Tail Calls and Tail Recursion

CIS352 — Spring 2023
Kris Micinski
((\(x\) \(x\)) \((\text{lambda} (y) \ y\) 5))

\((\text{lambda} (x) \ x\) 5)
Calculating factorial in Racket

(define (factorial n)
 (if (= n 0)
 1
 (* n (factorial (sub1 n)))))
Calculating factorial in Racket

(define (factorial n)
 (if (= n 0)
 1
 (* n (factorial (sub1 n)))))

Defines base case
Calculating factorial in Racket

(define (factorial n)
 (if (= n 0)
 1
 (* n (factorial (sub1 n))))

and inductive / recursive case
Calculating factorial in Racket

(define (factorial n)
 (if (= n 0)
 1
 (* n (factorial (sub1 n)))))

We can think of recursion as “substitution”

> (factorial 2)
(define (factorial n)
 (if (= n 0)
 1
 (* n (factorial (sub1 n))))
)

We can think of recursion as "substitution"

> (factorial 2)
= (if (= 2 0)
 1
 (* 2 (factorial (sub1 2))))

Copy defn, substitute for argument n
(define (factorial n)
 (if (= n 0)
 1
 (* n (factorial (sub1 n))))

We can think of recursion as “substitution”

> (factorial 2)
= (if (= 2 0)
 1
 (* 2 (factorial (sub1 2))))
= (if #f 1 (* 2 (factorial (sub1 2))))
= (* 2 (factorial (sub1 2)))
= (* 2 (factorial 1))
= (* 2 (if ...))
...
= (* 2 (if (= 2 0)
 1
 (* n (factorial (sub1 2)))))
= (* 2 (factorial 1))
= ...
= (* 2 (* 1 1))
= (* 2 1)
= 2

Notice we’re building a big stack of calls to *
Tail Calls

• Unlike calls in general, *tail calls* do not affect the stack:
 • Tail calls *do not grow* (or shrink) the stack.
 • They are more like a goto/jump than a normal call.
A subexpression is in *tail position* if it’s:

- The last subexpression to run, whose return value is also the value for its parent expression
- In `(let ([x rhs]) body); body` is in tail position...
- In `(if grd thn els); thn & els` are in tail position...
Tail Recursion

• A function is **tail recursive** if all recursive calls in tail position

• Tail-recursive functions are analogous to loops in imperative langs
Tail calls / tail recursion

• Unlike calls in general, **tail calls** do not affect the stack:
 • Tail calls **do not grow** (or shrink) the stack.
 • They are more like a goto/jump than a normal call.

• A function is **tail recursive** if all recursive calls in tail position

• Tail-recursive functions are analogous to loops in imperative langs
Instead, use **dynamic programming**: design a recursive solution top-down, but implement as a bottom-up algorithm!

Start with first two, then build up
Instead, use *dynamic programming*: design a recursive solution top-down, but implement as a bottom-up algorithm!
Key idea: only need to look at two most recent numbers
Accumulate via arguments

(define (fib-h i n0 n1)
 (if (= i 0)
 n0
 (fib-h (- i 1) n1 (+ n0 n1)))))

(define (fib n) (fib-h n 0 1))
(define (fib-h i n0 n1)
 (if (= i 0)
 n0
 (fib-h (- i 1) n1 (+ n0 n1)))))

(define (fib n) (fib-h n 0 1))

Question: what is the runtime complexity of `fib`?
(define (fib-h i n0 n1)
 (if (= i 0)
 n0
 (fib-h (- i 1) n1 (+ n0 n1))))

(define (fib n) (fib-h n 0 1))

Answer: $O(n)$, fib-helper runs from n to 0
Consider how \texttt{fib-h} executes

\begin{verbatim}
(define (fib-h i n0 n1)
 (if (= i 0)
 n0
 (fib-h (- i 1) n1 (+ n0 n1))))

(define (fib n) (fib-h n 0 1))
\end{verbatim}
(fib-helper 3 0 1)
= (if (= 3 0) 0 (fib-h (- 3 1) 1 (+ 0 1)))
= ...
= (fib-h 2 1 1)
= (if (= 2 0) 1 (fib-h (- 2 1) 1 (+ 1 1)))
= ...
= (fib-h 1 1 2)

Notice that we don’t get the “stacking” behavior: recursive calls don’t grow the stack
This is because \texttt{fib-h} is \texttt{tail recursive}

\begin{verbatim}
(define (fib-h i n0 n1)
 (if (= i 0)
 n0
 (fib-h (- i 1) n1 (+ n0 n1))))

(define (fib n) (fib-h n 0 1))
\end{verbatim}

Intuitively: a callsite is in \texttt{tail-position} if it is the \texttt{last thing} a function will do before exiting

(\texttt{We call these tail calls})
This is because `fib-h` is **tail recursive**

Both of these are tail calls

\[
\begin{align*}
\text{(define (fib-h i n0 n1)} \\
&\quad (\text{if (= i 0)} \\
&\qquad n0 \\
&\qquad (\text{fib-h (- i 1) n1 (+ n0 n1)})))
\end{align*}
\]

\[
\text{(define (fib n) (fib-h n 0 1))}
\]

Intuitively: a callsite is in **tail-position** if it is the **last thing** a function will do before exiting

(We call these **tail calls**)
Tail calls / tail recursion

• Unlike calls in general, **tail calls** do not affect the stack:
 • Tail calls *do not grow* (or shrink) the stack.
 • They are more like a goto/jump than a normal call.

• A subexpression is in **tail position** if it’s the last subexpression to run, whose return value is also the value for its parent expression:
 • In `(let ([x rhs]) body); body` is in **tail position**...
 • In `(if grd thn els); thn & els` are in **tail position**...

• A function is **tail recursive** if all recursive calls in tail position

• Tail-recursive functions are analogous to loops in imperative langs
Which of the following is tail recursive?

(define (length-0 l)
 (if (null? l)
 0
 (+ 1 (length-0 (cdr l)))))

(define (length-1 l n)
 (if (null? l)
 n
 (length-1 (cdr l) (+ n 1))))
Exercise

Answer

\[(\text{define (length-0 } l) \quad \text{Not tail recursive}\]
\[\quad (\text{if (null? } l) \quad \text{Adds (+ 1 _) operation to stack}\]
\[\quad \quad 0\]
\[\quad \quad (+ 1 (\text{length-0 (cdr } l)))\]\n\[\]\
\[(\text{define (length-1 } l \ n) \quad \text{Is tail recursive!}\]
\[\quad (\text{if (null? } l) \quad \text{Call to length-1 in tail position}\]
\[\quad \quad n\]
\[\quad \quad \quad (\text{length-1 (cdr } l) (+ n 1)))\]\n\[\]