
Fixed Points
CIS352 — Fall 2022
Kris Micinski

Last lecture: encoding Scheme in the lambda calculus

e ::= (letrec ([f (lambda (x …) e)]))
 | (let ([x e] …) e)
 | (lambda (x …) e)
 | (e e …)
 | x
 | (if e e e)
 | (prim e e) | (prim e)
 | d
d ::= ℕ | #t | #f | ‘()
x ::= <vars>
prim ::= + | - | * | not | cons | …

Last lecture: encoding Scheme in the lambda calculus

e ::= (letrec ([x (lambda (x …) e)]))
 | (let ([x e] …) e)
 | (lambda (x …) e)
 | (e e …)
 | x
 | (if e e e)
 | (prim e e) | (prim e)
 | d
d ::= ℕ | #t | #f | ‘()
x ::= <vars>
prim ::= + | - | * | not | cons | …

But didn’t do letrec

letrec lets us define recursive loops

(letrec ([f (lambda (x)
 (if (= x 0)
 1
 (* x (f (sub1 x))))])
 (f 20))

(letrec ([f (lambda (x)
 (if (= x 0)
 1
 (* x (f (sub1 x))))])
 (f 20))

letrec lets us define recursive loops

Unlike let, letrec allows referring to f within its definition

(define (fib-using-letrec x)
 (letrec ([fib (lambda (x)
 ;; Your answer:
 'todo)])
 (fib x)))

Unlike let, letrec allows referring to f within its definition

(letrec ([f (lambda (x)
 (if (= x 0)
 1
 (* x (f (sub1 x)))))])
 (f 20))

Today, we will discuss a magic term, Y, that allows us to
write…

(let ([f
 (Y (lambda (f)
 (lambda (x)
 (if (= x 0)
 1
 (* x (f (- x 1)))))))])
 (f 20))

(define Y (λ (g) ((λ (f) (g (λ (x) ((f f) x))))
 (λ (f) (g (λ (x) ((f f) x)))))))

This magic term, named Y, allows us to construct recursive
functions.

(define U (lambda (x) (x x)))

First, the U combinator

The U combinator lets us do something very crucial: pass a
copy of a function to itself.

Let’s say I didn’t have letrec, what could I do…?

(let ([f (lambda (mk-f)
 (lambda (x)
 (if (= x 0)
 1
 (* x ((mk-f mk-f) x)))))])
 ((f f) 20))

First observation: pass f to itself

mk-f is pronounced “make f”

Let’s see why this works!

(let ([f (lambda (mk-f)
 (lambda (x)
 (if (= x 0)
 1
 (* x ((mk-f mk-f) (sub1 x))))))])
 ((f f) 20))

Let’s see why this works!

1: First, apply f to itself. First lambda goes away, returns
(lambda (x) …) with mk-f bound to mk-f

This initial call “makes the next copy”

(let ([f (lambda (mk-f)
 (lambda (x)
 (if (= x 0)
 1
 (* x ((mk-f mk-f) (sub1 x))))))])
 ((f f) 20))

(let ([f (lambda (mk-f)
 (lambda (x) ;; x = 20
 (if (= x 0)
 1
 (* x ((mk-f mk-f) (sub1 x))))))])
 ((f f) 20))

Let’s see why this works!

1: First, apply f to itself. First lambda goes away, returns
(lambda (x) …) with mk-f bound to mk-f

2: Second, apply that (lambda (x) …) to 20, take false branch

(let ([f (lambda (mk-f)
 (lambda (x)
 (if (= x 0)
 1
 (* x ((mk-f mk-f) (sub1 x))))))])
 ((f f) 20))

Let’s see why this works!

1: First, apply f to itself. First lambda goes away, returns
(lambda (x) …) with mk-f bound to mk-f

2: Next, apply that (lambda (x) …) to 20, take false branch

3: Next, compute (mk-f mk-f), which gives us another copy
of (lambda (x) …)

Let’s see why this works!

