "(my-exception 8))))

First, wrap entire thing in call/cc to get an “outer” continuation

(call/cc
(lambda (k)

)

-xceptions via call/cc

(define (my-exception? e)
(match e
[(my-exception ,(? number? n)) #t]
[#f1))

(with-handlers ([my-exception?
(match-lambda [(my-exception ,n) (displayln n)])])
(+ 5 (raise "(my4exception 8))))

First, wrap extirglthing in call/cc to get an “outer” continuation
Next, wrap b in call/cc and a match
Match will mgtch the return value, either answer or exception

(call/cc
(lambda (k
(match
(caljl/cc
(ldmbda (riilse-exception)
+ 5 (raise-exception " (my-exception 8)))))
[(my-exception ,n) (displayln n)]
;3 any non-exception value, terminate "normally"
[anything-else (k anything-else)])))

This is just one illustrative encoding | made up.

You could also, say, take all “normal” return points and add a
call to k (the original continuation)

Broad point: continuations ala call/cc (or some other
primitive control operator) add a lot of expressivity we want

(call/cc
(lambda (k)
(match
(call/cc
(lambda (raise-exception)
(k (+ 5 (raise-exception "(my-exception 8))))))
[(my-exception ,n) (displayln n)])))

Continuations are very useful and a great foundation for

control operators in our language

However, now we need to implement them

The nex
compl
(we wi

- project will be having you implement call/cc by
ing everything to a specific style named CPS

| soon talk about CPS and see why it Is useful)

In today'’s lecture we will build an interpreter for
LC + call/cc

Stack-passing (CEK) semantics

(implementing first-class continuations)

Abstract Machine Semantics

One common semantics (we have been touching upon) is the
abstract machine style

In style style of semantics, we define an “abstract machine” (like a
VM) that takes a sequence of steps to compute an answer

Initial state

—O—0

Q@

Final state

Abstract Machine Semantics

To define an abstract machine, we must specity:
- The type (i.e., structure) of abstract machine states
- A step relation tells us how one state proceeds to next
- Often this will be a function (rather than a relation, in which
case semantics may be nondeterministic)
- How to inject a program into an initial state
- What final states look like

Initial state

—0O—0O

@

Final state

Abstract Machine Semantics

To define an abstract machine, we must specity:
- The type (i.e., structure) of abstract machine states
- A step relation tells us how one state proceeds to next
- Often this will be a function (rather than a relation, in which
case semantics may be nondeterministic)
- How to inject a program into an initial state
- What final states look like

Initial state

—0O—0O

@

Final state

"Running” the machine

Is simply the transitive closure of the step function (or, if step
function is a relation, iteration to a fixed point of a state graph)

Initial state

O

"Running” the machine

Is simply the transitive closure of the step function (or, if step
function is a relation, iteration to a fixed point of a state graph)

Initial state

—O

"Running” the machine

Is simply the transitive closure of the step function (or, if step
function is a relation, iteration to a fixed point of a state graph)

Initial state

O—O—0

"Running” the machine

Is simply the transitive closure of the step function (or, if step
function is a relation, iteration to a fixed point of a state graph)

Initial state

O—O—0—~0

"Running” the machine

Is simply the transitive closure of the step function (or, if step
function is a relation, iteration to a fixed point of a state graph)

Initial state

O—O—0

@

Final state

Abstract Machines in Racket

(define/contract (step s)
(define (expr? e) (-> state? state?)
'todo)
(define (state? s) 'todo)
(define/contract (inject s)
(-> state? state?)
'todo)

C Control-expression

Term-rewriting / textual reduction
Context and redex for deterministic eval

CE Control & Env machine
B1g-step, explicit closure creation

CES Store-passing machine
Passes addr->value map in evaluation order

CEK Stack-passing machine

Passes a list of stack frames, small-step

19

Previously...

(ep €1), env V

20

Previously...

