Compilers: Part 1
Assembly Code

CIS352 — Spring 2024
Kris Micinski

Compilers

ints = 1% s
const Joystick* 3oysuc\<.

® As you probably know, the processor

: ALY S
: : *Joys\'.l-c\‘ 3‘ﬂ°at,\50 S0V
. :playerlint ot apelVector2s [250-(130
- e = Rgc-?\a'&?\?\}‘ :go'\or\‘—%“'“ﬂsm
setFilt
joystick = 3’

® Translate "high-level” language to “object” language

® Typically, the object language is a binary, though other
examples exist (e.g., JVM bytecode).

® Parsing binary formats can be done very efficiently

® The precise format of the object file is largely
determined by the OS linker / loader

® £ g., Windows Portable Executable (PE binaries), Mac
Mach-o, Executable and Linkable (ELF)

ELF/...

Assembly Language and ISAs

® The computer executes very, very simple instructions on a clock.

® Assembly language is the human-readable version of the binary language
ultimately spoken by the processor.

® The processor ultimately reads, decodes, and executes instructions in a
specific language called its Instruction Set Architecture (ISA)

® This is the “native” language that your processor knows how to execute.

® Common examples you may have heard of: Pentium x86, x86-64, ARM

section .data

int format db "Hello, world.",10,0
global main

extern printf
section .text

_main:
push rbp

mov rbp, rsp ; move the stack pointer into the base pointer

; Set up for calling printf

lea rdi, [rel int format] ; Load address of format string into rdi

mov rax, 0 ; Zero rax to indicate no floating-point arguments are passed

call printf ; Call printf

; Clean up and return
leave

ret

section .data
int format db "Hello, world.",10,0
global main

extern printf Different sections of the file. Common

section .text segments include data (read only, BSS, ...)

- and .text, which is where the code gets put
_main:

push rbp
mov rbp, rsp ; move the stack pointer into the base pointer

; Set up for calling printf

lea rdi, [rel int format] ; Load address of format string into rdi

mov rax, 0 ; Zero rax to indicate no floating-point arguments are passed
call printf ; Call printf

; Clean up and return
leave
ret

Focusing just on the _main function

. Initialization
_main:

push rbp

mov rbp, rsp ; move the stack pointer into the base pointer

| printt
; Set up for calling printf Ca print

lea rdi, [rel i1nt format] ; Load address of format string into rdi

mov rax, 0 ; Zero rax to indicate no floating-point arguments are passed

call printf ; Call printf

7 Clean up and return Return

leave
ret

Today, we’ll ignore the beginning and end,;
we'll need to talk about how memory is
organized to meaningfully cover those.

_mailn:

push rbp Beginning of functions
mov rbp, rsp ; move the stack pointer into the base pointer

+» We’'ll look at stuff in the middle.

3 I am calling this i1ntra-procedural assembly.
»» Functions / memory are more complicated.

+» We’'ll look at those next time.

7 Clean up and return
leave

ret End of functions

Assembly Progression

® Programming in assembler could easily take a whole course;

tons of nuanced concepts, which differ widely depending on
the OS/ABI/compiler/linker/...

® | will show x86-64 (i.e., AMD 64-bit assembler, extending and
compatible with Pentium x86)

® Possible to cross-compile x86-64 to run on M2 Mac (I have
one!) using Rosetta, will see how

® ARM Assembly is also common

® | will show (mostly) NASM (Netwide assembler) syntax,
though | may occasionally mess up

® There are many different types of assemblers, MASM, GAS,
NASM,

Registers: Blazing-Fast Variables

Registers: the main data structures over which instructions operate
All modern laptops are 64-bit: this means that registers are 64 bits.

Registers are used as pointers in C, and thus 64-bit machines may
address up to 2264 bytes of memory; it you do the math 2732 bits is
only around 4GB of RAM, 2764 is a big improvement!

Instructions will take inputs in registers (sometimes literals are allowed)
and store the output to a result register

Example M
(()L(x) (x X))

() xﬂ)

mov rax, 5
mov rbi, 6
mov rax, rbi

// what are the values of rax and rdi here?

Example 4
(()L(x) (x X))

() & xﬂ)

mov rax, 5
mov rbi, 6
mov rax, rbi

// what are the values of rax and rdi here?
// rax = 6, rbi = 6

Originally (Intel 8086), 8-bit registers: al, bl, cl, dl

Traditionally, x86 architectures only had four
| 6-bit general purpose registers: ax, bx, cx, dx

Also other registers: bp, sp, di, si

Base pointer

(Start of frame) Stack pointer

(Top of stack)

&

¥
5
4

- -

g O

As time progressed, also added 32-bit registers: eax, ebx, ecx, edx

In past decade or two, 64-bit registers: rax, rbx, rcx, rdx

(Also 64-bit versions: rip, etc..)

