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The Curry-Howard Isomorphism

The Curry-Howard Isomorphism is a name given to the 
idea that every typed lambda calculus expression is a 
computational interpretation of a theorem in a suitable 
constructive logic.


For STLC: every well-typed term in STLC is a theorem 
in intuitionistic propositional logic (STLC ~= IPL).


So far, we have discussed four rules in STLC: Var, 
Const, App, and Lam


These rules exactly mirror corresponding rules in IPL
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VarΓ ⊢ x : t
x ↦ t ∈ Γ

Γ, P ⊢ PAssumption

The Var rule corresponds to the Assumption rule

In IPL, Γ is a set of propositions (assumed true)

In STLC, Γ is a map from type variables to their types

Γ : Var → Type Γ : Set(Proposition)
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App
Γ ⊢ e : A → B

Γ ⊢ (e e′￼) : B
Γ ⊢ e′￼ : A

VarΓ ⊢ x : t
x ↦ t ∈ Γ

⇒E
Γ ⊢ A

Γ ⊢ A ⇒ B Γ ⊢ A

Γ, P ⊢ PAssumption

The App rule corresponds to modus ponens in IPL

Notice how the type is A → B but in IPL it is A ⇒ B
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App

Lam
Γ, {x ↦ t} ⊢ e : A

Γ ⊢ (λ (x : t) e) : A → B

VarΓ ⊢ x : t
x ↦ t ∈ Γ

Γ, A ⊢ B
Γ ⊢ A ⇒ B

⇒I

⇒E
Γ ⊢ A

Γ ⊢ A ⇒ B Γ ⊢ A

Γ, P ⊢ PAssumption

Γ ⊢ e : A → B
Γ ⊢ (e e′￼) : B

Γ ⊢ e′￼ : A

The Lam rule introduces assumptions, just as ⇒I does in IPL
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What this means is that any time you write a proof tree 
in STLC, you could have written it in IPL instead


There is an exact correspondence between proof trees 
in IPL and STLC


This deep result means that we can execute proofs in 
constructive logic as programs, and that we can build 
programs which contain proof-relevant components 
(e.g., for building correct-by-construction systems).
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Aside from the theoretical results, we will now use the 
Curry-Howard Isomorphism for a more practical reason: 
to add typing rules necessary for us to write more 
complicated programs, using forms such as pairs, etc…
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We can add pairs to STLC via several additional 
rules, inspired by intuitionistic logic

e ::= (lambda (x : t) e)

    | (e e)

    | … 

    | (cons e e) ;; pairs

    | (car e) | (cdr e)

The computational interpretation 
of ∧ is a pair, so we add syntax for 
pairs into our language

t ::= int | bool | …

    | t × t ;; product types

The type of a pair is a product type:

(cons 5 #t) : int × bool
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×E1

Γ ⊢ e : A × B

Γ ⊢ (car e) : A
×E2


Γ ⊢ e : A × B

Γ ⊢ (cdr e) : B
×I
 Γ ⊢ e0 : A

Γ ⊢ (cons e0 e1) : A × B

Γ ⊢ e1 : B

“If e is a pair, (car/cdr e) is the type 
of its first/second element”

“If e₀ is type A and e₁ is type B, 
(cons e₀ e₁) is type A × B” 
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There are also discriminated union types

You may know these as C tagged unions

e ::= … ;; previous forms

    | left e

    | right e

    | case e of  
        (left e0 => e0’)

        (right e1 => e1’)

The computational interpretation 
of ∨ is a discriminated union 

t ::= … | t + t

Now we have sum types

(inj_left 42) : int × bool

Also many other types
(inj_left 42) : int × int
(inj_left 42) : int × (int -> int)
(inj_left 42) : int × (int × int)

…
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e ::= … ;; previous forms

    | left e

    | right e

    | case e of  
        (left e0 => e0’)

        (right e1 => e1’)

The computational interpretation 
of ∨ is a discriminated union 

A discriminated union A × B says:

“I carry either information of type A, or information of type B; but I 
can’t promise it’s exactly A or exactly B—thus, to interact with the 
information, you must always do case analysis (i.e., matching).

