Type Systems: Part i

Soundness and Features

CIS352 — Spring 2024
Kris Micinski

The Curry-Howard Isomorphism

The Curry-Howard Isomorphism is a name given to the
idea that every typed lambda calculus expression is a
computational interpretation of a theorem in a suitable
constructive logic.

For STLC: every well-typed term in STLC is a theorem
in intuitionistic propositional logic (STLC ~= IPL).

So far, we have discussed four rules in STLC: Var,
Const, App, and Lam

These rules exactly mirror corresponding rules in IPL

The Var rule corresponds to the Assumption rule
In IPL, I" is a set of propositions (assumed true)
In STLC, I is a map from type variables to their types

x—=trel

S Assumption
Chx:r Vo

I\.PHP

[": Var — Type [: Set(Proposition)

x—tel
= Assumption

Cx:¢ Vo LP=r
['Fe:A—- B T'Fe':A FT'EFA=>B TEHA
— App - —— W

I'H(ee):B A

The App rule corresponds to modus ponens in |PL
Notice how the typeis A = BbutinIPLitis A= B

The Lam rule introduces assumptions, just as =1 does in IPL

—thEF Assumption ————
Cx:¢ Var P LPer
['Fe: A= B T'Fe':A F'FA=B T'FA
- App F ——— @
I'H(ee):B A
[{x—tlFHe:A) IAFB

Lam I'HFA=>1B

I'F(A(Xx:t)e):A— B

What this means is that any time you write a proof tree
in STLC, you could have written it in IPL instead

There Is an exact correspondence between proof trees
in IPL and STLC

This deep result means that we can execute proofs in
constructive logic as programs, and that we can build
programs which contain proof-relevant components
(e.g., for building correct-by-construction systems).

Aside from the theoretical results, we will now use the
Curry-Howard Isomorphism for a more practical reason:
to add typing rules necessary for us to write more
complicated programs, using forms such as pairs, etc...

We can add pairs to STLC via several additional
rules, inspired by intuitionistic logic

e — (lambda (X . t) e) T = 1nt ‘ bool ‘ oo
| (e e) | t x t ;; product types
| ...
| (cons e e) ;; pairs o
| (car e) | (cdr e) The type of a pair is a product type:
The computational interpretation ~ (cons 5 #t) = Int x Dbool

of A is a pair, so we add syntax for
pairs into our language

"If e is a pair, (car/cdr e) is the type “If e istype A and e, is type B,

of its first/second element” (cons e, e) is type A x B
[[HFe:AXB I'Fe:AXB I'Fey:A ©L'ke B

xE1 — xXE2 —/————— X| ———————
[(care): A '+ (cdre):B ' (conseye):AXB

There are also discriminated union types
You may know these as C tagged unions

e ::= .. ;; previous forms t = t+t
| left e
| right e Now we have sum types
| case e of (inj_left 42) : int x bool
(left e® => e0’)
(right el => el’) Also many other types
The computational interpretation ~ (1nj_lett 42) = int x 1int
of v is a discriminated union (inj_left 42) : int x (int -> 1int)

(1n] left 42) : 1nt x (int x 1nt)

10

e

A discriminated union A x B says:

"| carry either information of type A, or information of type B; but |
can’t promise it's exactly A or exactly B—thus, to interact with the
information, you must always do case analysis (i.e., matching).

.. 5, previous forms
left e

|
| right e
| case e of
(left e®@ => e®’)
(right el => el’)

The computational interpretation
of v is a discriminated union

(case (right 5) of
(left e => e)

(right e => 7)) ., 7

s> In OCaml, we would write this:
type ('a, 'b) t = Left of 'a | Right of 'b;;

type ('a, 'b) t = Left of 'a | Right of 'b
Left (5);;

—: (1nt, 'a) t = Left 5
;; OCaml’'s type system supports general ADTs

11

Vanilla STLC

| , | x—tel FixmitpFert
I'Fe:t—>t I'Fe :t App —Const—Var—Lam

[H(ee):r LT num ot CE@Qx:ne):t—1

Products (pairs)

'+e:AXB FFe:AxB TFeg:A 1T1e:B
X1 ———— xE2 ———— — T (e N AwR
[(care): A ' (cdre):B ' (conseye):AXB
Sums (discriminated unions)
F €°A l—‘l_e:B EFI—eA-'-B F,QO:AI_Q(I):C F,elel_ei:C
_retd agp—
+ ' (lefte): A+ B [(righte): A+ B [+ (case e of (left ¢, = ¢)) (right e, = ¢))) : C
Negation
Our full type system: STLC, products, 9
unions, and negation Tke:
. . -AISA —
This type system corresponds precisely to [' (case e of) : ¢

intuitionistic logic with =, A, v, and L

A family of logics / type systems

Curry-Howard Isomorphism says we can keep adding logic / language features —
adding rules to the logics force corresponding rules in the type system

