Simply-Typed Lambda Calculus, & SUOS Programs as Proofs CIS352 — Spring 2023 Kris Micinski

۲

- Types are a static system guaranteed by your program
- Types serve as evidence of a particular property, that relates to the structure of information
- For the lambda calculus, and base values, the only structure to be had is **lambdas**
- Type systems are designed to ensure certain static properties of the language. These properties can be relatively superficial, or fairly involved
- The simply-typed lambda calculus is one specific type system for the lambda calculus that models all of the things that could "go wrong" at the type level
- Start by type system for IfArith

Higher-order contract systems track program labels alongside contracts to properly assign blame when failure occurs.

"Correct blame for contracts". Dimoulas. 2011.

"I take in a positive and produce a positive."

(define/contract (fib x) (-> positive? positive?) (cond $[(= x \ 0) \ 1]$ [(= x 1) 1]

> Welcome to <u>DrRacket</u>, version 7.2 [3m]. Language: racket, with debugging; memory limit: 128 MB. > (fib 2)

[Felse (+ (fib (- x 1)) (fib (- x 2))])

(define/contract (fib x) (-> positive? positive?) (cond $[(= x \ 0) \ 1]$ [(= x 1) 1]> (fib -2)**Solution Solution** expected: positive? given: -2 in: the 1st argument of (-> positive? positive?) contract from: (function fib) blaming: anonymous-module at: unsaved-editor:3.18 >

When I mess up

[else (+ (fib (- x 1)) (fib (- x 2))]))

```
(assuming the contract is correct)
```

(define/contract (fib x) (-> positive? positive?) (cond $[(= x \ 0) \ 1]$ [(= x 1) 1]> (fib -2)**Solution Solution** expected: positive? given: -2 in: the 1st argument of (-> positive? positive?) contract from: (function fib) blaming: anonymous-module at: unsaved-editor:3.18 >

When I mess up

[else (+ (fib (- x 1)) (fib (- x 2))]))

```
Racket blames me
                        (anonymous-module)
(assuming the contract is correct)
```

When **fib** messes up

(define/contract (fib x) (-> positive? positive?) (cond [(= x 0) -200][(= x 1) 1]

Welcome to DrRacket, version 7.2 [3m]. Language: racket, with debugging; memory limit: 128 MB. > (fib 20) So fib: broke its own contract promised: positive? produced: -829435 in: the range of (-> positive? positive?) contract from: (function fib) blaming: (function fib) (assuming the contract is correct) at: unsaved-editor:3.18

[else (+ (fib (- x 1)) (fib (- x 2))]))

Racket blames fib

Note that contracts are checked at **runtime**

(**Not** compile time!)

But sometimes we want to know our program won't break before it runs!

A type system assigns each source fragment with a given type: a specification of how it will behave

Type systems include **rules**, or **judgements** that tells us how we compositionally build types for larger fragments from smaller fragments

The **goal** of a type system is to **rule out** programs that would exhibit run time type errors!

Type Systems

A type system for STLC (Simply-Typed Lambda Calculus)

- e ::= (lambda (x) e)(e e) ((prim e) e) Χ n
- prim ::= + | * | ...