(case (right 5) of

  (left e => e)

  (right e => 7)) ;; 7

;; In OCaml, we would write this:

# type ('a, 'b) t = Left of 'a | Right of 'b;;

type ('a, 'b) t = Left of 'a | Right of 'b

# Left (5);;

-: (int, 'a) t = Left 5

;; OCaml’s type system supports general ADTs
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+I1

Γ ⊢ e : A

Γ ⊢ (left e) : A + B
+I2


Γ ⊢ e : B

Γ ⊢ (right e) : A + B
+E


Γ ⊢ e : A + B

Γ ⊢ (case e of (left e0 ⇒ e′￼0) (right e1 ⇒ e′￼1)) : C

Γ, e0 : A ⊢ e′￼0 : C Γ, e1 : A ⊢ e′￼1 : C

×E1

Γ ⊢ e : A × B

Γ ⊢ (car e) : A
×E2


Γ ⊢ e : A × B

Γ ⊢ (cdr e) : B
×I
 Γ ⊢ e0 : A

Γ ⊢ (cons e0 e1) : A × B

Γ ⊢ e1 : B

AppΓ ⊢ e : t → t′￼

Γ ⊢ (e e′￼) : t′￼

Γ ⊢ e′￼ : t Lam
Γ, {x ↦ t} ⊢ e : t′￼

Γ ⊢ (λ (x : t) e) : t → t′￼

Const
Γ ⊢ n : num VarΓ ⊢ x : t

x ↦ t ∈ Γ

Vanilla STLC

Products (pairs)

Sums (discriminated unions)

Negation

¬A is A → ⊥

Our full type system: STLC, products, 
unions, and negation

This type system corresponds precisely to 
intuitionistic logic with ⇒, ∧, ∨, and ⊥

Γ ⊢ e : ⊥

Γ ⊢ (case e of) : t



13

A family of logics / type systems

Curry-Howard Isomorphism says we can keep adding logic / language features—
adding rules to the logics force corresponding rules in the type system


IPL is boring—it can’t say much. Expressive power is limited to propositional logic


To prove interesting theorems, we want to say things like:

  ∀ (l : list A) : {l’ : sorted l’ ∧ ∀ x. (member l x) ⇒ (member l’ x)}

- For all input lists l

- The output is a list l’, along with a proof that:

- (a) l’ is sorted (specified elsewhere)

- (b) every member of l is also a member of l’


- Any issues?

- (Maybe we also want to assert length is the same?)
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Completeness of STLC

• Incomplete: Reasonable functions we can’t write in STLC

•E.g., any program using recursion

•Several useful extensions to STLC

•Fix operator to allow typing recursive functions

•Algebraic data types to type structures

•Recursive types for full algebraic data types 

• tree = Leaf (int) | Node(int,tree,tree)
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Typing the Y Combinator

Y
Γ ⊢ f : t → t
Γ ⊢ (Y f ) : t

The “real” solution is quite nontrivial—we need recursive types, which may be formalized in a variety of ways

- We will not cover recursive types in this lecture, I am happy to offer pointers


Our hacky solution works in practice, but is not sound in general

 - More precisely, the logic induced by the type system is no longer sound (can prove ⊥ and therefore everything)



16

Typing the Y Combinator

Y
Γ ⊢ f : t → t
Γ ⊢ (Y f ) : t

Think of how this would look for fib

(let ([fib

 (Y (λ (f) (λ (x)

             (if (= x 0)

                 1

                 (* x (fib (- x 1)))))))]))

What would t be here?