IPL is boring—it can’t say much. Expressive power Is limited to propositional logic

To prove interesting theorems, we want to say things like:
V (1 : 1list A) : {1’ : sorted 1’ AV x. (member 1 xXx) = (member 1’ x)}

- For all input lists |
- The output is a list I, along with a proof that:
- (@) I Is sorted (specified elsewhere)
- (b) every member of | is also a member of I’
- Any issues?
- (Maybe we also want to assert length is the same?)

13

Completeness of STLC

 Incomplete: Reasonable functions we can’t write in STLC
* E.g., any program using recursion
» Several useful extensions to STLC
* Fix operator to allow typing recursive functions
» Algebraic data types to type structures
* Recursive types for full algebraic data types

-tree = Leaf (1nt) | Node(int,tree,tree)

14

Typing the Y Combinator

I'Hf.t—>1t
I'=(Yf):t

Y

The “real” solution is quite nontrivial—we need recursive types, which may be formalized in a variety of ways
- We will not cover recursive types in this lecture, | am happy to ofter pointers
Our hacky solution works in practice, but is not sound in general
- More precisely, the logic induced by the type system is no longer sound (can prove L and theretore everything)

15

Typing the Y Combinator

Think of how this would look for fib

I'Hf:t—>t y
I'=(Yf):t
(let ([fib What would t be here?
Y (A (f) (A (X
(1f (= x 0)
1

(* x (fib (- x 1)))))))1))

16

Error States

A program steps to an error state if its evaluation
reaches a point where the program has not
produced a value, and yet cannot make progress

(+ 1) (A (xX) x))

Gets “stuck” because + can’t operate on A

17

Error States

A program steps to an error state if its evaluation
reaches a point where the program has not
produced a value, and yet cannot make progress

(+ 1) (A (XD x))
Gets “stuck” because + can’t operate on A

(Note that this term is not typable for us!)

18

Soundness

A type system is sound if no typable program
will ever evaluate to an error state

“Well typed programs cannot go wrong.”
— Milner

(You can trust the type checker!)

19

Proving Type Soundness

Theorem: if e has some type derivation, then it will
evaluate to a value.

Relies on two lemmas

Progress Preservation

I

I

I
If e typable, then it is either a If e has type t, any reduction will
value or can be further reduced | result in a term of type t
I
I
20

Progress Preservation

If e has type t, any reduction will
result in a term of type t

If e typable, then it is either a
value or can be further reduced

|
|
|
|
(In our system) not too hard to prove by induction on the typing derivation.

Combination of progress and preservation says: you can either take a well-
typed step and maintain the invariant, or you are done (at a value).

We will skip the proof—it depends on understanding induction over
derivations, chat with me If interested...

21

lType Inference

Allows us to leave some placeholder variables
that will be “filled In later”

((A (x:t) x:t’) : 1nt -> 1nt)

The 1nt->1nt constraint then forces t = 1nt
and t’ = 1nt

22

lType Inference

Type inference can fail, too...

(A () (A (y:rint->1nt) ((+ (X y)) x)))

No possible type for x! Used as fn and arg to +

23

Type Inference has been of interest (research and practical) for many years

It allows you to write untyped programs (much less painfull) and automatically
synthesize a type for you—as long as the type exists (catch your mistakes)

(A (F) CCCE 2) 3) 4))

l Type inference
(A (f : 1nt -> 1nt -> 1nt -> 1nt) (((f 2) 3) 4))

Type inference can be seen as einterating all possible type assignments to infer a
valid typing. You can think of it as solving the equation:

IT. (A (f ¢ T) CCCF 2) 3) 4))

24

What is the correct type?

(lambda (f) (lambda (x) (1f (i1f-zero? (f x)) 1 0)))

|

(@) = int->int, x = int

(b) t = bool->int, x = bool

(c) = (int->int)->int, x = int->int

25

What is the correct type?

(lambda (f) (lambda (x) (1f (i1f-zero? (f x)) 1 0)))

s It:

(@) = int->int, x = int

(b) t = bool->int, x = bool

(c) = (int->int)->int, x = int->int
(d) All of the above

20

What is the correct type?

