

Last lecture: encoding Scheme in the lambda calculus

```
e ::= (letrec ([f (lambda (x ...) e)]))
    | (let ([x e] ...) e)
    (lambda (X ...) e)
    (e e ...)
    |
    (if e e e)
    | (prim e e) | (prim e)
d ::= N | #t | #f | '()
x ::= <vars>
prim ::= + | - | * | not | cons | ...
```

Last lecture: encoding Scheme in the lambda calculus

But didn't do letrec

```
e ::= (letrec ([x (lambda (x ...) e)]))
    | (let ([x e] ...) e)
    (lambda (x ...) e)
    (e e ...)
    x
        (if e e e)
        (prim e e) | (prim e)
d ::= \mathbb{N | #t | #f | '()}
x ::= <vars>
prim ::= + | - | * | not | cons | ...
```

letrec lets us define recursive loops
Cletrec ([f (lambda (x)

$$
\begin{aligned}
& \text { (if }(=x 0) \\
& \quad 1 \\
& \quad(* \times(f(\operatorname{sub} 1 x))))])
\end{aligned}
$$

(f 20))
letrec lets us define recursive loops
Cletrec ([f (lambda (x)

```
                                    (if (= x 0)
```

1
$\underbrace{*} *(f(\operatorname{sub} 1 x)))])$
(f 20))

Unlike let, letrec allows referring to f within its definition

Unlike let, letrec allows referring to f within its definition
(define (fib-using-letrec x)
(letrec ([fib Clambda (x)
; ; Your answer:
'todo)])
(fib x)))

Today, we will discuss a magic term, \mathbf{Y}, that allows us to write...

Cletrec ([f (lambda (x)

$$
\begin{aligned}
& (\text { if }(=x 0) \\
& \quad 1 \\
& \quad(* \times(f(\operatorname{sub} 1 x)))))])
\end{aligned}
$$

(f 20))
Clet ([f
(Y Clambda (f)
(lambda (x)
(if (=x 0)
1
$(* x(f(-x 1))))))])$
(f 20))

This magic term, named Y, allows us to construct recursive functions.

```
(define Y (\lambda (g) ((\lambda (f) (g (\lambda (x) ((f f) x))))
    (\lambda(f) (g (\lambda (x) ((f f) x)))))))
```

First, the U combinator

(define U (lambda (X) (X x)))

The U combinator lets us do something very crucial: pass a copy of a function to itself.

Let's say I didn't have letrec, what could I do...?
First observation: pass f to itself

```
Clet ([f (lambda (mk-f)
(lambda (x)
                        (if (= x 0)
                        1
                        (* x ((mk-f mk-f) x)))))])
    ((f f) 20))
mk-f is pronounced "make f"
```

```
Clet ([f (lambda (mk-f)
    (lambda (x)
                (if (= x 0)
                        1
                    (* x ((mk-f mk-f) (sub1 x))))))])
    ((f f) 20))
```

Let's see why this works!

(let ([f Clambda (mk-f)

(lambda (x)

```
(if (= x 0)
1
    (* x ((mk-f mk-f) (sub1 x))))))])
```

((f f) 20))

Let's see why this works!
1: First, apply f to itself. First lambda goes away, returns (lambda (x) ...) with mk-f bound to mk-f

This initial call "makes the next copy"

(let ([f Clambda (mk-f)

(lambda (x) ; ; $x=20$

$$
\text { (if }(=x 0)
$$

1
(* x ((mk-f mk-f) (sub1 x))))))])
((f f) 20))

Let's see why this works!
1: First, apply f to itself. First lambda goes away, returns (lambda (x) ...) with mk-f bound to mk-f

2: Second, apply that (lambda (x) ...) to 20, take false branch
(* x ((mk-f mk-f) (sub1 x))))))])
((f f) 20))

Let's see why this works!
1: First, apply f to itself. First lambda goes away, returns (lambda (x) ...) with mk-f bound to mk-f

2: Next, apply that (lambda (x) ...) to 20, take false branch
3: Next, compute ($m k-f$ mk- f), which gives us another copy of (lambda (x) ...)

```
(* x ((mk-f mk-f) (sub1 x))))))])
```

((f f) 20))

Let's see why this works!
1: First, apply f to itself. First lambda goes away, returns (lambda (x) ...) with mk-f bound to mk-f

2: Next, apply that (lambda (x) ...) to 20, take false branch
3: Next, compute ($m k-f$ mk- f), which gives us another copy of (lambda (x) ...)

