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Compilers
• As you probably know, the processor 


• Translate “high-level” language to “object” language


• Typically, the object language is a binary, though other 
examples exist (e.g., JVM bytecode).


• Parsing binary formats can be done very efficiently


• The precise format of the object file is largely 
determined by the OS linker / loader


• E.g., Windows Portable Executable (PE binaries), Mac 
Mach-o, Executable and Linkable (ELF)
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Assembly Language and ISAs

• The computer executes very, very simple instructions on a clock.


• Assembly language is the human-readable version of the binary language 
ultimately spoken by the processor.


• The processor ultimately reads, decodes, and executes instructions in a 
specific language called its Instruction Set Architecture (ISA)


• This is the “native” language that your processor knows how to execute.


• Common examples you may have heard of: Pentium x86, x86-64, ARM
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section .data

    int_format db "Hello, world.",10,0

    global _main    

    extern _printf


section .text


_main:

    push rbp

    mov rbp, rsp ; move the stack pointer into the base pointer


    ; Set up for calling printf

    lea rdi, [rel int_format] ; Load address of format string into rdi

    mov rax, 0 ; Zero rax to indicate no floating-point arguments are passed

    call _printf ; Call printf


    ; Clean up and return

    leave

    ret
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section .data

    int_format db "Hello, world.",10,0

    global _main    

    extern _printf


section .text


_main:

    push rbp

    mov rbp, rsp ; move the stack pointer into the base pointer


    ; Set up for calling printf

    lea rdi, [rel int_format] ; Load address of format string into rdi

    mov rax, 0 ; Zero rax to indicate no floating-point arguments are passed

    call _printf ; Call printf


    ; Clean up and return

    leave

    ret


Different sections of the file. Common 
segments include data (read only, BSS, …) 
and .text, which is where the code gets put



_main:

    push rbp

    mov rbp, rsp ; move the stack pointer into the base pointer


    ; Set up for calling printf

    lea rdi, [rel int_format] ; Load address of format string into rdi

    mov rax, 0 ; Zero rax to indicate no floating-point arguments are passed

    call _printf ; Call printf


    ; Clean up and return

    leave

    ret
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Focusing just on the _main function


Initialization

Call printf

Return



_main:

    push rbp

    mov rbp, rsp ; move the stack pointer into the base pointer


    ;; We’ll look at stuff in the middle.

    ;; I am calling this intra-procedural assembly.

    ;; Functions / memory are more complicated.

    ;; We’ll look at those next time.


    ; Clean up and return

    leave

    ret
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Today, we’ll ignore the beginning and end; 
we’ll need to talk about how memory is 
organized to meaningfully cover those.

Beginning of functions

End of functions



Assembly Progression
• Programming in assembler could easily take a whole course; 

tons of nuanced concepts, which differ widely depending on 
the OS/ABI/compiler/linker/…


• I will show x86-64 (i.e., AMD 64-bit assembler, extending and 
compatible with Pentium x86)


• Possible to cross-compile x86-64 to run on M2 Mac (I have 
one!) using Rosetta, will see how


• ARM Assembly is also common


• I will show (mostly) NASM (Netwide assembler) syntax, 
though I may occasionally mess up


• There are many different types of assemblers, MASM, GAS, 
NASM, ….
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Registers: Blazing-Fast Variables

• Registers: the main data structures over which instructions operate


• All modern laptops are 64-bit: this means that registers are 64 bits.


• Registers are used as pointers in C, and thus 64-bit machines may 
address up to 2^64 bytes of memory; if you do the math 2^32 bits is 
only around 4GB of RAM, 2^64 is a big improvement!


• Instructions will take inputs in registers (sometimes literals are allowed) 
and store the output to a result register
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Example
((λ(x) (x x))

(λ(x) (x x)))

mov rax, 5

mov rbi, 6

mov rax, rbi


// what are the values of rax and rdi here?
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Example
((λ(x) (x x))

(λ(x) (x x)))

mov rax, 5

mov rbi, 6

mov rax, rbi


// what are the values of rax and rdi here?

// rax = 6, rbi = 6
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Traditionally, x86 architectures only had four 
16-bit general purpose registers: ax, bx, cx, dx

Also other registers: bp, sp, di, si

Base pointer

(Start of frame) Stack pointer

(Top of stack)

Originally (Intel 8086), 8-bit registers: al, bl, cl, dl





As time progressed, also added 32-bit registers: eax, ebx, ecx, edx

In past decade or two, 64-bit registers: rax, rbx, rcx, rdx

(Also 64-bit versions: rip, etc..)

We’ll pretty much exclusively use 64-bit registers! 

(~every laptop/desktop now is 64 bit!)