Error States
A program steps to an error state if its evaluation 

reaches a point where the program has not 
produced a value, and yet cannot make progress

((+ 1) (λ (x) x))

Gets “stuck” because + can’t operate on λ
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Error States
A program steps to an error state if its evaluation 

reaches a point where the program has not 
produced a value, and yet cannot make progress

((+ 1) (λ (x) x))

Gets “stuck” because + can’t operate on λ

(Note that this term is not typable for us!)
18



Soundness

A type system is sound if no typable program 
will ever evaluate to an error state

“Well typed programs cannot go wrong.” 
— Milner

(You can trust the type checker!)
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Proving Type Soundness

Theorem: if e has some type derivation, then it will 
evaluate to a value.

Relies on two lemmas
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Progress Preservation

If e typable, then it is either a 
value or can be further reduced

If e has type t, any reduction will 
result in a term of type t



(In our system) not too hard to prove by induction on the typing derivation.


Combination of progress and preservation says: you can either take a well-
typed step and maintain the invariant, or you are done (at a value).


We will skip the proof—it depends on understanding induction over 
derivations, chat with me if interested…
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Progress Preservation

If e typable, then it is either a 
value or can be further reduced

If e has type t, any reduction will 
result in a term of type t



((λ (x:t) x:t’) : int -> int)

Allows us to leave some placeholder variables 
that will be “filled in later”

Type Inference

The int->int constraint then forces t = int 
and t’ = int
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Type inference can fail, too…

Type Inference

(λ (x) (λ (y:int->int) ((+ (x y)) x)))

No possible type for x! Used as fn and arg to +

23
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Type Inference has been of interest (research and practical) for many years

It allows you to write untyped programs (much less painful!) and automatically 
synthesize a type for you—as long as the type exists (catch your mistakes)

(λ (f) (((f 2) 3) 4))

(λ (f : int -> int -> int -> int) (((f 2) 3) 4))
Type inference

Type inference can be seen as einterating all possible type assignments to infer a 
valid typing. You can think of it as solving the equation:

∃T. (λ (f : T) (((f 2) 3) 4))
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What is the correct type?
(lambda (f) (lambda (x) (if (if-zero? (f x)) 1 0)))

Is it:

(a) f = int->int, x = int

(b) f = bool->int, x = bool

(c) f = (int->int)->int, x = int->int
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What is the correct type?
(lambda (f) (lambda (x) (if (if-zero? (f x)) 1 0)))

Is it:

(a) f = int->int, x = int

(b) f = bool->int, x = bool

(c) f = (int->int)->int, x = int->int

(d) All of the above
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What is the correct type?
(lambda (f) (lambda (x) (if (if-zero? (f x)) 1 0)))

Is it:

(a) f = int->int, x = int

(b) f = bool->int, x = bool

(c) f = (int->int)->int, x = int->int

(d) All of the above

Lesson: pick a principal which subsumes them all, to avoid 
enumerating infinitely-many types.
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Type Variables
(lambda (f) (lambda (x) (if (if-zero? (f x)) 1 0)))

Lesson:

We can’t pick just one type. Instead, we need to 
be able to instantiate f and x whenever a 
suitable type may be found.

For example, what if we let-bind the lambda 
and use it in two different ways!?

(let ([g (lambda (f) (lambda (x) (if (if-zero? (f x)) 1 0)))])

  (+ ((g (lambda (x) x)) 0) ((g (lambda (x) 1)) #f))

This usage requires f = nat->nat and x = nat This usage requires f = bool->nat and x = bool
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Generalizations
(lambda (f) (lambda (x) (if (if-zero? (f x)) 1 0)))

Instead, we can keep a generalized type by using a type 
variable, allowing a good type inference system to derive (for 
this example, using type var T):

  Type of f = T -> int

  Type of x = T

 
Notice that this system demands we must be able to compare T 
for equality! This is actually nontrivial when we add 
polymorphism, but is simple in STLC (structural equality)
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Constraint-Based Typing