4: Apply that same function again (until base case)!

The U combinator recipe for recursion...
(letrec ([f (lambda (x) e-body)])
letrec-body)
Systematically translate any letrec by:

- Wrapping (lambda (X) e-body) in (lambda (f) ...)
- Changing occurrences of f (in e-body) to (f f)
- Apply U combinator / apply function to itself
- Changing letrec to let

Think carefully why this works.!!

The U combinator recipe for recursion...
(letrec ([f (lambda (x) e-body)])
letrec-body)
Systematically translate any letrec by:

- Wrapping (lambda (X) e-body) in (lambda (f) ...)
- Changing occurrences of f (in e-body) to (f f)
- Apply U combinator / apply function to itself
- Changing letrec to let

Clet ([f (U Clambda (f)
; ; replace f w/ (f f)
(lambda (x) e-body))])
letrec-body)

Let's do an example...

```
(define (length-using-letrec lst)
    Cletrec ([len (lambda (x)
        (if (null? x)
                            0
                                (add1 (len (rest x)))))])
        (len lst)))
```

Your job...

```
(define (length-using-u lst)
    (let ([len (U Clambda (f)
                                (lambda (x)
                                'todo)))](
        (len lst)))
```

Now another example...

```
(define (fib-using-letrec n)
    Cletrec ([fib
        (lambda (x)
            (cond [(= x 0) 1]
                [(=x 1) 1]
                [else (+ (fib (- x 1))
                                    (fib (- x 2)))]))])
        (fib n)))
```

Translate this one to use U

```
(define (fib-using-U n)
    (letrec ([fib (U 'todo)])
        (fib n)))
```

```
Clet ([f (lambda (mk-f)
    (lambda (x)
        (if (= x 0)
            1
                    (* x ((mk-f mk-f) (sub1 x))))))])
```

 ((U f) 20))
 One pesky thing: need to rewrite function so that calls to $m k-f$ need to first "get another copy" by doing (mk-f mk-f)

By contrast, the \mathbf{Y} combinator will allow us to write this

```
Clet ([f (lambda (f)
    (lambda (x)
        (if (= x 0)
            1
                    (*x (f (sub1 x))))))])
    ((Y f) 20))
```


(let ([f (Y Clambda (f)

; ; no change to e-body (lambda (x) e-body))])
letrec-body)
Let's ask ourselves: what does f need to be when Y plugs it in...?

$$
(Y f)=f(Y f)
$$

Deriving Y

$$
\begin{aligned}
& (Y \mathrm{f})=(\mathrm{f}(\mathrm{Y} f)) \\
& Y=(\lambda(f)(f(Y f))) \quad \text { 1. Treat as definition } \\
& m Y=(\lambda(m Y) \\
& (\lambda(f) \quad \text { 2. Lift to } m Y \text {, } \\
& (f((m Y m Y) f))) \text { use self-application } \\
& m Y=\underset{(\lambda)}{(\mathrm{m})} \quad \text { 3. Eta-expand } \\
& (f(\lambda(x)(((m Y m Y) f) x))))
\end{aligned}
$$

U-combinator: $(\mathrm{U} \mathrm{U}$) is Omega
$Y=(U)(\lambda(y)(\lambda(f)$
$(f(\lambda(x)(((y \quad y) f) x))))$
$m Y=(\lambda(m Y)$
(λ (f)
(f ($\boldsymbol{\lambda}(X)(((m Y \mathrm{mY}) \mathrm{f}) \mathrm{x})))))$

$$
(Y f)=f(Y f)
$$

By contrast, the \mathbf{Y} combinator will allow us to write this
(let ([f (lambda (f)
(lambda (x)
(if $(=x 0)$
1
$(* x(f(s u b 1 x)))))])$
($(\mathrm{Y}$ f) 20) $)$