To define the semantics, we need to
know what egand e1evaluate to

21

In our previous interpreter, the

(define (interp e env) interpreter itself is recursive.
(match e 1nterp uses Racket’s stack!
[(? symbol? x)
(hash-ref env x)]

[(A (,X) ,e€0)
“(clo (A (,Xx) ,eq) ,env)]

[(,e0 ,e€1)
(define ve (interp ee env))
(define vi (interp ei1 env))
(match ve
[(clo (A (,xX) ,e2) ,env)
(interp ez (hash-set env x v1))1)1]1))

22

(interp

¢

(prim + (prim * 3 2) 5) env)

> (interp (prim * 3 2) env)

N V A

>

_- 01~ 0O A V V

(interp 3)
3
(interp 2)
2

interp 5 env)

Nested calls (to interp) in the
interpreter then form nested call
stacks In Racket

23

We will add call/cc to the language

e ::= (A (x) e)

(e e)

X

(call/cc (A (xX) e))

Our interpreter will explicitly represent a stack

24

e ::= (A (X)) e)

(e e)

X

(call/cc (A (xX) e))

25

CEK machine

Control, Environment, Kontinuation
- States are (c, env, k) where...
- C (control) is an expression
- env (environment) is a map from variables to values
- k is a continuation (representation of the stack)
- We will define k structurally in the next slide
- We define the step function in the next few slides
- The initial state for a program e is...
- (e, [], Done) where e is the program, [] is the empty
env, and Done Is a special "Done” continuation
- A state Is final when it has no next step and the

continuation is “Done”

The lambda calculus already has a bit of lurking complexity in it:
evaluating the function and argument position require an unbounded
amount of work. ..

If all arguments were atomic, defining the semantics gets simpler (we
know arguments can be immediately evaluated)—this is called ANF
(administrative normal form) and we will cover it shortly.

((Llambda (x) x) (lambda (y) y))
- Both arguments atomic (can be evaluated immediately)

(((Llambda (x) x) (lambda (y) y)) (lambda (z) z))
- First argument is not atomic

((((Lambda (x) x) (lambda (y) y)) (lambda (z) z))
(((lambda (a) a) (lambda (b) b)) (lLambda (c) c)))

- Neither argument atomic

Continuations for CEK

When the CEK machine encounters a callsite, it pushes a
frame to the stack (continuation) to remember to go back
and evaluate the argument.

When evaluation of the function position is complete, the
machine switches to evaluating the arguments, but needs
to remember to then apply the (computed) closure

(((Lambda (x) x) (lambda (Cy) y)) (lambda (z) z)), env = {}, k = Done

Start to evaluate fn position \\Remember to eval arg.
N

((lambda (x) x) (lambda (y) y)), env = {}, k = Ar<(Clambda (z) z), {3}, Done>

(((Lambda (x) x) (lambda (Cy) y)) (lambda (z) z)), env = {}, k = Done

Start to evaluate fn position \\Remember to eval arg.
X

((lambda (x) x) (lambda (y) y)){= {}, k = Ar<(lambda (z) z),{},Done>

Continue to evaluate fn yet again \ Rémember to eval this one's argument

v
(lambda (x) x), env = {}, k = Ar<(Clambda (y) y), Ar<(lambda (z) z),{},Done>>
\

Here we are done, this evals to a closure clo<(lambda (x) x),[]>

v
(lambda (Cy) y), env = {}, k = Fn<€lo<(lambda (x) x),[]), Ar<(lambda (z) z),{},Done>>

S0 we swap from evaluating the function (of the purple thing) to evaluating its argument (the
red thing), saving the closure (to remember to apply later)

Also, we remember that later on we need to do Ar<(lambda (z) z), Done>

(((Lambda (x) x) (lambda (Cy) y)) (lambda (z) z)), env = {}, k = Done

Start to evaluate fn position \\Remember to eval arg.
X

((lambda (x) x) (lambda (y) y)){= {}, k = Ar<(lambda (z) z),{},Done>

/Continue to evaluate fn yet again \ Rémember to eval this one's argument

v v
(lambda (x) x), env = {}, k = Ar<(Clambda (y) y), Ar<(lambda (z) z),{},Done>>
\

Here we are done, this evals to a closure clo<(lambda (x) x),[]>

v
(lambda (Cy) y), env = {}, k = Fn<€lo<(lambda (x) x),[]), Ar<(lambda (z) z),{},Done>>

S0 we swap from evaluating the function (of the purple thing) to evaluating its argument (the
red thing), saving the closure (to remember to apply later)

This is also a value, so we build a closure again, but this time we apply the saved closure
We do this by swapping into the stored environment [] extended with a binding for X
And then stepping to the body of the stored closure...