1: First, apply f to itself. First lambda goes away, returns
(lambda (x) …) with mk-f bound to mk-f

2: Next, apply that (lambda (x) …) to 20, take false branch

3: Next, compute (mk-f mk-f), which gives us another copy
of (lambda (x) …)

4: Apply that same function again (until base case)!

(let ([f (lambda (mk-f)
 (lambda (x)
 (if (= x 0)
 1
 (* x ((mk-f mk-f) (sub1 x))))))])
 ((f f) 20))

(letrec ([f (lambda (x) e-body)])
 letrec-body)

The U combinator recipe for recursion…

Systematically translate any letrec by:
Wrapping (lambda (x) e-body) in (lambda (f) …)
Changing occurrences of f (in e-body) to (f f)
Apply U combinator / apply function to itself
Changing letrec to let

Think carefully why this works..!

(letrec ([f (lambda (x) e-body)])
 letrec-body)

The U combinator recipe for recursion…

Systematically translate any letrec by:
Wrapping (lambda (x) e-body) in (lambda (f) …)
Changing occurrences of f (in e-body) to (f f)
Apply U combinator / apply function to itself
Changing letrec to let

(let ([f (U (lambda (f)
 ;; replace f w/ (f f)  
 (lambda (x) e-body))])
 letrec-body)

(define (length-using-u lst)
 (let ([len (U (lambda (f)
 (lambda (x)
 'todo)))])
 (len lst)))

(define (length-using-letrec lst)
 (letrec ([len (lambda (x)
 (if (null? x)
 0
 (add1 (len (rest x)))))])
 (len lst)))

Let’s do an example…

Your job…

(define (fib-using-U n)
 (letrec ([fib (U 'todo)])
 (fib n)))

(define (fib-using-letrec n)
 (letrec ([fib
 (lambda (x)
 (cond [(= x 0) 1]
 [(= x 1) 1]
 [else (+ (fib (- x 1))
 (fib (- x 2)))]))])
 (fib n)))

Now another example…

Translate this one to use U

(let ([f (lambda (mk-f)
 (lambda (x)
 (if (= x 0)
 1
 (* x ((mk-f mk-f) (sub1 x))))))])
 ((U f) 20))

One pesky thing: need to rewrite function so that calls to
mk-f need to first “get another copy” by doing (mk-f mk-f)

By contrast, the Y combinator will allow us to write this

(let ([f (lambda (f)
 (lambda (x)
 (if (= x 0)
 1
 (* x (f (sub1 x))))))])
 ((Y f) 20))

Let’s ask ourselves: what does f need to be when Y plugs it
in…?

(let ([f (Y (lambda (f)
 ;; no change to e-body  
 (lambda (x) e-body))])
 letrec-body)

(Y f) = f (Y f)

(Y f) = (f (Y f))

Deriving Y

1. Treat as definitionY = (λ (f) (f (Y f)))

2. Lift to mY,
use self-application

mY = (λ (mY)
 (λ (f)
 (f ((mY mY) f))))

mY = (λ (mY)
 (λ (f)
 (f (λ (x) (((mY mY) f) x)))))

3. Eta-expand

mY = (λ (mY)
 (λ (f)
 (f (λ (x) (((mY mY) f) x)))))

Y = (U (λ (y) (λ (f)
 (f (λ (x) (((y y) f) x)))))

U-combinator: (U U) is Omega

By contrast, the Y combinator will allow us to write this

(let ([f (lambda (f)
 (lambda (x)
 (if (= x 0)
 1
 (* x (f (sub1 x))))))])
 ((Y f) 20))

(Y f) = f (Y f)

Closing words of advice:
- Understand how to write recursive functions w/ U / Y
- Do not need to remember precisely why Y works

- But do need to remember how to use it!
- If you want to understand: just think carefully about what

U / Y are doing (with examples)

Continuations
CIS352 — Fall 2022
Kris Micinski

Often speak of evaluating programs in a sequence of steps:

(+ (* 2 1) 3) -> (+ 2 3) -> 5

E.g., textual reduction. We defined textual reduction for
IfArith and for lambda calculus (beta, …)

((lambda (x) ((lambda (y) x) z))
 (lambda (z) (lambda (…) …))

Key idea: at each step, we just decided which expression to
reduce (using reduction strategy)

In a real implementation, this would be slow (would have to
traverse term at each step)

Textual Reduction Review

Another way to conceptualize this would be to think of an
explicit stack

The rule here is: once we “finish” the current expression, we
“fill in” the stack

 (+ (* 2 1) 3) stack = ☐ (empty stack)

Another way to conceptualize this would be to think of an
explicit stack

The rule here is: once we “finish” the current expression, we
“fill in” the stack

 (+ (* 2 1) 3) stack = ☐ (empty stack)
-> (* 2 1) stack = (+ ☐ 3)

Another way to conceptualize this would be to think of an
explicit stack

The rule here is: once we “finish” the current expression, we
“fill in” the stack

 (+ (* 2 1) 3) stack = ☐ (empty stack)
-> (* 2 1) stack = (+ ☐ 3)
-> 2 stack = (+ ☐ 3)

Another way to conceptualize this would be to think of an
explicit stack

The rule here is: once we “finish” the current expression, we
“fill in” the stack

 (+ (* 2 1) 3) stack = ☐ (empty stack)
-> (* 2 1) stack = (+ ☐ 3)
-> 2 stack = (+ ☐ 3)
-> 3 stack = (+ 2 ☐)

Another way to conceptualize this would be to think of an
explicit stack

The rule here is: once we “finish” the current expression, we
“fill in” the stack

 (+ (* 2 1) 3) stack = ☐ (empty stack)
-> (* 2 1) stack = (+ ☐ 3)
-> 2 stack = (+ ☐ 3)
-> 3 stack = (+ 2 ☐)
-> (+ 2 3) stack = ☐

Another way to conceptualize this would be to think of an
explicit stack

The rule here is: once we “finish” the current expression, we
“fill in” the stack

 (+ (* 2 1) 3) stack = ☐ (empty stack)
-> (* 2 1) stack = (+ ☐ 3)
-> 2 stack = (+ ☐ 3)
-> 3 stack = (+ 2 ☐)
-> (+ 2 3) stack = ☐
-> 5 stack = ☐ (done!)

These stacks have another appeal: the fact that they
make only local changes makes them fast (compared
to identifying redex each time).

Instead, we will observe that this style offers an
additional flexibility: we can always conceptualize the
return point as a function!

We call this function the “continuation,” since it lets
us “continue” the computation.

 (+ (* 2 1) 3) ;; (lambda (rtn) rtn)
-> (* 2 1) ;; (lambda (x) (+ x 3))
-> 2 ;; (lambda (x) (+ x 3))
-> 3 ;; (lambda (x) (+ 2 x))
-> (+ 2 3) ;; (lambda (x) x)
-> 5 ;; (lambda (x) x)

If you’re used to programming in Java/C++, you can
think of a continuation as a “callback we invoke to
return from a function.”

 (+ (* 2 1) 3) ;; (lambda (x) x)
-> (* 2 1) ;; (lambda (x) (+ x 3))
-> 2 ;; (lambda (x) (+ x 3))
-> 3 ;; (lambda (x) (+ 2 x))
-> (+ 2 3) ;; (lambda (x) x)
-> 5 ;; (lambda (x) x)

The call/cc form allows us to bind this continuation to
a function

(+ 4 (call/cc (lambda (k) (k 3))))

When control reaches call/cc, the program binds the
current continuation to k

(+ 4 (call/cc (lambda (k) (k 3))))
;; (lambda (x) (+ 4 x))

In this case, the current continuation is…

(let* ([x (+ (* 2 3) 4)]
 [y (add1 x)])
 y)

(lambda (z)
 (let* ([x (+ z 4)] [y (add1 x])) y))

How could we write the continuation at the
underlined point?