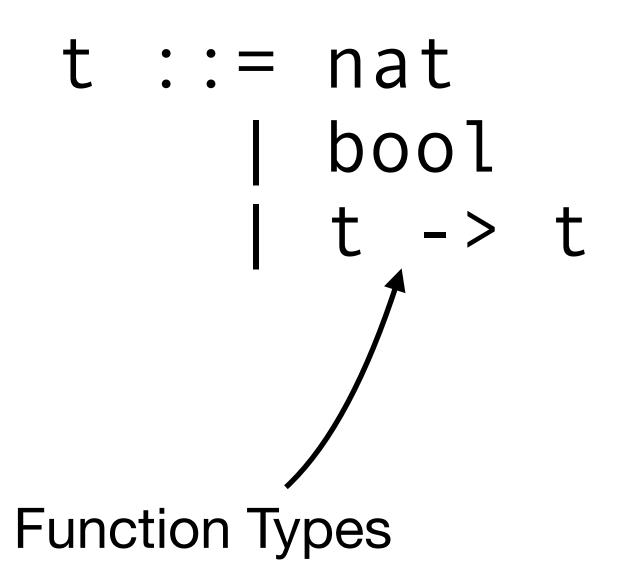
Term Syntax

Type Syntax

t ::= nat | bool | t -> t

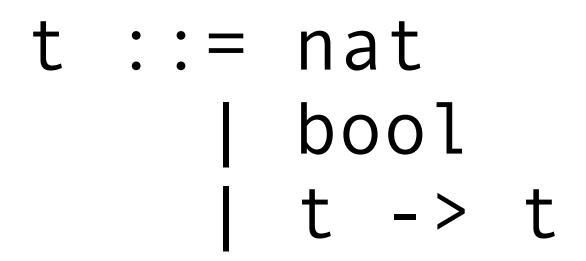
11

Term Syntax



Term Syntax

Type Syntax



Examples...

```
;; Expressions are ifarith, with several special builtins
(define (expr? e)
  (match e
    ;; Variables
   [(? symbol? x) #t]
    ;; Literals
   [(? bool-lit? b) #t]
   [(? int-lit? i) #t]
    ;; Applications
    [`(,(? expr? e0) ,(? expr? e1)) #t]
    ;; Annotated expressions
    [`(,(? expr? e) : ,(? type? t)) #t]
    ;; Anotated lambdas
```

[`(lambda (,(? symbol? x) : ,(? type? t)) ,(? expr? e)) #t]))

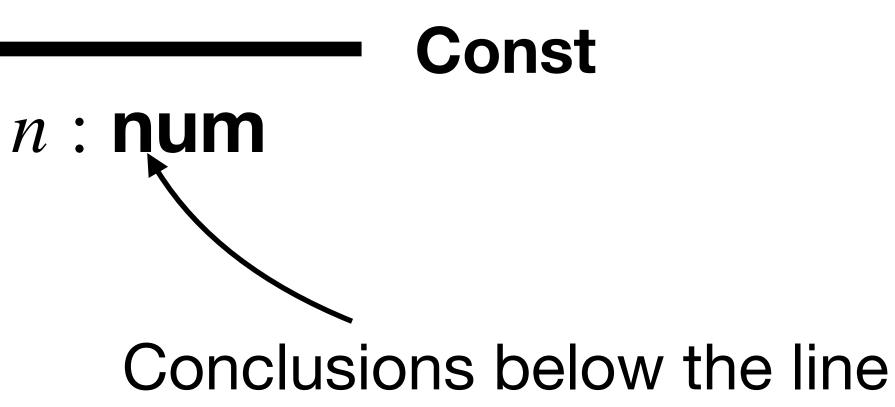
A type system for STLC

Assumptions above the line

prim ::= + | * | ...

Type rules are written in natural-deduction style (Like our big-step operational semantics.)

(No assumptions here.)



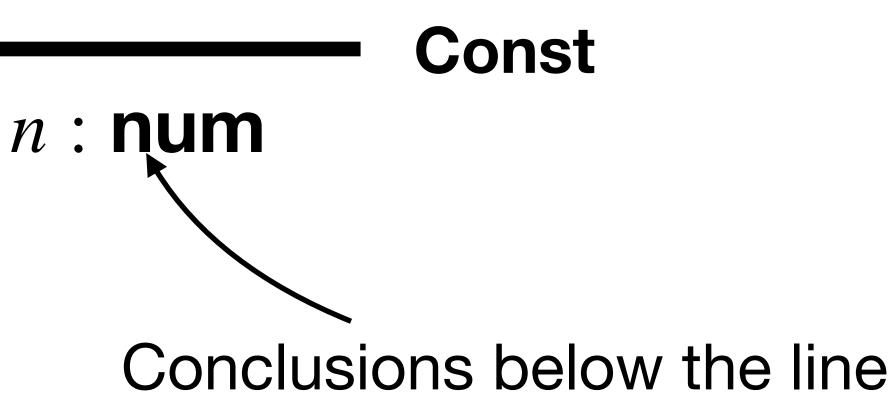
A type system for STLC

Assumptions above the line

prim ::= + | * | ...