(lambda (f) (lambda (x) (1f (i1f-zero? (f x)) 1 0)))

s It:

(@) = int->int, x = int

(b) t = bool->int, x = bool

(c) = (int->int)->int, x = int->int
(d) All of the above

Lesson: pick a principal which subsumes them all, to avoio
enumerating infinitely-many types.

27

Type Variables

(lambda (f) (lambda (x) (1f (i1f-zero? (f x)) 1 0)))

Lesson:

We can't pick just one type. Instead, we need to
be able to instantiate f and x whenever a
suitable type may be found.

For example, what if we let-bind the lambda
and use it in two different ways!?

(let ([g (lambda (f) (lambda (x) (1f (if-zero? (£ x)) 1 0)))1])
(+ ((g (lambda (x) x)) 0) ((g (lambda (x) 1)) #£f))

This usage requires f = nat->nat and x = nat This usage requires f = bool->nat and x = bool

28

Generalizations

(lambda (f) (lambda (x) (1f (i1f-zero? (f x)) 1 0)))

Instead, we can keep a generalized type by using a type
variable, allowing a good type inference system to derive (for
this example, using type var T):

Typeotf = T -> int

Typeotx = T

Notice that this system demands we must be able to compare T
for equality! This is actually nontrivial when we add
polymorphism, but is simple in STLC (structural equality)

29

Constraint-Based Typing

The crucial trick to implementing type inference is to use a
constraint-based approach. In this setting, we walk over each
subterm in the program and generate a constraint

Unannotated lambdas generate new type variables, which are
later constrained by their usages

Later, we will solve these constraints by using a process named unification

30

(define (build-constraints env e)
(match e
+» Literals
[(? integer? 1) (cons (,1 : int) (set))]
[(? boolean? b) (cons " (,b : bool) (set))]
;; Look up a type variable in an environment
[(? symbol? x) (cons (,Xx : ,(hash-ref env x)) (set))]
+» Lambda w/o annotation
[(lambda (,x) ,e)
;; Generate a new type variable using gensym
;7 gensym creates a unique symbol
(define T1 (fresh-tyvar))
(match (build-constraints (hash-set env x Tl) e)
[(cons ~(,et+ : ,T2) S)
(cons " ((lambda (,x : ,T1) ,e+) : (,Tl1 -> ,T2)) S)1)]
;; Application: constrain input matches, return output
[(,el ,e2)
(match (build-constraints env el)
[(cons ~(,el+ : ,Tl) C1l)
(match (build-constraints env e2)
[(cons ~(,e2+ : ,T2) C2)
(define X (fresh-tyvar))
(cons (((,el+ : ,T1) (,e2+ : ,T2)) : ,X)
(set-union Cl1 C2 (set (= ,Tl1 (,T2 -> ,X)))))1D)1)]
;; Type stipulation against t--constrain
[(,e : ,t)
(match (build-constraints env e)
[(cons " (,et+ : ,T) C)
(define X (fresh-tyvar))
(cons ((,et : ,T) : ,X) (set-add (set-add C " (= ,X ,T)) (= ,X ,t)))1)]
;3 If: the guard must evaluate to bool, branches must be
;7 of equal type.
[(1f ,el ,e2 ,e3)
(match-define (cons (,el+ : ,Tl) Cl) (build-constraints env el))
(match-define (cons " (,e2+ : ,T2) C2) (build-constraints env e2))
(match-define (cons " (,e3+ : ,T3) C3) (build-constraints env e3))
(cons ((if (,el+ : ,T1) (,e2+ : ,T2) (,e3+ : ,T3)) : ,T2)
(set-union C1 C2 C3 (set (= ,T1 bool) (= ,T2 ,T3))))1))

31

Building Constraints

Unification

At the end of constraint-building, we have a ton of equality
constraints between base types and type variables

tv0 = 1nt

tyl = tv0 -> tv2

tv2 = tv3 (lambda (x : tyl) ..)
tv3d = tv4

In this example, what is ty17?

