
CIS352 —

Principles of Programming Languages

Spring 2025
Instructor: Kris Micinski

TA: Neda Abdolrahimi

https://kmicinski.com/cis352-s25

Course Website:

https://kmicinski.com/cis352-f24

2

We use writing to help ourselves structure our thoughts—
revising, editing, restarting along the way

 
This class examines the process of writing and understand
programs using a systematic, iterative approach

 
Want to learn “how to think” about programming

Why study programming languages?

3

- Learning a programming “language” is superficial

- We want to learn how to program in a specific paradigm

- Study the roots of programming languages to build a mental
model of big ideas that unify different paradigms and languages

- Adapt our skills to new languages as new languages appear

Course Objective

4

The main goal of this course is to teach you to write completely
correct code that you can clearly explain and easily understand

We do this through four coding projects

Two written midterms and a final (lowest drops)

Four programming exercises (groups up to 3)

Also several homeworks (mostly end of semester)

Attendance Quizzes

5

Starting the second week of the semester, we’ll start having
regular (once every day or two) attendance quizzes. Each quiz is
worth .5%, and you can get at most 5%. There will be at least 10
quizzes (probably more like 15-18). Quizzes will be given
randomly roughly once a week during lecture.

Quizzes will be conducted via online portal (Socrative), bring a
laptop/phone to class. You can also turn in on paper.

Instructors

6

Kris Micinski (4th year asst. prof here @ SU)

Neda Abdolrahimi (PhD student @ SU)

Kris office hours:

• One hour before class on Tuesdays

• One hour after class on Thursdays

Neda office hours:

• Monday mornings, instead of labs

• Others TBD

No Labs on Mondays

7

We will not be holding Monday morning labs, instead we will
reserve the time for ad-hoc office hours. We reserve the right to
use scheduled lab sessions for exceptional circumstances. If you
want extra help on Mondays, please get in touch with the TA.

Syllabus

8

Most up-to-date syllabus always available at:

https://kmicinski.com/cis352-s25/syllabus

https://kmicinski.com/cis352-f24/syllabus

Grading

9

 50% Autograder

 4 projects (10% each), 4 exercises (group, 2.5% each)

 40% Exams

 2 midterms, a final—each worth 20%, lowest of all drops

 Final can be skipped if you are happy with your grade

 5% Attendance quizzes

 You need to show up at 10/~15 participation quizzes

 5% Homework

 We’ll have a small number of homework sets

Projects

10

This course has projects (with deadlines) that are assigned and
graded via an autograder

https://autograder.org

You are expected to use the Git interface to the autograder;
Autograder credentials will be sent out by the first week

https://autograder.org

Prepping for the Course (Homework)

11

Neda will show an example usage of the Autograder on Thursday
(second day of class). For now, you should:

• Identify a terminal application you are comfortable using, you
will need to use the command line for this class.

• If you don’t know it, this is an explicit skill we require you learn

• At least the small amount of knowledge you need to run the
grading scripts and submit projects via Git

• Download Dr. Racket

• Go to “Help -> Configure Racket for Command Line”

• Install git on your machine

• Make sure Python3 is installed on your machine

Academic Integrity

12

The autograder employs elaborate measures that compare code
(syntactically and semantically) to identify potential collaboration,
then TAs and I check manually

No collaboration on code is allowed for projects—don’t send /
show / … anyone your code. Don’t post any project code > 3 lines

“Hard coding” answers (for projects, i.e., recognizing specific
inputs and providing correct outputs) is also an AI violation

ChatGPT Policy

13

ChatGPT and LLM-based technology (Copilot, etc…) have serious
potential to accelerate your programming skill, but it must be used
carefully in this course

In short, you can use ChatGPT to study material if you’d like, and
you can use it for the exercises only, but not use code it
generates on projects

14

We try to make projects sync up with the material presented at
the corresponding time in the course

Biggest indicator of success in the course is whether students
are on-track with projects—try to never get behind; it becomes
hard to catch up.