Note RAX is an extension of EAX

If you change EAX, you change lower 32 bits of RAX





Special regs: floating-
point / matrix ops
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To represent 0x1234567890abcdef

56 78 90 ab cd ef

Least Significant ByteMost Significant Byte



x86 is a little-endian architecture

If an n-byte value is stored at addresses a to a+(n-1) in memory, 
byte a will hold the least significant byte

0x1234567890abcdef

Exercise with partner



Instructions

Binary code is made up of giant sequences of “instructions”

Modern Intel / AMD chip has hundreds of them, some very complex

Moving memory around Arithmetic Branch / If

Matrix operations Atomic-Instructions

Transactional memory instructions



Plurality of instructions 
are movs

Then push
Then call



Intraprocedural Instructions
• Today, we’ll learn a few types of instructions:


• mov — move values around / load / store


• Arithmetic / logical operators — operate on registers


• Comparison instructions — loads EFLAGS register


• (Un)conditional jumps — to labels, based on EFLAGS 


• Next lecture, we’ll look more closely at functions, stack 
frames, function calls, and calling conventions.
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add  rax, rbx
Source

In NASM, written destination-first, source-last

Destination

Arithmetic operations

Semantics is:

rax += rbx



add, sub, imul, idiv, inc, dec, neg, …

List of arithmetic / logic instructions

and, or, xor, not, shl, shr, sal, 
sar, rol, ror, …

Bitwise Logic Operations



mov has several addressing modes
Addressing modes allow us to speak about where data is: we can load data 
from other registers, from constants (immediate), or from other memory.


mov is by far the most common instruction on the x86-64. This is basically 
mov is a very overloaded instruction, allowing us to move:


 Registers to registers

 Memory to registers (load)

 Registers to memory (store)

 No memory to memory


Registers are for fast computations over short lived data, which then gets 
put back into memory. You want things to be in registers when possible.



mov  rax, rbx
Source

Opcode name

Destination

“Move the value from register rbx into the register rax”

This is the simple (register-to-register) case, but more 
common is to load/store from main memory.



Memory: a giant chunk of bytes

You can load from and store to it using pointers

mov rax, [rbx]

“Move the 64-bit value stored at the location 
pointed to by rbx into rbx”



mov  rax, [rbx]
Opcode name

Source

Destination

0xaf23c8a223356ac0xffffffff00000000rax 0xffffffff00000008

0xdeadbeefdeadbeef0xffffffff00000000
0x1234123412341234rbx

“Move the 64-bit value stored at the location 
pointed to by rbx into rax”



mov  rax, [rbx]
Opcode name

Source

Destination

0xaf23c8a223356ac0xffffffff00000000rax 0xffffffff00000008

0xdeadbeefdeadbeef0xffffffff00000000
0xdeadbeefdeadbeefrbx

“Move the 64-bit value stored at the location 
pointed to by rbx into rax”



Memory: a giant chunk of bytes

You can load from and store to it using pointers

mov rax, [rax + rdi*8 + 500]

“Move the 64-bit value stored at the location 
pointed to by rbx + rdi * 8 + 500 into rax”



You can’t move memory-to-memory

mov [rbx], [rax]



First, load into an intermediary register

mov rcx, [rax]

mov [rbx], rcx



Different instructions allow different addressing-modes. Sometimes 
you may need to do some pointer arithmetic, lea, etc… to get things 
in the right place.



Comparison operators
The comparison instructions cmp and test set the FLAGS register, which will 
subsequently influence how conditional jump instructions (jg, jz, jge, …) behave

_start:

    mov rax, 5 ; First number to compare

    cmp rax, 3 ; Compare first number with second number


    ja .greater ; Jump if above (unsigned comparison)

    jmp .less_or_equal


.greater:

    ; Print message_gt

    mov rdi, message_gt ; Address of the message

    call print_string

    jmp .exit


.less_or_equal:

    ; Print message_le

    mov rdi, message_le ; Address of the message

    call print_string

    jmp .exit



Conditional jumps such as jz (“jump if last comparison was zero,” i.e., equal), or 
jge  (“jump is last comparison was greater than or equal to).


jmp — Unconditional jump

je / jz — jump if zero (equal) flag is set

jne / jnz — jump if not zero (equal)

js — jump if sign

jg — jump if greater

jl — jump if less 

jle — jump if less than or equal to



An unconditional jump jumps to a label unconditionally.

section .text

global _start


_start:

    ; Do something

    JMP somewhere_else ; Jumps to the label "somewhere_else"


somewhere_else:

    ; Execution continues here after the jump

    ; Do something else



From Instructions to Functions
• Instructions execute one-after-another, in absence of 

(un)conditional jumps.


• Now, we want to study how to use multiple instructions to 
build computations (i.e., more than a single instruction).


• One obvious challenge: registers are limited!


• A big computation might require us to be very careful with 
how we use registers—what if we don’t have enough 
registers?


• Solution: can always “spill” into memory.