We'll pretty much exclusively use 64-bit registers!
(~every laptop/desktop now is 64 bit!)

Note RAX is an extension of EAX

If you change EAX, you change lower 32 bits of RAX

General-Purpose Multimedia Extension and Streaming SIMD

Registers (GPRs) Floating-Point Registers Extension (SSE) Registers
RAX MMO/STO XMMO
RBX MM1/ST1 XMM1
RCX MM2/ST2 XMM2
RDX MM3/ST3 XMM3
RBP MM4/ST4 XMM4
RS MMS5/STS XMMS5
RDI MM6/ST6 XMM6
RSP MM7/ST7 XMM7
R8 63 J XMMS8
R9 XMM9
R10 Flags XMM10
R Regrster XMM1
R12 [] eruacs XMM12
R13 ot 0 XMM13
R14 Instruction Pointer XMM14

ws [] we XMMIs

b3) 63 0 127

| Regraer Exterrsions, supported in 64-84 Mode WU 00 g%

General-Purpose Multimedia Extension and Streaming SIMD

Registers (GPRs) Floating-Point Registers Extension (SSE) Registers
RAX MMO/STO XMMO
RBX MM1/STY XMM1
RCX MM2/ST2 XMM2
RDX MM3/ST3 XMM3
RBP MM4/ST4 XMM4
RS MM5/STS XMM5
RDI MM&6/ST6 XMM6
RSP MM7/5T7 XMM7
R8 63 U XMM8
R9 XMM9
R10 XMM10
R11 XMMM
R12 XMM12
R13 XMM13
R14 XMM14
XMM15

R15
J 127 0

LERACY xB5 Regrsiers, supponed n

| 38 MOOES . : ‘ .

| e o u Opecial regs: floating-

RERrer Exdersons, supporied in 64-84 Mode . .
point / matrix ops

VU s

To represent 0x1234567890abcdef

DEEDDEEE

Most Significant Byte Least Significant Byte

x86 is a little=endian architecture

If an n-byte value is stored at addresses a to a+(n-1) in memory,
byte a will hold the least significant byte

0x1234567890abcdef

Exercise with partner

Instructions

Binary code is made up of giant sequences of “instructions”

Modern Intel / AMD chip has hundreds of them, some very complex

Moving memory around Arithmetic Branch / If

Matrix operations Atomic-Instructions

Transactional memory instructions

Top 20 instructions of x86 architecture

shi Others
1% or 11%

and 1%
1% fstp

fliy %
aub movy

g e 0 /—35% Plurality of instructions
Inc

ot 1o are MoVs

1% jne
2% -

me_

2% o, ™

e/

3%

test
3%

lea
4% push
\ 10%
pop I
add cmp -

e 4% 59, B Then pUSh
Then call

Intraprocedural Instructions

® Today, we'll learn a few types of instructions:
® mov — move values around / load / store
® Arithmetic / logical operators — operate on registers
® Comparison instructions — loads EFLAGS register
® (Un)conditional jumps — to labels, based on EFLAGS

o Next lecture, we'll look more closely at functions, stack
frames, function calls, and calling conventions.

22

Arithmetic operations

In NASM, written destination-first, source-last

Destination Source

add rax, rbx

Semantics is:
rax += rbx

List of arithmetic / logic instructions

add, sub, imul, 1div, 1nc, dec, neg,

Bitwise Logic Operations

and, or, xor, not, shl, shr, sal,
sar, rol, ror,

mov has several addressing modes

Addressing modes allow us to speak about where data is: we can load data
from other registers, from constants (immediate), or from other memory.

mov is by far the most common instruction on the x86-64.This is basically
mov is a very overloaded instruction, allowing us to move:

¢ Registers to registers

¢ Memory to registers (load)

¢ Registers to memory (store)

¢ No memory to memory

Registers are for fast computations over short lived data, which then gets
put back into memory.You want things to be in registers when possible.

“Move the value from register rbx into the register rax”

Destination Source

mov rax, rbx

Opcode name

This is the simple (register-to-register) case, but more
common is to load/store from main memory.