Type rules are written in natural-deduction style (Like our big-step operational semantics.)

(No assumptions here.)



onclude any number n has type **num**"

Variable Lookup

We assume a **typing environment** which maps variables to their types

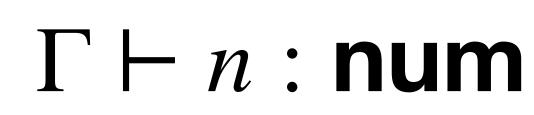
Ι

If x maps to type t in Γ , we may conclude that x has type t under the type environment Γ

$$f(x) = t$$
 Var
$$f(x) = x \cdot t$$

Const revisited...

"We may conclude any constant n is of type **num** under **any** typing environment."



num Const

Functions...

plus assuming x has type t,...

$$\Gamma[x \mapsto t] \vdash e : t'$$

$$\vdash (\lambda (x : t) e) : t \to t'$$
Lam

$$\Gamma[x \mapsto t] \vdash e : t'$$

$$\Gamma \vdash (\lambda (x : t) e) : t \to t'$$

has type t -> t'

If you conclude that e has type t' with Gamma

Then you can conclude that the entire lambda

Functions...

plus assuming x has type t,...

$$\Gamma[x \mapsto t] \vdash e : t'$$

$$\vdash (\lambda (x : t) e) : t \to t'$$
Lam

$$\Gamma[x \mapsto t] \vdash e : t'$$

$$\Gamma \vdash (\lambda (x : t) e) : t \to t'$$

has type t -> t'

Variables (x) must be **tagged** with a type (e.g., by programmer)

If you conclude that e has type t' with Gamma

Then you can conclude that the entire lambda

Note

$\Gamma[x \mapsto t] \vdash$

 $\Gamma \vdash (\lambda (x : t) e)$

(lambda (x : num) 1)

$$- e : t'$$

$$e): t \to t'$$
Lam

$\Gamma[x \mapsto t] \vdash$

 $\Gamma \vdash (\lambda (x : t))$

Start with the empty environment (since this term is closed) $\Gamma = \{\} \vdash (lambda (x : num) 1) : ? \rightarrow ?$

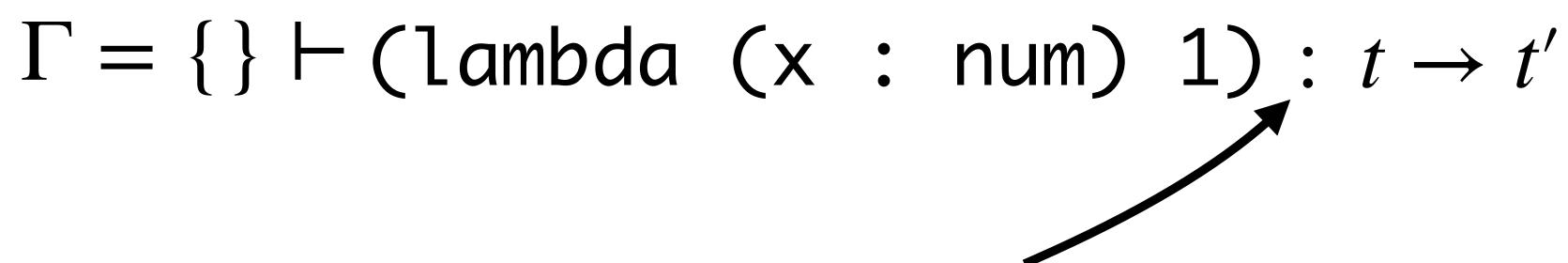
$$\begin{array}{l} -e:t' \\ \hline e):t \to t' \end{array}$$
 Lam