Answer: think about constraints and equalities: tyl must be int->int

32

73 within the constraint constr, substitute S for T
(define (ty-subst ty X T)
(match ty
[(? ty-var? Y) #:when (equal? X Y) T]
[(? ty-var? Y) Y]
[' bool 'bool]
["int 'int]
[>(,TO -=> ,Tl) ~(,(ty-subst TO X T) -> ,(ty-subst Tl X T))]))

(define (unify constraints)
+» Substitute into a constraint
(define (constr-subst constr S T)

N [| H
e S Unification
[>(= ,CO0 ,Cl) (= ,(ty-subst CO S T) ,(ty-subst C1 S T))]))

;7 Is t an arrow type?
(define (arrow? t)
(matCh t [\(I_ -> I_) #t] [_ #f]))
+» Walk over constraints one at a time
(define (for-each constraints)
(match constraints
['() (hash)]
[((= ,5 ,T) . ,rest)
(cond [(equal? S T)
(for-each rest)]
[(and (ty-var? S) (not (set-member? (free-type-vars T) S)))
(hash-set (unify (map (lambda (constr) (constr-subst constr S T)) rest)) S T)]
[(and (ty-var? T) (not (set-member? (free-type-vars S) T)))
(hash-set (unify (map (lambda (constr) (constr-subst constr T S)) rest)) T S)]
[(and (arrow? S) (arrow? T))
(match-define " (,S1 -> ,S2) S)
(match-define " (,Tl1 -> ,T2) T)
(unify (cons (= ,S1 ,Tl) (cons (= ,S2 ,T2) rest)))]
[else (error "type failure")])]))

33

Why Type Theory?
Why is type synthesis / checking useful?

- Can write fully-verified programs.
- Cons: type systems are esoteric, complicated, academic, etc...
- Popular languages (Swift, Rust, etc...) are tending towards more
elaborate type systems as they evolve

- Type synthesis offers me “proofs for free:”
- “If my program type checks it works” — not true in C/C++/...

- Less mental burden, like CoPilot (etc... tools), type systems can
integrate into IDEs to use synthesis information in guiding
programming
- In some ways, this reflects the logical statements underlying the

type system’s design (Curry Howard)

34

“Proofs as Programs”

A significant amount of interest has been given to programming

languages which use powerful type systems to write programs
alongside a proof of the program’s correctness

Imagine how nice it would be to write a completely-formally-
verified program—no bugs ever again!

reflexivity.

right.

discriminate.
destruct m as [|m]

right; discri i
destruct (IHn m) [Hm|Hm]]
left. g

"prove(M,I) :- append(Q, [C|R],M), \+member(-_,C), F:;'{:)t(:v?l:)"l. '
append(Q,R,S), prove([!'],[[-'IC]IS],[],I). Tros H J

pply H

ject H

prove([],_,_,_).

// / File Edit Navigation TryTactics Templates Queries Display Compile Windows Hel
HX 22 FEO .
[N)
[&lintro.v l@Examples.v |
rewrite IHn. 2] n : fora m : na
reflexivity. m : na
Qed. m:n m
Lemma nat_eq _dec : forall (nm : nat), {n = m} + m m
induction n.
destruct m as [|m].
left.

prove([LIC],M,P,I) :- (-N=L; -L=N) -> (member(N,P); petin
append(Q, [DIR] ,M), copy_term(D,E), append(A, [N|B],E), Eval compute in (nat_eq dec 2 2)
append(A,B,F), (D==E -> append(R,Q,S); length(P,K), K<I, [EmC e 8
append(R, [DIQ],S)), prove(F,S,([LIP],I)), prove(C,M,P,I)." Ly [ECE (350 0 CRET G0
| @ => None =l
[« 2l
35 |Readyin g g

Coqlde starte:

Dependent Type Systems

We can construct type systems / programming languages where terms can be of
type (something like)

V (1 ¢ 1list A) ¢ {1’ : sorted 1" AV (x : A). (member 1 xXx) = (member 1’ x)}

These are called dependent types, because types can depend on values
- This allows expressing that |’ is sorted

- Unfortunately, these type systems are way more complicated

- Worse, even type checking may be undecidable (in general)

Precise formalization of these systems is beyond the scope of this class

36

A huge family of languages have popped up to implement dependent type systems
and subsequently enable “fully-verified” programming

They hit a variety of expressivity points. The fundamental trade off is: (a)

expressivity vs. (b) automation.

Highly-expressive systems require you to write all the proofs yourself, and a lot of

manual annotation (potentially).

—\

prove([],_,_,_).

prove([L|C] ,M,P,I) :- (-N=L; -L=N) -> (member(N,P);
append(Q, [DIR] ,M), copy_term(D,E), append(A, [N|B],E),
append(A,B,F), (D==E -> append(R,Q,S); length(P,K), K<I,
append(R, [DIQ],S)), prove(F,S,[LIP],I)), prove(C,M,P,I)."