Closing words of advice:

- Understand how to write recursive functions w/ U / Y
- Do not need to remember precisely why Y works
- But do need to remember how to use it!
- If you want to understand: just think carefully about what U / Y are doing (with examples)

Continuations

CIS352 — Fall 2022 Kris Micinski

Often speak of evaluating programs in a sequence of steps:
(+ (* 2 1) 3) -> (+ 2 3) -> 5
E.g., textual reduction. We defined textual reduction for IfArith and for lambda calculus (beta, ...)

Textual Reduction Review

Key idea: at each step, we just decided which expression to reduce (using reduction strategy)

```
((lambda (x) ((lambda (y) x) z))
```

(lambda (z) (lambda (...) ...))

In a real implementation, this would be slow (would have to traverse term at each step)

Another way to conceptualize this would be to think of an explicit stack

The rule here is: once we "finish" the current expression, we "fill in" the stack

$$
(+(* 21) 3) \quad \text { stack }=\square(e m p t y ~ s t a c k)
$$

Another way to conceptualize this would be to think of an explicit stack

The rule here is: once we "finish" the current expression, we "fill in" the stack
(+ (* 2 1) 3) stack = \quad (empty stack)
-> (* 2 1) stack $=(+\square 3)$

Another way to conceptualize this would be to think of an explicit stack

The rule here is: once we "finish" the current expression, we "fill in" the stack

```
    (+ (* 2 1) 3) stack = ם (empty stack)
-> (* 2 1) stack = (+ ם 3)
-> 2 stack = (+ ם 3)
```

Another way to conceptualize this would be to think of an explicit stack

The rule here is: once we "finish" the current expression, we "fill in" the stack

```
    (+ (* 2 1) 3) stack = ם (empty stack)
-> (* 2 1) stack = (+ ם 3)
-> 2
-> 3
stack = (+ ם 3)
stack = (+ 2 ם)
```

Another way to conceptualize this would be to think of an explicit stack

The rule here is: once we "finish" the current expression, we "fill in" the stack

	$(+(* 21) 3)$	stack	$=\square$ (empty stack)
$->$	$(* 21)$	stack	$=(+\square 3)$
$->$	stack	$=(+\square 3)$	
$->$	stack	$=(+2 \square)$	
$->$	$(+23)$	stack	$=\square$

Another way to conceptualize this would be to think of an explicit stack

The rule here is: once we "finish" the current expression, we "fill in" the stack

```
    (+ (* 2 1) 3) stack = ם (empty stack)
-> (* 2 1) stack = (+ ם 3)
-> 2
-> 3
-> (+ 2 3)
-> 5 stack = ם (done!)
```

These stacks have another appeal: the fact that they make only local changes makes them fast (compared to identifying redex each time).

Instead, we will observe that this style offers an additional flexibility: we can always conceptualize the return point as a function!

We call this function the "continuation," since it lets us "continue" the computation.

```
    (+ (* 2 1) 3) ;; (lambda (rtn) rtn)
-> (* 2 1) ;; (lambda (x) (+ x 3))
-> 2 ;; (lambda (x) (+ x 3))
-> 3 ;; (lambda (x) (+ 2 x))
-> (+ 2 3) ;; (lambda (x) x)
-> 5 ;; (lambda (x) x)
```

If you're used to programming in Java/C++, you can think of a continuation as a "callback we invoke to return from a function."

```
    (+ (* 2 1) 3) ;; (lambda (x) x)
-> (* 2 1) ;; (lambda (x) (+ x 3))
-> 2 ;; (lambda (x) (+ x 3))
-> 3 ;; (lambda (x) (+ 2 x))
-> (+ 2 3) ;; (lambda (x) x)
-> 5 ;; (lambda (x) x)
```

The call/cc form allows us to bind this continuation to a function
(+ 4 (call/cc (lambda (k) (k 3))))
When control reaches call/cc, the program binds the current continuation to k