$\Gamma[x \mapsto t] \vdash$

 $\Gamma \vdash (\lambda (x : t) e)$

$$- e : t'$$

$$e) : t \to t'$$
Lam



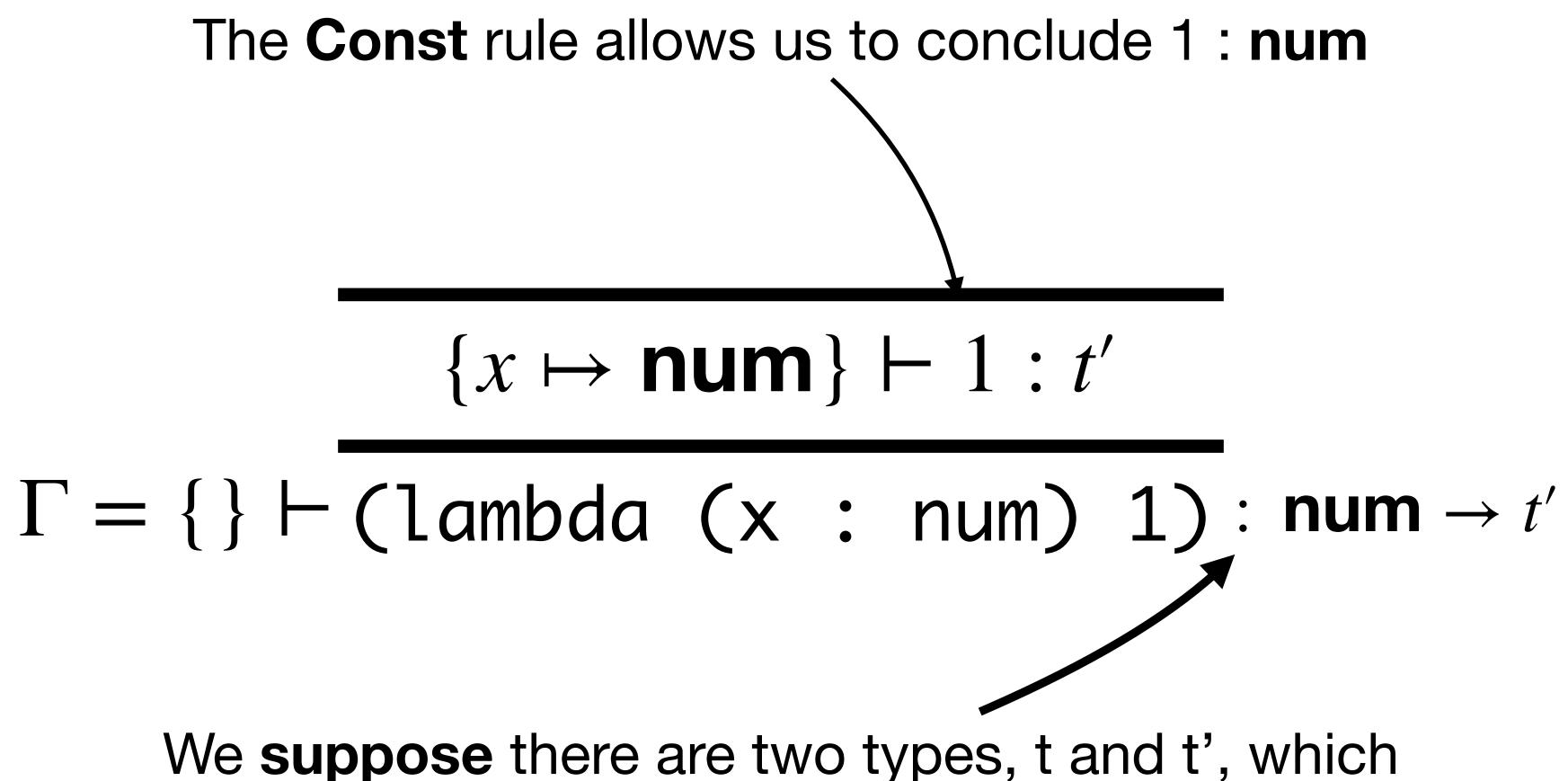
We suppose there are two types, t and t', which will make the derivation work.