N T Agdo

"prove(M,I) :- append(Q, [C|IR],M), \+member(-_,C),
append(Q,R,S), prove([!],[[-'IC]IS],[],I).

37

vigation TIry Tactics Templates Queries Disp

lay Compile Windows Help

reflexivity.

eeeee
lllll
reflexivity.

discriminate.

right; discriminate.

reflexivity.
right.

tttttt
Defined.

sssssssss

Line: 159 Char: 13 Coqide started

Explicit Theorem Proving / Hole-Based Synth

Here | give an Agda definition for products

38

{- In Agda: for all P/ Q, P ->0Q
E_Q_P - (PQ : Set) -> P ->Q -> P
p_q_p P Q pf_P pf_Q = pf_p

(A : Set) (B : Set) : Set

A
B
A x B
projl {A B : Set}
A B
A
projl (x , x1) = x

proj2 : ¥ {A B : Set}
- A x B

- proj2 (x , x1) = x1

MUu:--- hello.agda 48% L36 <E>

.
= p -}
"

(Agda:Checked)

U:%*- *All Done* All L1 <M>

|

(AgdaInfo)

waterloo.ca/~plragde/747/notes/index.html

Explicit Theorem Proving / Hole-Based Synth

{- projl (proj2 pf) -}

bU:--- hello.agda Bot L57 <e> (Agda)
D13 : Q [at fhome/quest/hello.agda:59,12-13] ~ B
proj2 (x , x1) = x1
U:%*- *All Goals* AlLL L1 <M> (AgdaInfo)
, o p : (PQ : Set) ->P x (Q xP) ->0Q
Agda will tell me what | need to fill in, o P Q pf = (proj1 (proj2 pf))

allows me to use “holes” and then helps
me hunt for a working proof.

39

Tactic-Based Theorem Proving

Some systems provide logic-programming (i.e., proof search) to help assist users
- CHI tells us that proof search is tantamount to program synthesis
- Here | use CoqQ’s “intuition” tactic to automatically construct a proof for me

. NON) Coqlde
E K T s i J;- 0 & = _/
[z3"scratch |

1 Theorem p_q_p : forall (P : Prop) (Q : Prop), P ->Q ->P.

2 intuition. .))) "

3 Qed Warning: query commands should not be inserted in scripts =

4 ' p_qp-=

. {fun(PQ:Prop) (H:P) (_:Q)=>H
2 Print p_q_p] | :foralPQ:Prop,P->Q->P
Argument scopes are [type_scope type_scope _ _]
<

|Ready Line: 5 Char: 13 Coqhmrted

(Using Coq to prove P = Q = P; left: using the “intuition” tactic,

right: printing the proof term) .

Automating proof via constraint solving

The more expressive the type theory, the more work is required to build proofs.

Some systems translate proof obligations

into formulas which are then sent to SMT e

solvers (solves goals in first-order logic, = " ' g%@@W R ECNES T
such as Z3) B e S
This can partially automate many B R T T
otherwise-tricky proofs—in certain e = e e (e

situations

F* based on this idea, but other proof
search approaches exist (ldris, etc...)

How does this work?

These systems interpret programs as theorems in higher-order
logics (calculus of constructions, etc...)

Unfortunately, no free lunch: this makes the type system way
more complicated in practical settings

We will see a taste of the inspiration for these systems, by
reflecting on STLC’s expressivity

Valid Contexts.

I'=A I'-P:x
- % P[:E:A] - % F[w:p] - % s, t, A, B:=zx variable | |
(r : A) — B dependent function type
Product Formation. Ax. t lambda abstraction
st function application
F[ZB:P] A I‘[CB:P] N (r : A) x B dependent pair type
I' [z:P]A [' = [z:P|N : % (s, t) dependent pairs
mt | mt projection
Variables, Abstraction, and Application. Set, universes (i € {0..})
1 the unit type
I' - x [z:P]in T [lz:P]F N : Q LFM:[2:P|('FN:P () the element of the unit type
'Fz:P ' (Az:P)N : [z:P]Q '(MN):[N/z|Q r, A T
(z : A)T telescopes

42

What to Know for Midterm 2 on Types

- Know how to read the typing rules we presented throughout this lecture.

- Know how to check that a typing derivation presented Iis correct, or be
able to point out where it is broken.

- Know how to build a typing derivation (i.e., proof tree, the things with the
lines and stacked formulas) for small programs using the rules

- Understand the definition of the term “soundness” as it applies to type
systems
- |If a PL’s type system is sound, are any dynamic errors possible?

43

