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Last lecture: encoding Scheme in the lambda calculus

e ::= (letrec ([f (lambda (x …) e)])) 
    | (let ([x e] …) e) 
    | (lambda (x …) e) 
    | (e e …) 
    | x 
    | (if e e e) 
    | (prim e e) | (prim e) 
    | d 
d ::= ℕ | #t | #f | ‘() 
x ::= <vars> 
prim ::= + | - | * | not | cons | …



Last lecture: encoding Scheme in the lambda calculus

e ::= (letrec ([x (lambda (x …) e)])) 
    | (let ([x e] …) e) 
    | (lambda (x …) e) 
    | (e e …) 
    | x 
    | (if e e e) 
    | (prim e e) | (prim e) 
    | d 
d ::= ℕ | #t | #f | ‘() 
x ::= <vars> 
prim ::= + | - | * | not | cons | …

But didn’t do letrec



letrec lets us define recursive loops

(letrec ([f (lambda (x)
              (if (= x 0)
                  1
                  (* x (f (sub1 x))))])
  (f 20))



(letrec ([f (lambda (x)
              (if (= x 0)
                  1
                  (* x (f (sub1 x))))])
  (f 20))

letrec lets us define recursive loops

Unlike let, letrec allows referring to f within its definition



(define (fib-using-letrec x)
  (letrec ([fib (lambda (x)
                  ;; Your answer:
                  'todo)])
    (fib x)))

Unlike let, letrec allows referring to f within its definition



(letrec ([f (lambda (x)
              (if (= x 0)
                  1
                  (* x (f (sub1 x)))))])
  (f 20))

Today, we will discuss a magic term, Y, that allows us to 
write…

(let ([f
       (Y (lambda (f)
            (lambda (x)
              (if (= x 0)
                  1
                  (* x (f (- x 1)))))))])
  (f 20))



(define Y (λ (g) ((λ (f) (g (λ (x) ((f f) x))))
                  (λ (f) (g (λ (x) ((f f) x)))))))

This magic term, named Y, allows us to construct recursive 
functions.



(define U (lambda (x) (x x)))

First, the U combinator

The U combinator lets us do something very crucial: pass a 
copy of a function to itself. 



Let’s say I didn’t have letrec, what could I do…?

(let ([f (lambda (mk-f)
           (lambda (x)
             (if (= x 0)
                 1
                 (* x ((mk-f mk-f) x)))))])
  ((f f) 20))

First observation: pass f to itself

mk-f is pronounced “make f”



Let’s see why this works!

(let ([f (lambda (mk-f)
           (lambda (x)
             (if (= x 0)
                 1
                 (* x ((mk-f mk-f) (sub1 x))))))])
  ((f f) 20))



Let’s see why this works!

1: First, apply f to itself. First lambda goes away, returns 
(lambda (x) …) with mk-f bound to mk-f

This initial call “makes the next copy”

(let ([f (lambda (mk-f)
           (lambda (x)
             (if (= x 0)
                 1
                 (* x ((mk-f mk-f) (sub1 x))))))])
  ((f f) 20))



(let ([f (lambda (mk-f)
           (lambda (x) ;; x = 20
             (if (= x 0)
                 1
                 (* x ((mk-f mk-f) (sub1 x))))))])
  ((f f) 20))

Let’s see why this works!

1: First, apply f to itself. First lambda goes away, returns 
(lambda (x) …) with mk-f bound to mk-f

2: Second, apply that (lambda (x) …) to 20, take false branch



(let ([f (lambda (mk-f)
           (lambda (x)
             (if (= x 0)
                 1
                 (* x ((mk-f mk-f) (sub1 x))))))])
  ((f f) 20))

Let’s see why this works!

1: First, apply f to itself. First lambda goes away, returns 
(lambda (x) …) with mk-f bound to mk-f

2: Next, apply that (lambda (x) …) to 20, take false branch

3: Next, compute (mk-f mk-f), which gives us another copy 
of (lambda (x) …)



Let’s see why this works!