{x |-> clo<(lambda (x) x),[1)}, Ar<(Clambda (z) z),{},Done>>

X, env

Also, now that we're in the body, we pop the stack to the previous frame

We do this by swapping into the stored environment [] extended with a binding for X
And then stepping to the body of the stored closure...

X, env = {x |->_clo<(Clambda (x) x),[]1)}, Ar<(lambda (z) z),{},Done>>

Also, now that we're in the body, we pop the stack to the previous frame

X 1S a value, so we look it up in the current env, it is a closure. We swap to evaluating
the body of the argument (i.e., the orange thing), substituting z (its argument) with
the value of x (the closure we just looked up)

z, env = {z |-> clo<(lambda (x) x),[])}, Done>

Note that the stack shrinks back to just Done

We're now in an accepting state: there’s only a value being popped to Done. If we
coded up our semantics to give us an answer, this is the point at which we’'d have it.

((Clambda (x) x) (Llambda (Cy) y)) (lambda (z) z)), env = {}, k = Done

Let’s think about this another way: watching the program and
stack change over time (representing stack visually)

Portion of program being evaluated Stack

(((Aambda (x) x) (lambda (y) y)) (lambda (z) z)) i Done

(((Lambda (x) x) (lambda (y) y)) (lambda (z) z)), env = {}, k = Done

((lambda (x) x) (lambda (y) y)), env = {}, k = Ar<(lambda (z) z), Done>

Ar<(lambda (z) z)
>

(((lambda (x) x) (lambda (y) y)) (lambda (z) z)) Done

(((Lambda (x) x) (lambda (y) y)) (lambda (z) z)), env = {}, k = Done

((lambda (x) x) (lambda (y) y)), env = {}, k = Ar<(lambda (z) z), Done>

(lambda (x) x), env = {}, k = Ar<(lambda (Cy) y), Ar<(lambda (z) z), Done>>

Ar<(lambda (y) y)
>

Ar<(lambda (z) z)
>

((Clambda () x) (lambda (y) y)) (lambda (2) 2)) Done

(((Lambda (x) x) (lambda (y) y)) (lambda (z) z)), env = {}, k = Done

{}, k = Ar<(lambda (z) z), Done>

((lambda (x) x) (lambda (Cy) y)), env

(lambda (x) x), env = {}, k = Ar<(lambda (Cy) y), Ar<(lambda (z) z), Done>>

(lambda (Cy) y), env = {}, k = Fn<clo<(lambda (x) x),[]), Ar<(lambda (z) z), Done>>

Fn<clo(lambda (x)
x), L1, .>

Ar<(lambda (z) z)

—

(((Llambda (x) x) (lambda (y) y)) (lambda (z) z)) Done

(((Lambda (x) x) (lambda (y) y)) (lambda (z) z)), env = {}, k = Done

((lambda (x) x) (lambda (y) y)), env = {}, k = Ar<(lambda (z) z), Done>

(lambda (x) x), env = {}, k = Ar<(lambda (Cy) y), Ar<(lambda (z) z), Done>>

(lambda (Cy) y), env = {}, k = Fn<clo<(lambda (x) x),[]), Ar<(lambda (z) z), Done>>

X, env = {x |-> clo<(lambda (x) x),[1)}, Ar<(lambda (z) z),{},Done>>

Ar<(lambda (z) z)
>

(((lambda (x) x) (lambda (y) y)) (lambda (z) z)) i Done

(((Lambda (x) x) (lambda (y) y)) (lambda (z) z)), env = {}, k = Done

((lambda (x) x) (lambda (y) y)), env = {}, k = Ar<(lambda (z) z), Done>

(lambda (x) x), env = {}, k = Ar<(lambda (Cy) y), Ar<(lambda (z) z), Done>>

(lambda (Cy) y), env = {}, k = Fn<clo<(lambda (x) x),[]), Ar<(lambda (z) z), Done>>

X, env = {x |-> clo<(lambda (x) x),[1)}, Ar<(lambda (z) z),{},Done>>

z, env = {z |-> clo<(lambda (x) x),[])}, Done>

(((lambda (x) x) (lambda (y) y)) (lambda (z) z)) i Done

k := halt | ar(e, env, k)
| fn(v, k)