Start early on projects

Project Grading

15

 Each project is graded on a percent scale; your grade is the %
of tests that pass (18/20 tests passing = 90%)

 Projects always due at 11:59PM Syracuse time

 Projects up to 72 hours after deadline—15% penalty (max 85%)

 Projects up to end of course—25% penalty

 I.e., you can, in principle, always get a 75%

Exams

16

There will be a two midterms and a final

 Both midterms in-class and written

 Allowed one letter-sized (single-sided) note sheet

 I will release a practice midterm with the same question titles

several days before both midterms; we will work it in class

 Final exam is slightly longer, but replaces the lower of your two

midterm grades

 Each exam 20%, lowest drops (40% total from exams)

Syntax

17

A language’s physical form, its identifiers and grammatical
structure, is called its syntax

When we talk about programs, we often represent them as an
abstract representation (e.g., an “abstract-syntax tree”)

Tokenization and parsing is the task of turning raw syntax
(stream of tokens) into an abstract representation

We will not cover parsing much

“1 + 2 * 3”

+

1 *

2 3

Parse

Print

Semantics

18

PLs are unlike natural language—we need them to have a
precise, unambiguous meaning

PLs have some systematically-defined meaning (semantics)

This can take several forms:

Reference interpreter / compiler

Written specification

Machine-checked formal proof

Semantics

19

In this class we will mainly learn about semantics by building
interpreters, though we will also speak of other kinds of
semantics (e.g., the static semantics of type theory)

Racket Basics
CIS352

Kris Micinski

Racket

• Dynamically-Typed: variables are untyped, values typed

• Functional: Racket emphasizes functional style

• Compositional—emphasizes black-box components

• Immutability—requires automatic memory management

• Imperative: allows data to be modified, in carefully-
considered cases, but doesn’t emphasize “impure” code

21

Racket
• Object-oriented: Racket has a powerful object system

• Language-oriented: Racket is really a language toolkit

• Homoiconic: the same structure used to represent data (lists)
is also used to represent code

22

Example
((λ(x) (x x))

(λ(x) (x x)))

(define (calculuate-slope x0 y0 x1 y1)

 (/ (- y1 y0) (- x1 x0)))

23

Calculating the slope of a line in Racket

Example
((λ(x) (x x))

(λ(x) (x x)))

(define (calculuate-slope x0 y0 x1 y1)

 (/ (- y1 y0) (- x1 x0)))

24

Prefix notation

Example
((λ(x) (x x))

(λ(x) (x x)))

(define (calculuate-slope x0 y0 x1 y1)

 (/ (- y1 y0) (- x1 x0)))

25

Functions defined via prefix notation, too

Example
((λ(x) (x x))

(λ(x) (x x)))

(define (calculuate-slope x0 y0 x1 y1)

 (/ (- y1 y0) (- x1 x0)))

// C - calculate-slope(0,0,3,2);

(calculate-slope 0 0 3 2)

26

Calls to user-defined functions also in prefix notation

Example
((λ(x) (x x))

(λ(x) (x x)))

(define (calculuate-slope x0 y0 x1 y1)

 (/ (- y1 y0) (- x1 x0)))

(calculate-slope 0 0 3 2)

27

Note: preferred style puts closing parens at end of blocks

• Numeric tower. Numeric types gracefully degrade

• E.g., (* (/ 8 3) 2+1i) is 16/3+8/3i

• Note that 2+1i is a literal value, as is 2.3

• Strings and characters (“foo” and #\a)

• Booleans (#t and #f) including logical operator (e.g., or)

• Note that operators “short circuit”

Basic Types

28

Basic Types contd.
• Symbols are interned strings ‘foo

• Implicitly only one copy of each, unlike (say) strings

• Impact on space / memory usage

• The #<void> value (produced by (void))

29

Exercise

Compute the sum of the following:

• 2/3 and 1.5

• 3+8i and 3i

• 0 and positive infinity (+inf.0)

30

Exercise

Compute the sum of the following:

• (+ 2/3 1.5) 
2.1666666666666665 (N.B., result is inexact)

• (+ 3+8i 0+3i) 
3+11i

• (+ 0 +inf.0) 
+inf.0

31