Memory: a giant chunk of bytes

You can load from and store to it using pointers

mov rax, [rbx]

“Move the 64-bit value stored at the location
pointed to by rbx into rbx”

“Move the 64-bit value stored at the location
pointed to by rbx into rax”

Opcode name Destination

mov rax, [rbx]

Source

r' aX Oxffffffffo0000000 OXFfffffffo0000008) Oxafl23c8az223356ac
Oxffffffff00000000) Oxdeadbeefdeadbeef
r' bX 0x1234123412341234

“Move the 64-bit value stored at the location
pointed to by rbx into rax”

Opcode name Destination

mov rax, [rbx]

Source

r' aX Oxffffffffo0000000 OXFfffffffo0000008) Oxafl23c8az223356ac
Oxffffffff00000000) Oxdeadbeefdeadbeef

r' b X Oxdeadbeefdeadbeef "

Memory:a giant chunk of bytes

You can load from and store to it using pointers

mov rax, [rax + rdi*8 + 500]

“Move the 64-bit value stored at the location
pointed to by rbx + rdi * 8 + 500 into rax”

You can’t move memory-to-memory

WRONGY

—mov [rbx], [rax]

First, load into an intermediary register

mov rcx, |rax]
mov |[rbx], rcx

Different instructions allow different addressing-modes. Sometimes
you may need to do some pointer arithmetic, lea, etc... to get things
in the right place.

Comparison operators

The comparison instructions emp and test set the FLAGS register, which will
subsequently influence how conditional jump instructions (jg, jz, jge, ...) behave

_start:
mov rax, 5 ; First number to compare
cmp rax, 3 ; Compare first number with second number

ja .greater ; Jump 1f above (unsigned comparison)
Jjmp .less or equal

.greater:
; Print message gt
mov rdi, message gt ; Address of the message
call print string
jmp .exit

.less or equal:
; Print message le
mov rdi, message le ; Address of the message
call print string
jmp .exit

Conditional jumps such as jz (“jump if last comparison was zero,’ i.e., equal), or
jge (“jump is last comparison was greater than or equal to).

jmp — Unconditional jump

je / jz— jump if zero (equal) flag is set
jne / jnz — jump if not zero (equal)

js — jump if sign

jg — jump if greater

jl — jump if less

jle — jump if less than or equal to

An unconditional jump jumps to a label unconditionally.

section .text
global start

_start:
; Do something
JMP somewhere else ; Jumps to the label

'somewhere else”

somewhere else:
Execution continues here after the jump
Do something else

we we

From Instructions to Functions

Instructions execute one-after-another, in absence ot
(un)conditional jumps.

Now, we want to study how to use multiple instructions to
build computations (i.e., more than a single instruction).

One obvious challenge: registers are limited!

A big computation might require us to be very careful with
how we use registers—what it we don’t have enough

registers?

® Solution: can always “spill” into memory.

37

Set - ive | |
=P The main part of the program has five instructions:

_main:
push rbp > Move 3 into rax
mov rbp, rsp | .
> Move 5 into rbx
mov rax, 3 > Multiply rbx by rax, leave result in rax
mov rbx, 5 | .
imul rax, rbx > Move 4 into rbx

mov rbx, 4

> Add rax and rbx, leave result in rbx
add rax, rbx

7 Clean up and return
leave

ret Return

38

Exercise:

> Load 10 into rax

> Load 20 into rbx

> Load 15 into rcx

> Shitt rbx right by 2 (use shr, logical shift)
> Multiply rex by rox, leave result in rex

> Add result to rax, leave result in rax

39

_main:
push rbp
mov rbp, rsp

:: YOUR CODE

leave
ret

L]

_main:

: : push rbp
Possible to drive control-tflow by mov rbp, rsp
using JnZ/Jmp/'” mov rax, 5
sub rax, 8
cmp rax, O
: jnz not zero
Example: using emp to compare imp zero
a register to a specific value zero:
mov rax, 15
jmp done
not zero:
mov rax, 20
Notice: tag branches with labels done:
leave

ret

40

Compiling Complex Expressions

An issue: x86-64 instructions don’t allow nesting, expressions like
(x + 5) * (y - 2) must be broken down into sequences of
Instructions:

// assume X in rax, y in rbx

mov rcx, 5

add rax, rcx // rax := x + 5, rax changed!
mov rcx, 2

sub y, rex // rbx =y - 2

imul rax, rbx // result in rax

® Unfortunately, instructions like add mutate their inputs
® Can't use value of x ever again!