(lambda (result)
 (let* ([x (+ result 4)]
 [y (add1 x)])
 y)

How could we write the continuation at the
underlined point?

(let* ([x (+ (* 2 3) 4)]
 [y (add1 x)])
 y)

DANGER
Continuations are normal functions in most ways. One
crucial difference: when you invoke a continuation, it
abandons the current stack and reinstates the continuation!

Again: invoking a continuation is different than invoking a
normal (non-continuation) function.

Students frequently find this confusing!

 (+ 4 (call/cc (lambda (k) (k 3))))

When execution reaches this point, k is bound as the continuation

 (+ 4 (call/cc (lambda (k) (k 3))))

Then, when we invoke the continuation, we abandon the
current continuation and reinstate the saved continuation

 (+ 4 (call/cc (lambda (k) (k 3))))

Then, when we invoke the continuation, we abandon the
current continuation and reinstate the saved continuation

But in this example, the saved continuation is equivalent to
the current continuation, so we observe no difference!

The program never returns from call (k 3) because
undelimited continuations run until the program exits.

call/cc gives us undelimited (a.k.a. full) continuations.

(+ 1 (call/cc (lambda (k) (k 3) (print 0))))
;; => 4 (print 0) is never reached

The program never returns from call (k 3) because
undelimited continuations run until the program exits.

call/cc gives us undelimited (a.k.a. full) continuations.

(+ 1 (call/cc (lambda (k) (k 3) (print 0))))
;; => 4 (print 0) is never reached

Pause the video and type this one into Dr. Racket!

Do you understand why (print 0) is never reached?

((lambda (k) (k 2))
 (lambda (n) (exit (print (+ 1 n)))))
;; => 3

This call/cc’s behavior is roughly the same as the application:

(+ 1 (call/cc (lambda (k) (k 2))))
;; => 3

Where the high-lit continuation (lambda (n) …) takes a
return value for the (call/cc …) expression and finishes the program.

(+ 4 (call/cc (lambda (k) (+ 5 (k 3)))))

When execution reaches this point, k is bound as the continuation

k = <continuation> (lambda (x) (+ 4 x))

(+ 4 (call/cc (lambda (k) (+ 5 (k 3)))))

When control reaches this point, the current continuation is…

(lambda (x) (+ 4 (+ 5 x)))

(+ 4 (call/cc (lambda (k) (+ 5 (k 3)))))

And, by invoking k, then we abandon it to reinstate k

(lambda (x) (+ 4 x))

(call/cc (lambda (k0)
 (+ 1 (call/cc (lambda (k1)
 (+ 1 (k0 3)))))))

(call/cc (lambda (k0)
 (+ 1 (call/cc (lambda (k1)
 (+ 1 (k0 (k1 3))))))))

(call/cc (lambda (k0)
 (+ 1
 (call/cc (lambda (k1)
 (+ 1 (k1 3))))
 (k0 1))))

Try an example. What do each of these 3 examples return?
(Hint: Racket evaluates argument expressions left to right.)

(call/cc (lambda (k0)
 (+ 1 (call/cc (lambda (k1)
 (+ 1 (k0 3)))))))

(call/cc (lambda (k0)
 (+ 1 (call/cc (lambda (k1)
 (+ 1 (k0 (k1 3))))))))

(call/cc (lambda (k0)
 (+ 1
 (call/cc (lambda (k1)
 (+ 1 (k1 3))))
 (k0 1))))

Try an example. What do each of these 3 examples return?
(Hint: Racket evaluates argument expressions left to right.)

3

4

1

54

Lecture Summary
Continuations allow us to capture the stack in a first-class way
call/cc (call-with-current-continuation)

Let’s us bind special continuation functions
When invoked, continuations reset the stack
As we will soon see, this enables building non-local control
constructs (loops, exceptions, etc…)