Because x is tagged, it must be **num**

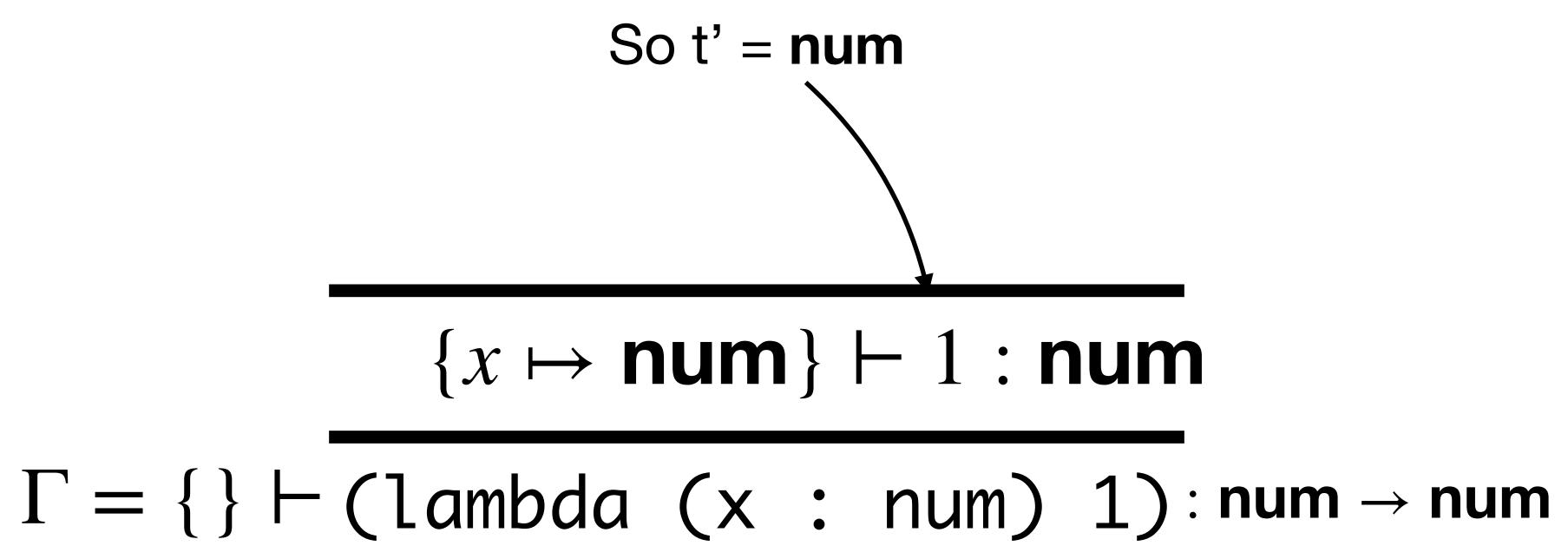
${x \mapsto \mathbf{n}}$ $\Gamma = \{\} \vdash (lambda)$

$$[\mathbf{x} : \mathbf{num}] \vdash 1 : t'$$

We suppose there are two types, t and t', which will make the derivation work.



will make the derivation work.