1: First, apply f to itself. First lambda goes away, returns 
(lambda (x) …) with mk-f bound to mk-f

2: Next, apply that (lambda (x) …) to 20, take false branch

3: Next, compute (mk-f mk-f), which gives us another copy 
of (lambda (x) …)

4: Apply that same function again (until base case)!

(let ([f (lambda (mk-f)
           (lambda (x)
             (if (= x 0)
                 1
                 (* x ((mk-f mk-f) (sub1 x))))))])
  ((f f) 20))



(letrec ([f (lambda (x) e-body)])
  letrec-body)

The U combinator recipe for recursion…

Systematically translate any letrec by: 
Wrapping (lambda (x) e-body) in (lambda (f) …)
Changing occurrences of f (in e-body) to (f f)
Apply U combinator / apply function to itself
Changing letrec to let

Think carefully why this works..!



(letrec ([f (lambda (x) e-body)])
  letrec-body)

The U combinator recipe for recursion…

Systematically translate any letrec by: 
Wrapping (lambda (x) e-body) in (lambda (f) …)
Changing occurrences of f (in e-body) to (f f)
Apply U combinator / apply function to itself
Changing letrec to let

(let ([f (U (lambda (f)
              ;; replace f w/ (f f)  
              (lambda (x) e-body))])
  letrec-body)



(define (length-using-u lst)
  (let ([len (U (lambda (f)
                  (lambda (x)
                    'todo)))])
    (len lst)))

(define (length-using-letrec lst)
  (letrec ([len (lambda (x)
                  (if (null? x)
                      0
                      (add1 (len (rest x)))))])
    (len lst)))

Let’s do an example…

Your job…



(define (fib-using-U n)
  (letrec ([fib (U 'todo)])
    (fib n)))

(define (fib-using-letrec n)
  (letrec ([fib
            (lambda (x)
              (cond [(= x 0) 1]
                    [(= x 1) 1]
                    [else (+ (fib (- x 1))
                             (fib (- x 2)))]))])
    (fib n)))

Now another example…

Translate this one to use U



(let ([f (lambda (mk-f)
           (lambda (x)
             (if (= x 0)
                 1
                 (* x ((mk-f mk-f) (sub1 x))))))])
  ((U f) 20))

One pesky thing: need to rewrite function so that calls to 
mk-f need to first “get another copy” by doing (mk-f mk-f)

By contrast, the Y combinator will allow us to write this

(let ([f (lambda (f)
           (lambda (x)
             (if (= x 0)
                 1
                 (* x (f (sub1 x))))))])
  ((Y f) 20))



Let’s ask ourselves: what does f need to be when Y plugs it 
in…?

(let ([f (Y (lambda (f)
              ;; no change to e-body  
              (lambda (x) e-body))])
  letrec-body)

(Y f ) = f (Y f )



(Y f) = (f (Y f))

Deriving Y

1. Treat as definitionY = (λ (f) (f (Y f)))

2. Lift to mY, 
use self-application

mY = (λ (mY) 
       (λ (f)  
         (f ((mY mY) f))))

mY = (λ (mY) 
       (λ (f)  
         (f (λ (x) (((mY mY) f) x)))))

3. Eta-expand



mY = (λ (mY) 
       (λ (f)  
         (f (λ (x) (((mY mY) f) x)))))

Y  =  (U (λ (y) (λ (f)  
           (f (λ (x) (((y y) f) x))))) 

U-combinator: (U U) is Omega



By contrast, the Y combinator will allow us to write this

(let ([f (lambda (f)
           (lambda (x)
             (if (= x 0)
                 1
                 (* x (f (sub1 x))))))])
  ((Y f) 20))

(Y f ) = f (Y f )



Closing words of advice: 
- Understand how to write recursive functions w/ U / Y 
- Do not need to remember precisely why Y works 