\/

(e e)

38

k := halt | ar(e, env, k)
| fn(v, k)

\/

39

Our interpreter will also include atoms

If we assume arguments to forms (e.g., prim) are atoms, we can
define their semantics without additional continuations

;3 atomically-evaluable-expressions
(define (atom? a)
(match a
["(lambda (,x) ,e) #t]
[(7 number? n) #t]
[(? symbol? x) #t]
[_ #f1))

(define (expr? e)
(match e
" (lambda (,(? symbol? x)) ,(? expr? e)) #t]
(? number? n) #t]
"(, (7 expr? ed) ,(? expr? el)) #t]
“(prim ,prim ,(? atom? x) ,(? atom? y)) #t]
(? symbol? x) #t]
“(call/cc ,(? expr? e)) #t]
_ #f1]))

(define environment? hash?)

(define (value? v)
(match v
[(? number? n) #t] ;; numeric constants
[(clo ,(? expr? e) ,(? environment? env)) #t]
;5 very important: now continuations can be values as well!
;5 means we have to be able to *apply* them
[(? continuation? k) #t]

[- #t1))

(define (state? s)
(match s
[(,(? expr? c) ,(? environment? env) ,(? continuation? k)) #t]

[- #t1))

(define (continuation? k)
(match k
(ar ,(? expr? e) ,(? environment? env) ,(? continuation? k)) #t]
" (fn ,(? value? v) ,(? continuation? k)) #t]
"done #t]

_ #f1))

((eo e1),env, k) = (eq, env, ar(es, env, k))

(X, env, ar(e1, envi, k1)) = (e1, envy, fn(env(x), k1))

((A (x) e),eny ar(es, envy, k1)) = (e1, envy, In(((A (x) e), env), k1))

(x, env, fn(((A (x1) e1), envy), k1)) = (e1, envi[xi » env(x)], ki)

(A (x) e),env, fIn(((A (x1) e1), envy), ki))
— (e1, envi[xi e ((A (X) e), env)], ki)

42

call/cc semantics

((call/cc (A (X) ep)),env, k) = (es, env[xwe k], k)

((A (x) eo),eny, fn(ko, k1)) = ((A (x) es), eny, ko)

(x, env, fn(ko, k1)) — (X, env, ko)

43

e ::= ... | (let ([X ee]) e1)

k == ... | let(x, e, env, k)

(x, env, let(x1, e1, envy, k1)) — (e1, envi[xs » env(x)], k1)

((A (x) e),eny, let(xq, e1, envy, k1)) = (e1, envi[xi» ((A (X) e), env)], kq)

44

(x, env, fn(((A (x1) e1), envy), k1)) = (e1, envi[xi » env(x)], ki)

((A (x) e),env, In(((A (X1) e1), envy), k1))
— (e1, envi[xi» ((A (x) e), env)], ki)

These are nearly identical because a let form is
just an immediate application of a lambdal

(x, env, let(x1, e1, envy, k1)) — (e1, envi[xs » env(x)], k1)

((A (x) e),eny, let(xq, e1, envy, k1)) = (e1, envi[xi» ((A (X) e), env)], kq)

45

;5 create an 1initial state
(define/contract (inject e)
(-> expr? state?)
"(,e ,Chash) done))

;5 evaluate an atomic value (mixes 1n aspects of ANF)
(define (eval-atomic a env)
(match a
"(lambda (,x) ,e) (clo ,a ,env)]
(7 number? n) n]
(7 symbol? x) (hash-ref env x)]))

(define/contract (step s)
(-> state? state?)
(define (op->fn op) (match op ['+ +] ['- -1 ["* *]1 [/ /1))

First, | define a helper tunction, (handle-return v k) that
returns a value? to a continuation k

(define/contract (step s)
(-> state? state?)
(define (op->fn op) (match op ['+ +] ['- -1 ["* *] [/ /1))
;3 How to handle the return of a value to a continuation
(define (handle-return value k)
(match k
;3 switch to a fn frame
[Car ,e-next ,env ,k-next)
"(,e-next ,env (fn ,value ,k-next))]
[(fn ,function ,k-next)
;5 handle an apply
(match function
[(clo (lambda (,x) ,e-body) ,env+)
"(,e-body ,Chash-set env+ x value) ,k-next)])]
["done (raise (done ,value))]))

X

We will raise an exception when we're done
(A bit of a hack for various reasons)

(define/contract (step s)

(-> state? state?)