Function Application

$\Gamma \vdash e : t \to t' \quad \Gamma \vdash e' : t$

 $\Gamma \vdash (e \ e') : t'$

App

Function Application

If (under Gamma), e has type t -> t' $\Gamma \vdash e : t \to t' \quad \Gamma \vdash e' : t$

 $\Gamma \vdash (e \ e') : t'$

- And e' (its argument) has type t

App

Then the application of e to e' results in a t'

Con $\Gamma \vdash n$: int $\Gamma \vdash e : t \to t'$ $\Gamma \vdash (e e)$ $\Gamma[x \mapsto t]$ $\Gamma \vdash (\lambda (x : t$

Our type system so far...

st
$$\frac{\Gamma(x) = t}{\Gamma \vdash x : t}$$
 Var

$$\frac{\Gamma \vdash e' : t}{P \vdash e' : t}$$
 App

$$\frac{F \vdash e' : t'}{P \vdash e' : t'}$$
 Lam

Almost everything! Just need builtin functions

- (e e) X l n
- prim ::= + | * | ...

```
e ::= (lambda (x : t) e)
    ((prim e) e)
```

Trick! Just **assume** they're part of **Γ**! $\Gamma_{i} = \{ + : \text{num} \rightarrow \text{num} \rightarrow \text{num}, \dots \}$

Write derivations of the following expressions...

Practice Derivations

((λ (x

C $\Gamma \vdash n$: num $\Gamma \vdash e : t \to t'$ $\Gamma \vdash (e e)$ $\Gamma, \{x \mapsto$

 $\Gamma \vdash (\lambda (x : t))$

$$: int) x) 1)$$
onst
$$\frac{x \mapsto t \in \Gamma}{\Gamma \vdash x : t} \quad Var$$

$$\frac{\Gamma \vdash e' : t}{F'} \quad App$$

$$e') : t'$$

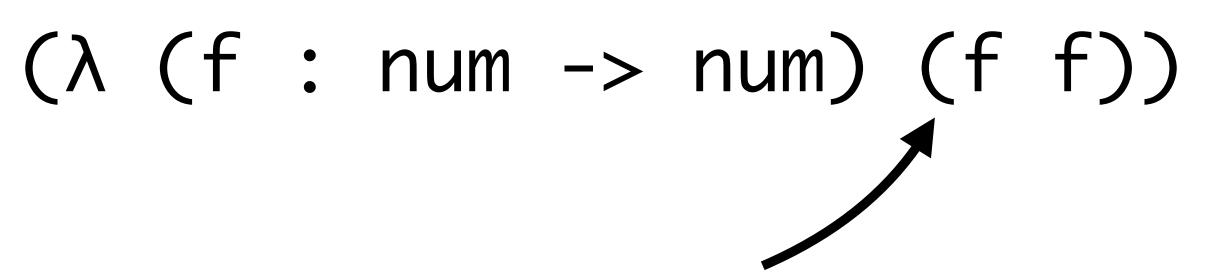
$$t\} \vdash e : t' \quad Lam$$

 $\Gamma \vdash n$: num $\Gamma \vdash e : t \rightarrow t' \quad \Gamma \vdash e' : t$ $\Gamma \vdash (e \ e') : t'$

$((\lambda (f : num -> num) (f 1)) (\lambda (x : num) x))$ $x \mapsto t \in \Gamma$ Var Const $\Gamma \vdash x : t$ App $\Gamma, \{x \mapsto t\} \vdash e : t'$ Lam $\Gamma \vdash (\lambda(x:t) \ e): t \to t'$

Typability in STLC

Not all terms can be given types...



- It is impossible to write a derivation for the above term!
 - f is num->num but would **need** to be num!

Not all terms can be given types...

((λ (f (λ (f

It is **impossible** to write a derivation for Ω !

Consider what would happen if f were:

- num -> num

- (num -> num) -> num

Typability

Always just out of reach...

