
Type Systems Part 1:

Simply-Typed λ-Calculus
CIS352 — Spring 2024

Kris Micinski

Type Systems

A type system assigns each source fragment with a
given type: a specification of how it will behave

Type systems include rules, or judgements that
tells us how we compositionally build types for
larger fragments from smaller fragments

The goal of a type system is to rule out programs
that would exhibit run time type errors!

2

Which of the following should be allowed to run?

3

(λ (f) (+ (f 1) (if (= 0 (string-length (f 1))) 1 0)))

((λ (f x) (f x)) g)

(λ (g) (g 5))

Which of the following should be allowed to run?

4

(λ (f) (+ (f 1) (if (= 0 (string-length (f 1))) 1 0)))

((λ (f x) (f x)) g)

(λ (g) (g 5))

Nothing obviously wrong, in absence of more knowledge about g

You cannot call this lambda, it will necessarily result in an error

Can’t work if f is pure (not stateful): (f 1) can’t return a number and a string

5

Type systems will give us a formal (in the sense of having a form we can write
down) description of an expression’s runtime form

A type is a rough approximation of the expression’s behavior. For example,
the type int might represent the type of all integers, while the type int ->
int would be the functions from values of type int to values of type int

6

;; OCaml, not Racket

((fun x y -> (x + y)) 1 2);;

(Preview of where we’re going)

We’ll be able to use a type system to be able to deduce that, because x and
y are passed to +, they must be ints (+ constraints its arguments to be ints)

This process called type inference, and is common in modern languages
(Examples include Rust, TypeScript, Haskell, OCaml …)

You can think of type inference as an always correct CoPilot, but the
correctness also means expressivity is limited only to properties about
which the type system is designed to reason.

7

(fun x f -> (if (f 3) then ((f x) + 5) else 8));;

A type inference system means that you write as many annotations as you want—the
compiler figures out what you mean and tells you when it hits an inconsistency.

Question: is this code okay?

8

(fun x f -> (if (f 3) then ((f x) + 5) else 8));;

Error: This expression has type bool but an
expression was expected of type

 int

A type inference system means that you write as many annotations as you want—the
compiler figures out what you mean and tells you when it hits an inconsistency.

9

In type theory, a subexpression has a type when there exists some proof according to a
formally-defined typing derivation.

You will learn how to write proofs for typing derivations in the Simply-Typed Lambda
Calculus, a small core of a type system for a functional language.

Simply-Typed λ-calculus

e ::= (lambda (x : t) e)

 | (e e)

 | (prim e e)

 | x

 | n

 | (e : t)

prim ::= + | * | …

10

STLC is a restriction of the untyped λ-calculus

(It is a restriction in the sense that not all terms are well-typed.)

All lambdas must be
annotated with their type

Optionally, any subexpression
may be annotated with a type

Expressions in STLC, assuming t is a type (we’ll show this soon):

11

;; Expressions are ifarith, with several special builtins

(define (expr? e)

 (match e

 ;; Variables

 [(? symbol? x) #t]

 ;; Literals

 [(? bool-lit? b) #t]

 [(? int-lit? i) #t]

 ;; Applications

 [`(,(? expr? e0) ,(? expr? e1)) #t]

 ;; Annotated expressions

 [`(,(? expr? e) : ,(? type? t)) #t]

 ;; Anotated lambdas

 [`(lambda (,(? symbol? x) : ,(? type? t)) ,(? expr? e)) #t]))

The simply typed lambda calculus is a type system
built on top of a small kernel of the lambda calculus

Crucially, STLC is less expressive than the lambda
calculus (e.g., we cannot type Ω, Y, or U!)

In practice, STLC’s restrictions make it unsuitable for
serious programming—but it is the basis for many
modern type systems in real languages (e.g.,
OCaml, Rust, Swift, Haskell, …)

12

e ::= (lambda (x : t) e)

 | (e e)

 | (prim e e)

 | x

 | n

 | (e : t)

prim ::= + | * | …

Term Syntax Type Syntax

t ::= int

 | bool

 | t -> t

13

Terms inhabit types 
(via the typing judgement)