In this case, the current continuation is...
(+ 4 (call/cc (lambda (k) (k 3))))
; ; (lambda (x) (+ 4 x))

How could we write the continuation at the underlined point?

$$
\begin{gathered}
\left(\text { let* } ^ { (} \left[x\left(+\left(\begin{array}{lll}
* & 2 & 3
\end{array}\right)\right]\right.\right. \\
[y(\text { add } 1 \times)])
\end{gathered}
$$

y)

Clambda (z)
(let* $([x(+z 4)][y(a d d 1 x])) y)$

How could we write the continuation at the underlined point?

```
(let* ([x (+ (* 2 3) 4)]
        [y (add1 x)])
    y)
```

(lambda (result)
(let* ([x (+ result 4)]
[y (add1 x)])
y)

DANGER

Continuations are normal functions in most ways. One crucial difference: when you invoke a continuation, it abandons the current stack and reinstates the continuation!

Again: invoking a continuation is different than invoking a normal (non-continuation) function.

Students frequently find this confusing!

When execution reaches this point, k is bound as the continuation

Then, when we invoke the continuation, we abandon the current continuation and reinstate the saved continuation

Then, when we invoke the continuation, we abandon the current continuation and reinstate the saved continuation

But in this example, the saved continuation is equivalent to the current continuation, so we observe no difference!

The program never returns from call (k 3) because undelimited continuations run until the program exits.
call/ cc gives us undelimited (a.k.a. full) continuations.

```
(+ 1 (call/cc (lambda (k) (k 3) (print 0))))
;; => 4 (print 0) is never reached
```

The program never returns from call (k 3) because undelimited continuations run until the program exits.
call/ cc gives us undelimited (a.k.a. full) continuations.

```
(+ 1 (call/cc (lambda (k) (k 3) (print 0))))
;; => 4 (print 0) is never reached
```


Pause the video and type this one into Dr. Racket!

Do you understand why (print 0) is never reached?

```
(+ 1 (call/cc (lambda (k) (k 2))))
;; => 3
```

This call/cc's behavior is roughly the same as the application:

```
((lambda (k) (k 2))
    (lambda (n) (exit (print (+ 1 n)))))
;; => 3
```

Where the high-lit continuation (lambda (n) ...) takes a return value for the (call/cc ...) expression and finishes the program.

When execution reaches this point, k is bound as the continuation

$$
\mathrm{k}=\text { <continuation> (lambda (x) (+ } 4 \text { x)) }
$$

When control reaches this point, the current continuation is..

(+ 4 (call/cc (lambda (k) (+ $5(k$ 3)))))

And, by invoking \mathbf{k}, then we abandon it to reinstate k
(lambda (x) (+ $4 x)$)

Try an example. What do each of these 3 examples return?
(Hint: Racket evaluates argument expressions left to right.)
(call/cc (lambda (k0)
(+ 1 (call/cc (lambda (k1)

$$
(+1(k 03))))))
$$

(call/cc (lambda (k0)
(+ 1 (call/cc (lambda (k1) (+ $1(k 0(k 13)))))))$
(call/cc (lambda (k0)
(+ 1
(call/cc (lambda (k1)

$$
(+1(k 13))))
$$

(k0 1))))

Try an example. What do each of these 3 examples return?
(Hint: Racket evaluates argument expressions left to right.)

```
    (call/cc (lambda (k0)
    (+ 1 (call/cc (lambda (k1)
                        (+ 1 (k0 3)))))))
(call/cc (lambda (k0)
    4
    (+ 1 (call/cc (lambda (k1)
                                (+ 1 (k0 (k1 3))))))))
    (call/cc (lambda (k0)
        (+ 1
        (call/cc (lambda (k1)
                        (+ 1 (k1 3))))
        (k0 1))))
```


Lecture Summary

- Continuations allow us to capture the stack in a first-class way *call/cc (call-with-current-continuation)
Let's us bind special continuation functions
When invoked, continuations reset the stack
*As we will soon see, this enables building non-local control
constructs (loops, exceptions, etc...)