$(\lambda (f : num -> num) -> num) (((f 2) 3) 4))$ $((\lambda (f : num -> num) f) (\lambda (x:num) (\lambda (x:num) x)))$

Type Checking

 $((\lambda (x:num) x:num) : num -> num)$

Type **checking:** verifying the derivation of a **fully-typed** term

Notice that each subterm is assigned a "full" type

Type checking tells us which rules we **must** apply if there is to be a derivation

 $((\lambda (x:num) x:num) : num -> num)$

In the case of fully-annotated STLC, there are no parts where we have to guess a type

We can synthesize a type by looking at the annotated parameters for lambdas

This leads us to writing a **syntax-directed** (i.e., structurally-recursive) type synthesizer / checker for fully-annotated STLC

Next lecture, we will look at type inference for **un-annotated** STLC

```
;; Synthesize a type for e in the environment env
;; Returns a type
(define (synthesize-type env e)
  (match e
    ;; Literals
    [(? integer? i) 'int]
    [(? boolean? b) 'bool]
    ;; Look up a type variable in an environment
    [(? symbol? x) (hash-ref env x)]
    ;; Lambda w/ annotation
    [`(lambda (,x : ,A) ,e)
    `(,A -> ,(synthesize-type (hash-set env x A) e))]
    ;; Arbitrary expression
    [`(,e : ,t) (let ([e-t (synthesize-type env e)])
                  (if (equal? e-t t)
                    t
                    (error (format "types ~a and ~a are different" e-t t)))]
    ;; Application
    [`(,e1 ,e2)
     (match (synthesize-type env e1)
       [ (, A ->, B)
        (let ([t-2 (synthesize-type env e2)])
          (if (equal? t-2 A)
            B
            (error (format "types \sim a and \sim a are different" A t-2)))))))))
```

Type Inference

- Allows us to leave some **placeholder** variables that will be "filled in later"
 - ((λ (x:t) x:t') : num -> num)
- The num->num type then forces t = num and t' = num

Type Inference

$(\lambda (x) (\lambda (y:num->num) ((+ (x y)) x)))$

Type inference can **fail**, too...

No **possible** type for x! Used as fn and arg to +

Type Inference has been of interest (research and practical) for many years

It allows you to write **untyped** programs (much less painful!) and automatically synthesize a type for you—as long as the type exists (catch your mistakes)

Type inference can be seen as enumerating **all possible type assignments** to infer a valid typing. You can think of it as solving the equation:

```
(\lambda (f) ((f 2) 3) 4))
                     Type inference
(\lambda (f : num -> num -> num -> num) (((f 2) 3) 4))
```

HACE STATES AND STATES TEAM OF STATES AND STATES TARGET AND STATES AN

How hard is this problem (tractability)?

Type inference can be seen as enumerating all possible type assignments to infer a valid typing. You can think of it as solving the equation:

that we *could* check, in principle

So it is not obvious that this is a terminating process. But: humans almost always write "reasonable" types:

((a -> ((a -> b) -> ((a -> b) -> (b -> c))) -> ...) is possible but uncommon

We will see next lecture that a procedure exists which finds a typing, if a typing exists. This relies on *unification* (a principle from logic programming)

HACE STATES TEACHER JT. ((f 2) 3) 4)

There are an infinite number of *possible* T (e.g., int, bool, int->int, bool->bool, ...)

Extending STLC...

- e ::= (lambda (x) e)(e e) ((prim e) e) Х n
- prim ::= + | * | ...

Let's add if, and, or

Extending STLC...

- e ::= (lambda (x) e)(e e) ((prim e) e) | (if e e e) (and e e) (or e e)
 - Х | n | #t | #f
- prim ::= + | * | ...

Now we need typing rules for if!

If needs guard to be a boolean...

- Shouldn't be valid for guard to be, e.g., (+ 1 2)

(if guard t **†)**

If needs guard to be a boolean...

- Shouldn't be valid for guard to be, e.g., (+ 1 2)

(if guard **†**) $\Gamma \vdash e_g : \mathbf{bool} \quad \Gamma \vdash e_t : t \quad \Gamma \vdash e_f : t$ lf $\Gamma \vdash (\mathbf{if} \, e_g \, e_t \, e_f) : t$

If needs guard to be a boolean...