Term Syntax Type Syntax

t ::= int

 | bool

 | t -> t

Function Types

14

e ::= (lambda (x : t) e)

 | (e e)

 | (prim e e)

 | x

 | n

 | (e : t)

prim ::= + | * | …

Term Syntax Type Syntax

int -> int

bool -> int

(bool -> (int -> bool)) -> int

Examples…

t ::= int

 | bool

 | t -> t

15

e ::= (lambda (x : t) e)

 | (e e)

 | (prim e e)

 | x

 | n

 | (e : t)

prim ::= + | * | …

int -> (int -> int)

(int -> int) -> int

- Type checking happens hierarchically

- Literals (0, #f) have their obvious types

- More complex forms (lambda, apply) require us to type subexpressions

16

For example, let’s say we have this lambda, which we want to type check:

(λ(x : int) (if (x = 0) x (+ x 1)))
First we see the input type is int. Assuming x is int, we type
check the body (an if). We see both sides of the if result in a
number, so we know the lambda’s output is also a number.

Thus, the type is int -> int

17

The fact that lambdas must be annotated with a type makes typing
easy: parameters are the only true source of non-local control in the
lambda calculus, and represent the only ambiguity in type checking

(λ(x : int → int) (if #f (x 5) (x 8)))

We know both the input and output type

18

(if #f (x 5) (x 8))
Bad thought experiment

Let’s say x is the Racket lambda:

(λ (x) (if (< x 6) #t 5))

Now, when x is less than 6, we return something of type bool; but
otherwise, we return something of type int.

(+ 3 (if #f (x 5) (x 8)))
In this case, the + operation works as long as (x 8) returns a int,
but what if (x 8) returns a bool?

We could write a union type, but STLC will make things simpler: the
true/false branch must have the same type.

19

(λ(x : int → int) (if #f (x 5) (x 8))) : (int → int) → int

A few examples…

(λ(x : int → int) (x 5)) : (int → int) → num

(λ(x : int) (λ (y : bool) y)) : int → bool → bool

STLC Typing Rules

Int

Type rules are written in natural-deduction style

Assumptions above the line

Conclusions below the line

(No assumptions here.)

20

Γ ⊢ n : int
Typing environment

(Irrelevant for now…)

Name of the rule to
the right / left

Int

21

Γ ⊢ n : int

The rule reads “in any typing environment Γ, we may
conclude the literal number n has type int”

Variable Lookup

Var
Γ ⊢ x : t

We assume a typing environment which maps
variables to their types

If x maps to type t in Γ, we may conclude that x has type
t under the type environment Γ

Γ(x) = t

22

{x ↦ (int → int), y ↦ bool} ⊢ x : ???

Exercise: using the Var rule, complete the proof

23

Var
Γ ⊢ x : t

Γ(x) = t

{x ↦ (int → int), y ↦ bool} ⊢ x : (int → int)

Solution

24

Var
Γ ⊢ x : t

Γ(x) = t

Var
{x ↦ (int → int), y ↦ bool}(x) = int → int

Lam
Γ[x ↦ t] ⊢ e : t′￼

Γ ⊢ (λ (x : t) e) : t → t′￼

If, assuming x has type x, you can conclude
the body e has type t’, then the whole lambda
has type t → t’

25

Typing Functions

Lam
Γ[x ↦ t] ⊢ e : t′￼

Γ ⊢ (λ (x : t) e) : t → t′￼

If, assuming x has type x, you can conclude
the body e has type t’, then the whole lambda
has type t → t’

26

Notice: if we didn’t have type t here, we would have
to guess, which could be quite hard. We will have to
do this when we move to allow type inference

Lam
Γ ⊢ (λ (x : t) e) : t → t′￼

(lambda (x : int) 1)

Γ[x ↦ t] ⊢ e : t′￼

27

Example: let’s use the Lam rule
to ascertain the type of the
following expression.

Lam

(lambda (x : int) 1) : ? → ?Γ = {} ⊢

Start with the empty environment (since this term is closed)

Γ ⊢ (λ (x : t) e) : t → t′￼

Γ[x ↦ t] ⊢ e : t′￼

28

Lam

Γ = {} ⊢ : t → t′￼

We suppose there are two types, t and t’, which
will make the derivation work.

Γ ⊢ (λ (x : t) e) : t → t′￼

(lambda (x : int) 1)

Γ[x ↦ t] ⊢ e : t′￼

29

{x ↦ int} ⊢ 1 : t′￼

We suppose there are two types, t and t’, which
will make the derivation work.

