
Compilers: Part 1

Assembly Code
CIS352 — Spring 2024

Kris Micinski

Compilers
• As you probably know, the processor

• Translate “high-level” language to “object” language

• Typically, the object language is a binary, though other
examples exist (e.g., JVM bytecode).

• Parsing binary formats can be done very efficiently

• The precise format of the object file is largely
determined by the OS linker / loader

• E.g., Windows Portable Executable (PE binaries), Mac
Mach-o, Executable and Linkable (ELF)

2

C++

LLVM/
Clang

ELF/…

Assembly Language and ISAs

• The computer executes very, very simple instructions on a clock.

• Assembly language is the human-readable version of the binary language
ultimately spoken by the processor.

• The processor ultimately reads, decodes, and executes instructions in a
specific language called its Instruction Set Architecture (ISA)

• This is the “native” language that your processor knows how to execute.

• Common examples you may have heard of: Pentium x86, x86-64, ARM

3

4

section .data

 int_format db "Hello, world.",10,0

 global _main

 extern _printf

section .text

_main:

 push rbp

 mov rbp, rsp ; move the stack pointer into the base pointer

 ; Set up for calling printf

 lea rdi, [rel int_format] ; Load address of format string into rdi

 mov rax, 0 ; Zero rax to indicate no floating-point arguments are passed

 call _printf ; Call printf

 ; Clean up and return

 leave

 ret

5

section .data

 int_format db "Hello, world.",10,0

 global _main

 extern _printf

section .text

_main:

 push rbp

 mov rbp, rsp ; move the stack pointer into the base pointer

 ; Set up for calling printf

 lea rdi, [rel int_format] ; Load address of format string into rdi

 mov rax, 0 ; Zero rax to indicate no floating-point arguments are passed

 call _printf ; Call printf

 ; Clean up and return

 leave

 ret

Different sections of the file. Common
segments include data (read only, BSS, …)
and .text, which is where the code gets put

_main:

 push rbp

 mov rbp, rsp ; move the stack pointer into the base pointer

 ; Set up for calling printf

 lea rdi, [rel int_format] ; Load address of format string into rdi

 mov rax, 0 ; Zero rax to indicate no floating-point arguments are passed

 call _printf ; Call printf

 ; Clean up and return

 leave

 ret

6

Focusing just on the _main function

Initialization

Call printf

Return

_main:

 push rbp

 mov rbp, rsp ; move the stack pointer into the base pointer

 ;; We’ll look at stuff in the middle.

 ;; I am calling this intra-procedural assembly.

 ;; Functions / memory are more complicated.

 ;; We’ll look at those next time.

 ; Clean up and return

 leave

 ret

7

Today, we’ll ignore the beginning and end;
we’ll need to talk about how memory is
organized to meaningfully cover those.

Beginning of functions

End of functions

Assembly Progression
• Programming in assembler could easily take a whole course;

tons of nuanced concepts, which differ widely depending on
the OS/ABI/compiler/linker/…

• I will show x86-64 (i.e., AMD 64-bit assembler, extending and
compatible with Pentium x86)

• Possible to cross-compile x86-64 to run on M2 Mac (I have
one!) using Rosetta, will see how

• ARM Assembly is also common

• I will show (mostly) NASM (Netwide assembler) syntax,
though I may occasionally mess up

• There are many different types of assemblers, MASM, GAS,
NASM, ….

8

Registers: Blazing-Fast Variables

• Registers: the main data structures over which instructions operate

• All modern laptops are 64-bit: this means that registers are 64 bits.

• Registers are used as pointers in C, and thus 64-bit machines may
address up to 2^64 bytes of memory; if you do the math 2^32 bits is
only around 4GB of RAM, 2^64 is a big improvement!

• Instructions will take inputs in registers (sometimes literals are allowed)
and store the output to a result register

9

Example
((λ(x) (x x))

(λ(x) (x x)))

mov rax, 5

mov rbi, 6

mov rax, rbi

// what are the values of rax and rdi here?

10

Example
((λ(x) (x x))

(λ(x) (x x)))

mov rax, 5

mov rbi, 6

mov rax, rbi

// what are the values of rax and rdi here?

// rax = 6, rbi = 6

11

Traditionally, x86 architectures only had four
16-bit general purpose registers: ax, bx, cx, dx

Also other registers: bp, sp, di, si

Base pointer

(Start of frame) Stack pointer

(Top of stack)

Originally (Intel 8086), 8-bit registers: al, bl, cl, dl

As time progressed, also added 32-bit registers: eax, ebx, ecx, edx

In past decade or two, 64-bit registers: rax, rbx, rcx, rdx

(Also 64-bit versions: rip, etc..)

We’ll pretty much exclusively use 64-bit registers!

(~every laptop/desktop now is 64 bit!)