The crucial trick to implementing type inference is to use a 
constraint-based approach. In this setting, we walk over each 
subterm in the program and generate a constraint

Later, we will solve these constraints by using a process named unification

Unannotated lambdas generate new type variables, which are 
later constrained by their usages



31

(define (build-constraints env e)

  (match e

    ;; Literals

    [(? integer? i) (cons `(,i : int) (set))]

    [(? boolean? b) (cons `(,b : bool) (set))]

    ;; Look up a type variable in an environment

    [(? symbol? x) (cons `(,x : ,(hash-ref env x)) (set))]

    ;; Lambda w/o annotation

    [`(lambda (,x) ,e)

     ;; Generate a new type variable using gensym

     ;; gensym creates a unique symbol

     (define T1 (fresh-tyvar))

     (match (build-constraints (hash-set env x T1) e)

       [(cons `(,e+ : ,T2) S)

        (cons `((lambda (,x : ,T1) ,e+) : (,T1 -> ,T2)) S)])]

    ;; Application: constrain input matches, return output

    [`(,e1 ,e2)

     (match (build-constraints env e1)

       [(cons `(,e1+ : ,T1) C1)

        (match (build-constraints env e2)

          [(cons `(,e2+ : ,T2) C2)

           (define X (fresh-tyvar))

           (cons `(((,e1+ : ,T1) (,e2+ : ,T2)) : ,X)

                 (set-union C1 C2 (set `(= ,T1 (,T2 -> ,X)))))])])]

    ;; Type stipulation against t--constrain

    [`(,e : ,t)

     (match (build-constraints env e)

       [(cons `(,e+ : ,T) C)

        (define X (fresh-tyvar))

        (cons `((,e+ : ,T) : ,X) (set-add (set-add C `(= ,X ,T)) `(= ,X ,t)))])]

    ;; If: the guard must evaluate to bool, branches must be

    ;; of equal type.

    [`(if ,e1 ,e2 ,e3)

     (match-define (cons `(,e1+ : ,T1) C1) (build-constraints env e1))

     (match-define (cons `(,e2+ : ,T2) C2) (build-constraints env e2))

     (match-define (cons `(,e3+ : ,T3) C3) (build-constraints env e3))

     (cons `((if (,e1+ : ,T1) (,e2+ : ,T2) (,e3+ : ,T3)) : ,T2)

           (set-union C1 C2 C3 (set `(= ,T1 bool) `(= ,T2 ,T3))))]))


Building Constraints



32

Unification

At the end of constraint-building, we have a ton of equality 
constraints between base types and type variables

In this example, what is ty1?

tv0 = int

ty1 = tv0 -> tv2

tv2 = tv3

tv3 = tv4

(lambda (x : ty1) …)

Answer: think about constraints and equalities: ty1 must be int->int
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;; within the constraint constr, substitute S for T

(define (ty-subst ty X T)

  (match ty

    [(? ty-var? Y) #:when (equal? X Y) T]

    [(? ty-var? Y) Y]

    ['bool 'bool]

    ['int 'int]

    [`(,T0 -> ,T1) `(,(ty-subst T0 X T) -> ,(ty-subst T1 X T))]))


(define (unify constraints)

  ;; Substitute into a constraint

  (define (constr-subst constr S T)

    (match constr

      [`(= ,C0 ,C1) `(= ,(ty-subst C0 S T) ,(ty-subst C1 S T))]))

  ;; Is t an arrow type?