® Registers availability can get very tight, but not so much
anymore (modern CPUs tend towards more general-
purpose registers)

® May need to be smart about register allocation

42

Solution: Virtual Registers

® Assume we have enough registers

® Fach subexpression assigned a virtual register
® Map virtual registers to actual registers later

® All arguments to functions are atoms

® (Typically) values assigned exactly once (SSA, more on this later)

(* % (+y 2)) (ret® (Ixd (Ty 2)]
(+ 2 (= v X))) [rl (* X r0)]
—. (r2 (- y X))

ANF Conversion [r3 (+ 2z r2)]

r3)

43

mov r0, vy
add r0, 2
mov rl, X
imul rl, roO
mov r2, Vy
sub r2, x

mov r3, 2Z
add r3, r2

(let* ([r0 (+ vy 2)] To “virtual”
(rl (* x r0)] assembly

[r2 (- y X)] Te—
[r3 (+ 2 r2)]

r3)

44

// For example, if..
// v = [rdx]

mov r0, vy | | // x = [rdx+8]
Register allocation e

add r0, 2 o = [rdx+16]
turns this into

mov rl, X mov rax, [rdx]

. actual x86-64

imul rl, rO add rax, 2

mov r2, y I mov rbx, [rdx+8]

sub r2, x imul rbx, rax

mov r3, Z mov rcx, [rdx]

add r3, r2 sub rcx, [rdx+8]

mov rcx, [rdx+16]
add rcx, rbx

45

If we run out of space in registers (common), we'll need to
store values somewhere else.

To do this, we use RAM, typically via the stack / heap.

We move values into / out of registers—the values we're
working with have to be shuffled into and out of RAM via

MoV instructions. More on this next time

Quick Aside

Notice how all of these operations operate only on single
registers at once. CPUs (by design) operate on a small amount of
data at once, but often allow many threads of control—separate
cores can operate independently.

GPUs operate over huge amounts of data at once, but fewer
control units (worst case: whole GPU does one instruction at a
time but on an enormous vector)

Instruction Stream

v

Compared to CPUs, which are MIMD (multiple { S—

instruction,multiple data), GPUs are SIMD (single
instruction, multiple data).

Processing Unit

Processing Unit

Processing Unit

Data Stream
Y Y Y Y

Processing Unit

111

SIMD Block

Although less flexible (no regular “threads”), GPUs have extreme
memory throughput. GPU memory bandwidth (think: limit on how
much you can stuff into / out of RAM at once) has far outpaced
CPUs over the past years (HBM, high-bandwidth memory).

All modern machine learning
advances (LLMs) run on GPUs
due to the extreme degree of
parallelism they provide.

Neural networks naturally

SIMD by nature, thus a good fit
for GPUEs.

0D G iSOl e controller

G P U metalization layer d ice

HBM |controlldr die |

| S
| | | ||

myee . |
Silicon interposer

1024 data links / HBM staclk @ 500MHz

Package substrate

solder balls

| PCl EXpress

Electrical current
Display connectors

Graphics card

Multi-layer Printed Circuit Board (PCB), up to 8 layers

We'll wrap up today by looking at how OS loads the program

Binary specifies a number of sections which describe the
program’s data (icons, strings, resources, etc...) along with its code.

At runtime, the OS separates these into different segments

Kernel space
Virtual memory reserved for the kernel usage.

Stack

Local variables
int tries = 10;

rw-—

mmap segments

File mappings (including dynamic libraries)
Anonymous mappings
/1lib/libc.so

Heap

Small memory chunks
char *path = malloc(256);

rw-—

BSS segment e
Uninitialized static variables.
static char *fullname;
Data segment £
Initialized static variables.
static char *hello = "Hello, world!";
r—-x

Text segment

ELF header and code of the process.
int main() { return printf(hello); }

|

Random
offset

Random
offset

Random
offset

..... 0x804800

Kernel memory

Your OS uses it

Kernel space
Virtual memory reserved for the kernel usage.

Random
offset

Stack: push / pop

Stack =

Local variables
int tries = 10;

S f o Very important (security):

File mappings (including dynamic libraries)
Anonymous mappings

/1ib/1ibc.so The staCI(grOWS down

rw-

Heap

Small memory chunks
char *path = malloc(256);

Random
offset

BSS segment e

Uninitialized static variables.
static char *fullname;

Data segment £

Initialized static variables.
static char *hello = "Hello, world!";

r-x

Text segment

ELF header and code of the process.
int main() { return printf(hello); }

.......... 0x804800

Kernel space
Virtual memory reserved for the kernel usage.

Random
offset

Stack: push / pop

Stack W=

Local variables
int tries = 10;

f s Very important (security):

mmap segments

File mappings (including dynamic libraries)
Anonymous mappings
/lib/libc.so

The stack grows down

rw-—

Heap

Small memory chunks
char *path = malloc(256);

}Ef?s"e"fm = Stack used for local variables
BSS segment e o
Uninitialized stgic variables. — StaCk a|SO retu 'n pOIntS fOr

static char *fullname;

Data segment invoked functions

Initialized static variables.
static char *hello = "Hello, world!";

Text segment

ELF header and code of the process.
int main() { return printf(hello); }

.......... 0x804800

Kernel space
Virtual memory reserved for the kernel usage.