37



38

_main:

    push rbp

    mov rbp, rsp


    mov rax, 3

    mov rbx, 5

    imul rax, rbx

    mov rbx, 4

    add rax, rbx


    ; Clean up and return

    leave

    ret


Setup

Return

The main part of the program has five instructions:

Move 3 into rax

Move 5 into rbx

Multiply rbx by rax, leave result in rax

Move 4 into rbx

Add rax and rbx, leave result in rbx
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_main:

    push rbp

    mov rbp, rsp


    ;; YOUR CODE HERE


    leave

    ret


Exercise:

Load 10 into rax

Load 20 into rbx

Load 15 into rcx

Shift rbx right by 2 (use shr, logical shift)

Multiply rcx by rbx, leave result in rcx

Add result to rax, leave result in rax



40

_main:

    push rbp

    mov rbp, rsp 


    mov rax, 5

    sub rax, 8

    cmp rax, 0

    jnz not_zero

    jmp zero

zero:	

    mov rax, 15

    jmp done

not_zero:	

    mov rax, 20

done:

    leave

    ret


Example: using cmp to compare 
a register to a specific value

Notice: tag branches with labels

Possible to drive control-flow by 
using jnz/jmp/…



Compiling Complex Expressions


An issue: x86-64 instructions don’t allow nesting, expressions like 
(x + 5) * (y - 2) must be broken down into sequences of 
instructions:


// assume x in rax, y in rbx

mov rcx, 5

add rax, rcx // rax := x + 5, rax changed!
mov rcx, 2

sub y, rcx // rbx := y - 2

imul rax, rbx // result in rax



• Unfortunately, instructions like add mutate their inputs


• Can’t use value of x ever again!


• Registers availability can get very tight, but not so much 
anymore (modern CPUs tend towards more general-
purpose registers)


• May need to be smart about register allocation
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Solution: Virtual Registers
• Assume we have enough registers


• Each subexpression assigned a virtual register


• Map virtual registers to actual registers later


• All arguments to functions are atoms


• (Typically) values assigned exactly once (SSA, more on this later)
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(+ (* x (+ y 2))

   (+ z (- y x))) 

(let* ([r0 (+ y 2)]

       [r1 (* x r0)]

       [r2 (- y x)]

       [r3 (+ z r2)]

   r3)

ANF Conversion
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(let* ([r0 (+ y 2)]

       [r1 (* x r0)]

       [r2 (- y x)]

       [r3 (+ z r2)]

   r3)

mov r0, y

add r0, 2

mov r1, x

imul r1, r0

mov r2, y

sub  r2, x

mov r3, z

add r3, r2

To “virtual” 
assembly



45

mov r0, y

add r0, 2

mov r1, x

imul r1, r0

mov r2, y

sub  r2, x

mov r3, z

add r3, r2

Register allocation 
turns this into 
actual x86-64

// For example, if…

// y = [rdx]

// x = [rdx+8]

// z = [rdx+16]

mov rax, [rdx]

add rax, 2

mov rbx, [rdx+8]

imul rbx, rax

mov rcx, [rdx]

sub  rcx, [rdx+8]

mov rcx, [rdx+16]

add rcx, rbx



If we run out of space in registers (common), we’ll need to 
store values somewhere else.


To do this, we use RAM, typically via the stack / heap.


We move values into / out of registers—the values we’re 
working with have to be shuffled into and out of RAM via 
mov instructions. More on this next time



Quick Aside
Notice how all of these operations operate only on single 
registers at once. CPUs (by design) operate on a small amount of 
data at once, but often allow many threads of control—separate 
cores can operate independently.


GPUs operate over huge amounts of data at once, but fewer 
control units (worst case: whole GPU does one instruction at a 
time but on an enormous vector)

Compared to CPUs, which are MIMD (multiple 
instruction,multiple data), GPUs are SIMD (single 
instruction, multiple data). 



Although less flexible (no regular “threads”), GPUs have extreme 
memory throughput. GPU memory bandwidth (think: limit on how 
much you can stuff into / out of RAM at once) has far outpaced 
CPUs over the past years (HBM, high-bandwidth memory).

All modern machine learning 
advances (LLMs) run on GPUs 
due to the extreme degree of 
parallelism they provide.

Neural networks naturally 
SIMD by nature, thus a good fit 
for GPUs.



Binary specifies a number of sections which describe the 
program’s data (icons, strings, resources, etc…) along with its code.


At runtime, the OS separates these into different segments

We’ll wrap up today by looking at how OS loads the program



Kernel memory

Your OS uses it



Stack: push / pop

Very important (security):
The stack grows down



Stack: push / pop

The stack grows down

Stack used for local variables

Stack also return points for 
invoked functions

Very important (security):



mmap segments

Allows you to map a file 
to memory



Heap: dynamic allocation

C++: New / delete

C: Malloc / free

Lots of big objects live on the heap, 
especially in modern languages 
(Python, Java, Racket, C#, …)



BSS: Uninitialized static 
vars (globals)



Data segment: initialized 
statics—e.g., constant strings



Text segment: program code



Note the permissions



This random offset 
really security feature