Note RAX is an extension of EAX

If you change EAX, you change lower 32 bits of RAX

Special regs: floating-
point / matrix ops

12 34

To represent 0x1234567890abcdef

56 78 90 ab cd ef

Least Significant ByteMost Significant Byte

x86 is a little-endian architecture

If an n-byte value is stored at addresses a to a+(n-1) in memory,
byte a will hold the least significant byte

0x1234567890abcdef

Exercise with partner

Instructions

Binary code is made up of giant sequences of “instructions”

Modern Intel / AMD chip has hundreds of them, some very complex

Moving memory around Arithmetic Branch / If

Matrix operations Atomic-Instructions

Transactional memory instructions

Plurality of instructions
are movs

Then push
Then call

Intraprocedural Instructions
• Today, we’ll learn a few types of instructions:

• mov — move values around / load / store

• Arithmetic / logical operators — operate on registers

• Comparison instructions — loads EFLAGS register

• (Un)conditional jumps — to labels, based on EFLAGS

• Next lecture, we’ll look more closely at functions, stack
frames, function calls, and calling conventions.

22

add rax, rbx
Source

In NASM, written destination-first, source-last

Destination

Arithmetic operations

Semantics is:

rax += rbx

add, sub, imul, idiv, inc, dec, neg, …

List of arithmetic / logic instructions

and, or, xor, not, shl, shr, sal,
sar, rol, ror, …

Bitwise Logic Operations

mov has several addressing modes
Addressing modes allow us to speak about where data is: we can load data
from other registers, from constants (immediate), or from other memory.

mov is by far the most common instruction on the x86-64. This is basically
mov is a very overloaded instruction, allowing us to move:

 Registers to registers

 Memory to registers (load)

 Registers to memory (store)

 No memory to memory

Registers are for fast computations over short lived data, which then gets
put back into memory. You want things to be in registers when possible.

mov rax, rbx
Source

Opcode name

Destination

“Move the value from register rbx into the register rax”

This is the simple (register-to-register) case, but more
common is to load/store from main memory.

Memory: a giant chunk of bytes

You can load from and store to it using pointers

mov rax, [rbx]

“Move the 64-bit value stored at the location
pointed to by rbx into rbx”

mov rax, [rbx]
Opcode name

Source

Destination

0xaf23c8a223356ac0xffffffff00000000rax 0xffffffff00000008

0xdeadbeefdeadbeef0xffffffff00000000
0x1234123412341234rbx

“Move the 64-bit value stored at the location
pointed to by rbx into rax”

mov rax, [rbx]
Opcode name

Source

Destination

0xaf23c8a223356ac0xffffffff00000000rax 0xffffffff00000008

0xdeadbeefdeadbeef0xffffffff00000000
0xdeadbeefdeadbeefrbx

“Move the 64-bit value stored at the location
pointed to by rbx into rax”

Memory: a giant chunk of bytes

You can load from and store to it using pointers

mov rax, [rax + rdi*8 + 500]

“Move the 64-bit value stored at the location
pointed to by rbx + rdi * 8 + 500 into rax”

You can’t move memory-to-memory

mov [rbx], [rax]

First, load into an intermediary register

mov rcx, [rax]

mov [rbx], rcx

Different instructions allow different addressing-modes. Sometimes
you may need to do some pointer arithmetic, lea, etc… to get things
in the right place.

Comparison operators
The comparison instructions cmp and test set the FLAGS register, which will
subsequently influence how conditional jump instructions (jg, jz, jge, …) behave

_start:

 mov rax, 5 ; First number to compare

 cmp rax, 3 ; Compare first number with second number

 ja .greater ; Jump if above (unsigned comparison)

 jmp .less_or_equal

.greater:

 ; Print message_gt

 mov rdi, message_gt ; Address of the message

 call print_string

 jmp .exit

.less_or_equal:

 ; Print message_le

 mov rdi, message_le ; Address of the message

 call print_string

 jmp .exit

Conditional jumps such as jz (“jump if last comparison was zero,” i.e., equal), or
jge (“jump is last comparison was greater than or equal to).

jmp — Unconditional jump

je / jz — jump if zero (equal) flag is set

jne / jnz — jump if not zero (equal)

js — jump if sign

jg — jump if greater

jl — jump if less

jle — jump if less than or equal to

An unconditional jump jumps to a label unconditionally.

section .text

global _start

_start:

 ; Do something

 JMP somewhere_else ; Jumps to the label "somewhere_else"

somewhere_else:

 ; Execution continues here after the jump

 ; Do something else

From Instructions to Functions
• Instructions execute one-after-another, in absence of

(un)conditional jumps.

• Now, we want to study how to use multiple instructions to
build computations (i.e., more than a single instruction).

• One obvious challenge: registers are limited!

• A big computation might require us to be very careful with
how we use registers—what if we don’t have enough
registers?

• Solution: can always “spill” into memory.