  (define (arrow? t)

    (match t [`(,_ -> ,_) #t] [_ #f]))

  ;; Walk over constraints one at a time

  (define (for-each constraints)

    (match constraints

      ['() (hash)]

      [`((= ,S ,T) . ,rest)

       (cond [(equal? S T)

              (for-each rest)]

             [(and (ty-var? S) (not (set-member? (free-type-vars T) S)))

              (hash-set (unify (map (lambda (constr) (constr-subst constr S T)) rest)) S T)]

             [(and (ty-var? T) (not (set-member? (free-type-vars S) T)))

              (hash-set (unify (map (lambda (constr) (constr-subst constr T S)) rest)) T S)]

             [(and (arrow? S) (arrow? T))

              (match-define `(,S1 -> ,S2) S)

              (match-define `(,T1 -> ,T2) T)

              (unify (cons `(= ,S1 ,T1) (cons `(= ,S2 ,T2) rest)))]

             [else (error "type failure")])]))

Unification
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Why Type Theory?
Why is type synthesis / checking useful?


- Can write fully-verified programs.

- Cons: type systems are esoteric, complicated, academic, etc…

- Popular languages (Swift, Rust, etc…) are tending towards more 

elaborate type systems as they evolve 

- Type synthesis offers me “proofs for free:”

- “If my program type checks it works” — not true in C/C++/… 

- Less mental burden, like CoPilot (etc… tools), type systems can 
integrate into IDEs to use synthesis information in guiding 
programming

- In some ways, this reflects the logical statements underlying the 

type system’s design (Curry Howard)



35

“Proofs as Programs”
A significant amount of interest has been given to programming 
languages which use powerful type systems to write programs 
alongside a proof of the program’s correctness

Imagine how nice it would be to write a completely-formally-
verified program—no bugs ever again!
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Dependent Type Systems

We can construct type systems / programming languages where terms can be of 
type (something like)


  ∀ (l : list A) : {l’ : sorted l’ ∧ ∀ (x : A). (member l x) ⇒ (member l’ x)}


These are called dependent types, because types can depend on values

 - This allows expressing that l’ is sorted 
 - Unfortunately, these type systems are way more complicated

 - Worse, even type checking may be undecidable (in general)


Precise formalization of these systems is beyond the scope of this class



37

A huge family of languages have popped up to implement dependent type systems 
and subsequently enable “fully-verified” programming


They hit a variety of expressivity points. The fundamental trade off is: (a) 
expressivity vs. (b) automation.


Highly-expressive systems require you to write all the proofs yourself, and a lot of 
manual annotation (potentially).
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Here I give an Agda definition for products

Explicit Theorem Proving / Hole-Based Synth

waterloo.ca/~plragde/747/notes/index.html
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Explicit Theorem Proving / Hole-Based Synth

Agda will tell me what I need to fill in, 

allows me to use “holes” and then helps

me hunt for a working proof.
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Some systems provide logic-programming (i.e., proof search) to help assist users

- CHI tells us that proof search is tantamount to program synthesis

- Here I use Coq’s “intuition” tactic to automatically construct a proof for me

Tactic-Based Theorem Proving

(Using Coq to prove P ⇒ Q ⇒ P; left: using the “intuition” tactic, 
right: printing the proof term)
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The more expressive the type theory, the more work is required to build proofs. 

Automating proof via constraint solving

Some systems translate proof obligations 
into formulas which are then sent to SMT 
solvers (solves goals in first-order logic, 
such as Z3)

This can partially automate many 
otherwise-tricky proofs—in certain 
situations


F* based on this idea, but other proof 
search approaches exist (Idris, etc…)
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How does this work?
These systems interpret programs as theorems in higher-order 
logics (calculus of constructions, etc…)


Unfortunately, no free lunch: this makes the type system way 
more complicated in practical settings


We will see a taste of the inspiration for these systems, by 
reflecting on STLC’s expressivity



43

- Know how to read the typing rules we presented throughout this lecture.

- Know how to check that a typing derivation presented is correct, or be 

able to point out where it is broken.

- Know how to build a typing derivation (i.e., proof tree, the things with the 

lines and stacked formulas) for small programs using the rules

- Understand the definition of the term “soundness” as it applies to type 

systems

- If a PL’s type system is sound, are any dynamic errors possible?

What to Know for Midterm 2 on Types