- But do need to remember how to use it! 
- If you want to understand: just think carefully about what 

U / Y are doing (with examples)
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Often speak of evaluating programs in a sequence of steps: 

(+ (* 2 1) 3) -> (+ 2 3) -> 5

E.g., textual reduction. We defined textual reduction for 
IfArith and for lambda calculus (beta, …)



((lambda (x) ((lambda (y) x) z)) 
 (lambda (z) (lambda (…) …))

Key idea: at each step, we just decided which expression to 
reduce (using reduction strategy) 

In a real implementation, this would be slow (would have to 
traverse term at each step)

Textual Reduction Review



Another way to conceptualize this would be to think of an 
explicit stack 

The rule here is: once we “finish” the current expression, we 
“fill in” the stack 

   (+ (* 2 1) 3)    stack = ☐ (empty stack)



Another way to conceptualize this would be to think of an 
explicit stack 

The rule here is: once we “finish” the current expression, we 
“fill in” the stack 
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-> (* 2 1)          stack = (+ ☐ 3)



Another way to conceptualize this would be to think of an 
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Another way to conceptualize this would be to think of an 
explicit stack 

The rule here is: once we “finish” the current expression, we 
“fill in” the stack 

   (+ (* 2 1) 3)    stack = ☐ (empty stack)
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Another way to conceptualize this would be to think of an 
explicit stack 

The rule here is: once we “finish” the current expression, we 
“fill in” the stack 

   (+ (* 2 1) 3)    stack = ☐ (empty stack)
-> (* 2 1)          stack = (+ ☐ 3)
-> 2                stack = (+ ☐ 3)
-> 3                stack = (+ 2 ☐)
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Another way to conceptualize this would be to think of an 
explicit stack 

The rule here is: once we “finish” the current expression, we 
“fill in” the stack 

   (+ (* 2 1) 3)    stack = ☐ (empty stack)
-> (* 2 1)          stack = (+ ☐ 3)
-> 2                stack = (+ ☐ 3)
-> 3                stack = (+ 2 ☐)
-> (+ 2 3)          stack = ☐
-> 5                stack = ☐ (done!)



These stacks have another appeal: the fact that they 
make only local changes makes them fast (compared 
to identifying redex each time).



Instead, we will observe that this style offers an 
additional flexibility: we can always conceptualize the 
return point as a function! 

We call this function the “continuation,” since it lets 
us “continue” the computation.                                      

                                      
   (+ (* 2 1) 3) ;; (lambda (rtn) rtn)
-> (* 2 1)       ;; (lambda (x) (+ x 3))
-> 2             ;; (lambda (x) (+ x 3))
-> 3             ;; (lambda (x) (+ 2 x))
-> (+ 2 3)       ;; (lambda (x) x)
-> 5             ;; (lambda (x) x)



If you’re used to programming in Java/C++, you can 
think of a continuation as a “callback we invoke to 
return from a function.”

                                      
                                      
   (+ (* 2 1) 3) ;; (lambda (x) x)
-> (* 2 1)       ;; (lambda (x) (+ x 3))
-> 2             ;; (lambda (x) (+ x 3))
-> 3             ;; (lambda (x) (+ 2 x))
-> (+ 2 3)       ;; (lambda (x) x)
-> 5             ;; (lambda (x) x)



The call/cc form allows us to bind this continuation to 
a function

(+ 4 (call/cc (lambda (k) (k 3))))

When control reaches call/cc, the program binds the 
current continuation to k



(+ 4 (call/cc (lambda (k) (k 3))))
;; (lambda (x) (+ 4 x))

In this case, the current continuation is…



(let* ([x (+ (* 2 3) 4)]
       [y (add1 x)])
  y)

(lambda (z)
 (let* ([x (+ z 4)] [y (add1 x])) y))

How could we write the continuation at the 
underlined point?