Γ = {} ⊢ : int → t′￼(lambda (x : int) 1)

Because x is tagged, it must be int

30

{x ↦ int} ⊢ 1 : t′￼

The Int rule allows us to conclude 1 : int

Γ = {} ⊢ (lambda (x : int) 1)

We suppose there are two types, t and t’, which
will make the derivation work.

: int → t′￼

31

Lam

So t’ = int

{x ↦ int} ⊢ 1 : int
Γ = {} ⊢ (lambda (x : int) 1) : int → int

32

Lam

Int

Notice: Int demands no subgoals

App
Γ ⊢ e : t → t′￼

Γ ⊢ (e e′￼) : t′￼

Function Application

Γ ⊢ e′￼ : t

33

App
Γ ⊢ e : t → t′￼

Γ ⊢ (e e′￼) : t′￼

Function Application

Γ ⊢ e′￼ : t

If (under Gamma), e has type t -> t’
And e’ (its argument) has type t

Then the application of e to e’ results in a t’

34

App
Γ ⊢ e : t → t′￼

Γ ⊢ (e e′￼) : t′￼

Γ ⊢ e′￼ : t

Our type system so far…

Lam
Γ[x ↦ t] ⊢ e : t′￼

Γ ⊢ (λ (x : t) e) : t → t′￼

Int
Γ ⊢ n : int

Var
Γ ⊢ x : t

Γ(x) = t

35

True
Γ ⊢ #t : bool

(Also False)

Almost everything! What about
builtins?

Γι = { + : (num × num) → num, …}

36

e ::= (lambda (x : t) e)

 | (e e)

 | (prim (e, e)) ; pairs

 | ((prim e) e) ; curry

 | x

 | n

 | (e : t)

prim ::= + | * | …

Almost everything! What about builtins?

A few ways to handle this:

Add pairs to our language

We’ll see this next time

Or, we could assume that primitives are
simply curried—in that case we would
have, e.g., ((+ 1) 2) and then…

Γι = { + : num → (num → num), …}

Two possibilities (pairs/currying)

Practice Derivations

Write derivations of the following expressions…

37

f

App
Γ ⊢ e : t → t′￼

Γ ⊢ (e e′￼) : t′￼

Γ ⊢ e′￼ : t

Lam
Γ, {x ↦ t} ⊢ e : t′￼

Γ ⊢ (λ (x : t) e) : t → t′￼

Int
Γ ⊢ n : int

Var
Γ ⊢ x : t

x ↦ t ∈ Γ

((λ (x : int) x) 1)

38

f

App
{} ⊢ (λ (x : int) x) : int → int

{} ⊢ ((λ (x : int) x) 1) : int

{} ⊢ 1 : int

((λ (x : int) x) 1)

39

{x ↦ int} ⊢ x : int
Lam
Var

Int

App
Γ ⊢ e : t → t′￼

Γ ⊢ (e e′￼) : t′￼

Γ ⊢ e′￼ : t

Lam
Γ, {x ↦ t} ⊢ e : t′￼

Γ ⊢ (λ (x : t) e) : t → t′￼

Int
Γ ⊢ n : int

Var
Γ ⊢ x : t

x ↦ t ∈ Γ

((λ (f : int -> int) (f 1)) (λ (x : int) x))f

40

Typability in STLC

Not all terms can be given types…

(λ (f : int -> int) (f f))

It is impossible to write a derivation for the above term!

f is int->int but would need to be int!

41

Typability

Not all terms can be given types…

((λ (f) (f f))

 (λ (f) (f f)))

It is impossible to write a derivation for Ω!

42

Consider what would happen if f were:

- int -> int

- (int -> int) -> int

Always just out of reach…

Type Checking

Type checking asks: given this fully-typed term, is the type
checking done correctly?

((λ (x:int) x:int) : int -> int)

In practice, as long as we annotate arguments (of λs)
with specific types, we can elide the types of

variables, literals, and applications

The “simply typed” nature of STLC means that type
inference is very simple…

43

(λ (f : int -> int -> int) (((f 2) 3) 4))

((λ (f : int -> int) f) (λ (x:int) (λ (x:int) x)))

44

Exercise
For each of the following expressions, do they type check?
I.e., is it possible to construct a typing derivation for them?
If so, what is the type of the expression?

(λ (f : int -> int -> int) (((f 2) 3) 4))

((λ (f : int -> int) f) (λ (x:int) (λ (x:int) x)))

45

Solution

Neither type checks. This subexpression results in int,
which cannot be applied.