Stack

Local variables
int tries = 10;

rw-

mmap segments

File mappings (including dynamic libraries)
Anonymous mappings
/lib/libc.so

Heap

Small memory chunks
char *path = malloc(256);

BSS segment

Uninitialized static variables.
static char *fullname;

rw-—

Data segment

Initialized static variables.
static char *hello = "Hello, world!";

Text segment

ELF header and code of the process.
int main() { return printf(hello); }

r—-x

Random
offset

Random
offset

Random
offset

.......... 0x804800

mmap segments

Allows you to map a file
to memory

Kernel space
Virtual memory reserved for the kernel usage.

Random
} offset
Stack W=

Local variables Lots of big objects live on the heap,

| e especially in modern languages

offse (Python, Java, Racket, C#, ...)

mmap segments

File mappings (including dynamic libraries)
Anonymous mappings
/lib/libc.so

rw-—

Heap . .
Small merory shunks Heap: dynamic allocation

char *path = malloc(256);
Random
offset

BSS segment e C++: New / delete

Uninitialized static variables.
static char *fullname;

Data segment £
Initialized stati jables. .
static Sl'lla:? If].'elelioalc 'yHaerll.?o,eiorld!“; C‘ Mal IOC / free
r-x

Text segment

ELF header and code of the process.
int main() { return printf(hello); }

.......... 0x804800

Kernel space
Virtual memory reserved for the kernel usage.

Stack

Local variables
int tries = 10;

rw-—

mmap segments

File mappings (including dynamic libraries)
Anonymous mappings
/1lib/libc.so

Heap

Small memory chunks
char *path = malloc(256);

rw-—

BSS segment e
Uninitialized static variables.
static char *fullname;
Data segment £
Initialized static variables.
static char *hello = "Hello, world!";
r—-x

Text segment

ELF header and code of the process.
int main() { return printf(hello); }

|

Random
offset

Random
offset

Random
offset

..... 0x804800

BSS: Uninitialized static
vars (globals)

Kernel space
Virtual memory reserved for the kernel usage.

Random
offset

Stack W=

Local variables
int tries = 10;

Random
offset

mmap segments

File mappings (including dynamic libraries)
Anonymous mappings
/lib/libc.so

Heap

Small memory chunks
char *path = malloc(256);

Random
offset

BSS segment e

Uninitialized static variables.
static char *fullname;

Data segment Data segment: initialized
static har “helis = “helio, woridi’; statics—e.g., constant strings

Text segment sE

ELF header and code of the process.
int main() { return printf(hello); }

.......... 0x804800

Kernel space
Virtual memory reserved for the kernel usage.

Stack

Local variables
int tries = 10;

rw-—

mmap segments

File mappings (including dynamic libraries)
Anonymous mappings
/1lib/libc.so

Heap

Small memory chunks
char *path = malloc(256);

rw-—

BSS segment e
Uninitialized static variables.
static char *fullname;
Data segment £
Initialized static variables.
static char *hello = "Hello, world!";
r—-x

Text segment

ELF header and code of the process.
int main() { return printf(hello); }

Random
offset

Random
offset

|

Random
offset

Text segment: program code

.......... 0x804800

Kernel space
Virtual memory reserved for the kernel usage.

Stack

Local variables
int tries = 10;

rw-—

mmap segments

File mappings (including dynamic libraries)
Anonymous mappings
/1lib/libc.so

Heap

Small memory chunks
char *path = malloc(256);

BSS segment

Uninitialized static variables.
static char *fullname;

Data segment

Initialized static variables.
static char *hello = "Hello, world!";

Text segment

ELF header and code of the process.
int main() { return printf(hello); }

r—-x

Random
offset

Random
offset

0x804800

Note the permissions

Kernel space
Virtual memory reserved for the kernel usage.

Stack

Local variables
int tries = 10;

rw-

mmap segments

File mappings (including dynamic libraries)
Anonymous mappings
/lib/libc.so

Heap

Small memory chunks
char *path = malloc(256);

BSS segment

Uninitialized static variables.
static char *fullname;

rw-—

Data segment

Initialized static variables.
static char *hello = "Hello, world!";

Text segment

ELF header and code of the process.
int main() { return printf(hello); }

r—-x

Random
offset

Random
offset

} offset

.......... 0x804800

This random offset
really security feature