(lambda (result)
  (let* ([x (+ result 4)]
         [y (add1 x)])
  y)

How could we write the continuation at the 
underlined point?

(let* ([x (+ (* 2 3) 4)]
       [y (add1 x)])
  y)



DANGER
Continuations are normal functions in most ways. One 
crucial difference: when you invoke a continuation, it 
abandons the current stack and reinstates the continuation! 

Again: invoking a continuation is different than invoking a 
normal (non-continuation) function. 

Students frequently find this confusing!



   (+ 4 (call/cc (lambda (k) (k 3))))

When execution reaches this point, k is bound as the continuation



   (+ 4 (call/cc (lambda (k) (k 3))))

Then, when we invoke the continuation, we abandon the 
current continuation and reinstate the saved continuation



   (+ 4 (call/cc (lambda (k) (k 3))))

Then, when we invoke the continuation, we abandon the 
current continuation and reinstate the saved continuation

But in this example, the saved continuation is equivalent to 
the current continuation, so we observe no difference!



The program never returns from call (k 3) because  
undelimited continuations run until the program exits. 

 
call/cc gives us undelimited (a.k.a. full) continuations.

(+ 1 (call/cc (lambda (k) (k 3) (print 0)))) 
;; =>  4      (print 0) is never reached



The program never returns from call (k 3) because  
undelimited continuations run until the program exits. 

 
call/cc gives us undelimited (a.k.a. full) continuations.

(+ 1 (call/cc (lambda (k) (k 3) (print 0)))) 
;; =>  4      (print 0) is never reached

Pause the video and type this one into Dr. Racket! 

Do you understand why (print 0) is never reached?



((lambda (k) (k 2))  
 (lambda (n) (exit (print (+ 1 n))))) 
;; =>  3

This call/cc’s behavior is roughly the same as the application:

(+ 1 (call/cc (lambda (k) (k 2)))) 
;; =>  3

Where the high-lit continuation (lambda (n) …) takes a 
return value for the (call/cc …) expression and finishes the program.



(+ 4 (call/cc (lambda (k) (+ 5 (k 3)))))

When execution reaches this point, k is bound as the continuation

k = <continuation> (lambda (x) (+ 4 x))



(+ 4 (call/cc (lambda (k) (+ 5 (k 3)))))

When control reaches this point, the current continuation is…

(lambda (x) (+ 4 (+ 5 x)))



(+ 4 (call/cc (lambda (k) (+ 5 (k 3)))))

And, by invoking k, then we abandon it to reinstate k

(lambda (x) (+ 4 x))



(call/cc (lambda (k0) 
           (+ 1 (call/cc (lambda (k1) 
                           (+ 1 (k0 3)))))))

(call/cc (lambda (k0) 
           (+ 1 (call/cc (lambda (k1) 
                           (+ 1 (k0 (k1 3))))))))

(call/cc (lambda (k0) 
           (+ 1  
              (call/cc (lambda (k1) 
                         (+ 1 (k1 3)))) 
              (k0 1))))

Try an example. What do each of these 3 examples return? 
(Hint: Racket evaluates argument expressions left to right.)



(call/cc (lambda (k0) 
           (+ 1 (call/cc (lambda (k1) 
                           (+ 1 (k0 3)))))))

(call/cc (lambda (k0) 
           (+ 1 (call/cc (lambda (k1) 
                           (+ 1 (k0 (k1 3))))))))

(call/cc (lambda (k0) 
           (+ 1  
              (call/cc (lambda (k1) 
                         (+ 1 (k1 3)))) 
              (k0 1))))

Try an example. What do each of these 3 examples return? 
(Hint: Racket evaluates argument expressions left to right.)

3

4

1



54

Lecture Summary 
Continuations allow us to capture the stack in a first-class way 
call/cc (call-with-current-continuation) 

Let’s us bind special continuation functions 
When invoked, continuations reset the stack 
As we will soon see, this enables building non-local control 
constructs (loops, exceptions, etc…)