(λ (f : int -> int -> int) (((f 2) 3) 4))

((λ (f : int -> int) f) (λ (x:int) (λ (x:int) x)))

46

Solution

Neither type checks.

This binder demands its argument is of type int -> int,
but its argument is really of type int -> int -> int

47

In the case of fully-annotated STLC, we never have to guess a type

In STLC, type inference is no harder than type checking

Our type checker will be syntax-directed

Next lecture, we will look at type inference for un-annotated STLC

 This will require generating, and then solving, constraints

48

The basic approach is to
observe that each of the rules
applies to a different form

App
Γ ⊢ e : t → t′￼

Γ ⊢ (e e′￼) : t′￼

Γ ⊢ e′￼ : t

Lam
Γ[x ↦ t] ⊢ e : t′￼

Γ ⊢ (λ (x : t) e) : t → t′￼

Int
Γ ⊢ n : int

Var
Γ ⊢ x : t

Γ(x) = t

For example, if we hit any
application expression (e e’),
we know that we have to use
the App rule

Thus, we write our type
checker as a structurally-
recursive function over the
input expression.

49

;; Synthesize a type for e in the environment env

;; Returns a type

(define (synthesize-type env e)

 (match e

 ;; Literals

 [(? integer? i) 'int]

 [(? boolean? b) 'bool]

Int
Γ ⊢ n : int

Recognizing literals is easy

50

;; Synthesize a type for e in the environment env

;; Returns a type

(define (synthesize-type env e)

 (match e

 ;; Literals

 [(? integer? i) 'int]

 [(? boolean? b) 'bool]

 ;; Look up a type variable in an environment

 [(? symbol? x) (hash-ref env x)]

Var
Γ ⊢ x : t

Γ(x) = t

51

;; Synthesize a type for e in the environment env

;; Returns a type

(define (synthesize-type env e)

 (match e

 ;; Literals

 [(? integer? i) 'int]

 [(? boolean? b) 'bool]

 ;; Look up a type variable in an environment

 [(? symbol? x) (hash-ref env x)]

 ;; Lambda w/ annotation

 [`(lambda (,x : ,A) ,e)

 `(,A -> ,(synthesize-type (hash-set env x A) e))]

Lam
Γ[x ↦ t] ⊢ e : t′￼

Γ ⊢ (λ (x : t) e) : t → t′￼

52

;; Synthesize a type for e in the environment env

;; Returns a type

(define (synthesize-type env e)

 (match e

 ;; Literals

 [(? integer? i) 'int]

 [(? boolean? b) 'bool]

 ;; Look up a type variable in an environment

 [(? symbol? x) (hash-ref env x)]

 ;; Lambda w/ annotation

 [`(lambda (,x : ,A) ,e)

 `(,A -> ,(synthesize-type (hash-set env x A) e))]

 ;; Arbitrary expression

 [`(,e : ,t) (let ([e-t (synthesize-type env e)])

 (if (equal? e-t t)

 t

 (error (format "types ~a and ~a are different" e-t t))))]

Chk
Γ ⊢ e : t

Γ ⊢ (e : t) : t

We haven’t written this rule yet—but
notice how the t’s are implicitly unified
(i.e., asserted to be the same) in the rule

53

;; Synthesize a type for e in the environment env

;; Returns a type

(define (synthesize-type env e)

 (match e

 ;; Literals

 [(? integer? i) 'int]

 [(? boolean? b) 'bool]

 ;; Look up a type variable in an environment

 [(? symbol? x) (hash-ref env x)]

 ;; Lambda w/ annotation

 [`(lambda (,x : ,A) ,e)

 `(,A -> ,(synthesize-type (hash-set env x A) e))]

 ;; Arbitrary expression

 [`(,e : ,t) (let ([e-t (synthesize-type env e)])

 (if (equal? e-t t)

 t

 (error (format "types ~a and ~a are different" e-t t))))]

 ;; Application

 [`(,e1 ,e2)

 (match (synthesize-type env e1)

 [`(,A -> ,B)

 (let ([t-2 (synthesize-type env e2)])

 (if (equal? t-2 A)

 B

 (error (format "types ~a and ~a are different" A t-2))))])]))

App
Γ ⊢ e : t → t′￼

Γ ⊢ (e e′￼) : t′￼

Γ ⊢ e′￼ : t