37

38

_main:

 push rbp

 mov rbp, rsp

 mov rax, 3

 mov rbx, 5

 imul rax, rbx

 mov rbx, 4

 add rax, rbx

 ; Clean up and return

 leave

 ret

Setup

Return

The main part of the program has five instructions:

Move 3 into rax

Move 5 into rbx

Multiply rbx by rax, leave result in rax

Move 4 into rbx

Add rax and rbx, leave result in rbx

39

_main:

 push rbp

 mov rbp, rsp

 ;; YOUR CODE HERE

 leave

 ret

Exercise:

Load 10 into rax

Load 20 into rbx

Load 15 into rcx

Shift rbx right by 2 (use shr, logical shift)

Multiply rcx by rbx, leave result in rcx

Add result to rax, leave result in rax

40

_main:

 push rbp

 mov rbp, rsp

 mov rax, 5

 sub rax, 8

 cmp rax, 0

 jnz not_zero

 jmp zero

zero:	

 mov rax, 15

 jmp done

not_zero:	

 mov rax, 20

done:

 leave

 ret

Example: using cmp to compare
a register to a specific value

Notice: tag branches with labels

Possible to drive control-flow by
using jnz/jmp/…

Compiling Complex Expressions

An issue: x86-64 instructions don’t allow nesting, expressions like
(x + 5) * (y - 2) must be broken down into sequences of
instructions:

// assume x in rax, y in rbx

mov rcx, 5

add rax, rcx // rax := x + 5, rax changed!
mov rcx, 2

sub y, rcx // rbx := y - 2

imul rax, rbx // result in rax

• Unfortunately, instructions like add mutate their inputs

• Can’t use value of x ever again!

• Registers availability can get very tight, but not so much
anymore (modern CPUs tend towards more general-
purpose registers)

• May need to be smart about register allocation

42

Solution: Virtual Registers
• Assume we have enough registers

• Each subexpression assigned a virtual register

• Map virtual registers to actual registers later

• All arguments to functions are atoms

• (Typically) values assigned exactly once (SSA, more on this later)

43

(+ (* x (+ y 2))

 (+ z (- y x)))

(let* ([r0 (+ y 2)]

 [r1 (* x r0)]

 [r2 (- y x)]

 [r3 (+ z r2)]

 r3)

ANF Conversion

44

(let* ([r0 (+ y 2)]

 [r1 (* x r0)]

 [r2 (- y x)]

 [r3 (+ z r2)]

 r3)

mov r0, y

add r0, 2

mov r1, x

imul r1, r0

mov r2, y

sub r2, x

mov r3, z

add r3, r2

To “virtual”
assembly

45

mov r0, y

add r0, 2

mov r1, x

imul r1, r0

mov r2, y

sub r2, x

mov r3, z

add r3, r2

Register allocation
turns this into
actual x86-64

// For example, if…

// y = [rdx]

// x = [rdx+8]

// z = [rdx+16]

mov rax, [rdx]

add rax, 2

mov rbx, [rdx+8]

imul rbx, rax

mov rcx, [rdx]

sub rcx, [rdx+8]

mov rcx, [rdx+16]

add rcx, rbx

If we run out of space in registers (common), we’ll need to
store values somewhere else.

To do this, we use RAM, typically via the stack / heap.

We move values into / out of registers—the values we’re
working with have to be shuffled into and out of RAM via
mov instructions. More on this next time

Quick Aside
Notice how all of these operations operate only on single
registers at once. CPUs (by design) operate on a small amount of
data at once, but often allow many threads of control—separate
cores can operate independently.

GPUs operate over huge amounts of data at once, but fewer
control units (worst case: whole GPU does one instruction at a
time but on an enormous vector)

Compared to CPUs, which are MIMD (multiple
instruction,multiple data), GPUs are SIMD (single
instruction, multiple data). 

Although less flexible (no regular “threads”), GPUs have extreme
memory throughput. GPU memory bandwidth (think: limit on how
much you can stuff into / out of RAM at once) has far outpaced
CPUs over the past years (HBM, high-bandwidth memory).

All modern machine learning
advances (LLMs) run on GPUs
due to the extreme degree of
parallelism they provide.

Neural networks naturally
SIMD by nature, thus a good fit
for GPUs.

Binary specifies a number of sections which describe the
program’s data (icons, strings, resources, etc…) along with its code.

At runtime, the OS separates these into different segments

We’ll wrap up today by looking at how OS loads the program

Kernel memory

Your OS uses it

Stack: push / pop

Very important (security):
The stack grows down

Stack: push / pop

The stack grows down

Stack used for local variables

Stack also return points for
invoked functions

Very important (security):

mmap segments

Allows you to map a file
to memory

Heap: dynamic allocation

C++: New / delete

C: Malloc / free

Lots of big objects live on the heap,
especially in modern languages
(Python, Java, Racket, C#, …)

BSS: Uninitialized static
vars (globals)

Data segment: initialized
statics—e.g., constant strings

Text segment: program code

Note the permissions

This random offset
really security feature