. 33 op->fn and (handle-return v k)

(match s
;3 assumes that
[((call/cc (lambda (,x) ,e)) ,env ,k)
"(,e ,(hash-set env x k) ,k)]
['(,e ,env (fn ,(? continuation? k@) ,k1))
;3 switch to k@, continue to evaluate as normal.
“(,e ,env ,k0)]
["(,(? number? n) ,env ,k) (handle-return n k)]
;3 assume each argument 1s a variable
[(Cprim ,op ,a0@ ,al) ,env ,k)
(define v@ (eval-atomic a@® env))
(define vl (eval-atomic al env))
(handle-return ((op->fn op) vO v1) k)]
;5 push ar frame
[((,e0 ,el) ,env ,k) (,e0 ,env (ar ,el ,env ,k))]
["((lambda (,x) ,e) ,env ,k)

(handle-return "(clo (lambda (,x) ,e) ,env) k)]

[(,(? symbol? x) ,env ,k) (handle-return Chash-ref env x) k)]))

CEK-machine evaluation

I

(X, env, halt) = env(x)

50

(ee, [1, ()

I

(X, env, halt) = env(x)

(define (done? d) (match d [(done ,(? value? v)) #t] [_ #f]))

(define (trace-derivation e)
(define (step* state)
(with-handlers
([done? (match-lambda

[(done ,v)
(displayln (format "~a (final result)" v))])]1)

(define next-state (step state))

(pretty-print state)

(displayln "-->"

(step* next-state)))

(step* (inject e)))
51

> (trace-derivation '((lambda (x) (prim * x 3)) (call/cc (lambda (k) (k (prim + 2

3))))))
"(((Lambda (x) (prim * x 3)) (call/cc (lambda (k) (k (prim + 2 3)))))
#hash()

done)
-->
"((Llambda (x) (prim * x 3))
#hash()
(ar (call/cc (lambda (k) (k (prim + 2 3)))) #hash() done))
-->
"((call/cc (Lambda (k) (k (prim + 2 3))))
#hash()
(fn (clo (lambda (x) (prim * x 3)) #hash()) done))
-->
"((k (prim + 2 3))
#hash((k . (fn (clo (lambda (x) (prim * x 3)) #hash()) done)))
(fn (clo (lambda (x) (prim * x 3)) #hash()) done))
-->
ka
#hash((k . (fn (clo (lambda (x) (prim * x 3)) #hash()) done)))
(ar
(prim + 2 3)
#hash((k . (fn (clo (lambda (x) (prim * x 3)) #hash()) done)))
(fn (clo (Lambda (x) (prim * x 3)) #hash()) done)))
-=>
"((prim + 2 3)
#ha<h(C(Ck (fn Cclo Clambda (x) Corim * x) #ha<h()) done)))

(fn (clo (lambda (x) (prim * x 3)) #hash()) done))
-->
"(Ck Cprim + 2 3))
#hash((k . (fn (clo (Lambda (x) (prim * x 3)) #hash()) done)))
(fn (clo (lambda (x) (prim * x 3)) #hash()) done))
-->
'(k
#hash((k . (fn (clo (Lambda (x) (prim * x 3)) #hash()) done)))
(ar
(prim + 2 3)
#hash((k . (fn (clo (lambda (x) (prim * x 3)) #hash()) done)))
(fn (clo (lambda (x) (prim * x 3)) #hash()) done)))
-=>
"((prim + 2 3)
#hash((k . (fn (clo (lambda (x) (prim * x 3)) #hash()) done)))
(fn
(fn (clo (lambda (x) (prim * x 3)) #hash()) done)
(fn (clo (lambda (x) (prim * x 3)) #hash()) done)))
-=>
"((prim + 2 3)
#hash((k . (fn (clo (lambda (x) (prim * x 3)) #hash()) done)))
(fn (clo (lambda (x) (prim * x 3)) #hash()) done))
-=>
15 (final result)