- Shouldn't be valid for guard to be, e.g., (+ 1 2)

(if guard et/ef must be same type! \mathbf{f} $\Gamma \vdash e_g$: **bool** $\Gamma \vdash e_t$: t $\Gamma \vdash e_f$: tlf $\Gamma \vdash (\mathbf{if} \, e_g \, e_t \, e_f) : t$

Exercise

Can you come up with the type rules for and/or?

(and $e_1 e_2$)

Completeness of STLC

- **Incomplete**: Reasonable functions we can't write in STLC • E.g., any program using recursion
- Several useful **extensions** to STLC
- Fix operator to allow typing recursive functions
- Algebraic data types to type structures
- Recursive types to allow typing recursive structures •tree = Leaf (int) | Node(int,tree,tree)

Typing the Y Combinator

The "real" solution is quite nontrivial—we need recursive types, which may be formalized in a variety of ways - We will not cover recursive types in this lecture, I am happy to offer pointers Our hacky solution works in practice, but is not sound in general - More precisely, the logic induced by the type system is no longer sound

 $\Gamma \vdash f \colon t \to t \quad \mathbf{Y}$ $\Gamma \vdash (Yf) : t$

Think of how this would look for **fib**

 $\Gamma \vdash f : t \to t \quad \mathbf{Y}$ $\Gamma \vdash (Yf) : t$ What would t be here? (let ([fib (Y (λ (f) (λ (x) (if (= x 0))(* x (fib (- x 1))))))))))))

Typing the Y Combinator

Error States

- A program steps to an **error state** if its evaluation reaches a point where the program has not produced a value, and yet cannot make progress
- Gets "stuck" because + can't operate on λ

$((+ 1) (\lambda (x) x))$

Error States

- A program steps to an error state if its evaluation reaches a point where the program has not produced a value, and yet cannot make progress
- Gets "stuck" because + can't operate on λ

$((+ 1) (\lambda (x) x))$

(Note that this term is **not typable** for us!)

Soundness

- A type system is **sound** if no typable program will ever evaluate to an error state
 - "Well typed programs cannot go wrong." Milner
 - (You can **trust** the type checker!)

Proving Type Soundness

Progress

If e typable, then it is either a value or can be further reduced

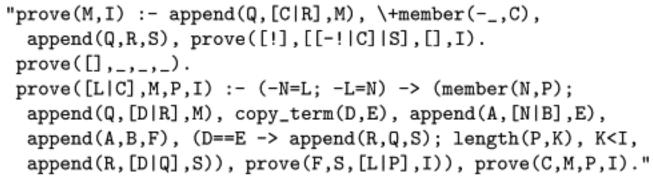
- **Theorem:** if e has some type derivation, then it will evaluate to a value.
 - Relies on two lemmas
- Preservation

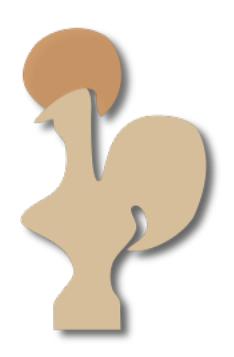
If e has type t, any reduction will result in a term of type t

"Proofs as Programs"

A significant amount of interest has been given to programming languages which use **powerful type systems** to write programs alongside a proof of the program's correctness

Imagine how nice it would be to write a **completely-formallyverified** program—no bugs ever again!





How does this work?

These systems interpret **programs** as **theorems** in higher-order logics (calculus of constructions, etc...)

Unfortunately, no free lunch: this makes the type system way more complicated in practical settings

We will see a *taste* of the inspiration for these systems, by reflecting on STLC's expressivity

Valid Contexts.

$$Dash * rac{\GammaDash \Delta}{\Gamma[x:\Delta]Dash *} rac{\GammaDash P:*}{\Gamma[x:P]Dash *}$$

Product Formation.

$$rac{\Gamma[x:P]Dash\Delta}{\Gammadash[x:P]\Delta} ~~ rac{\Gamma[x:P]Dash N:*}{\Gammadash[x:P]N:*}$$

Variables, Abstraction, and Application.

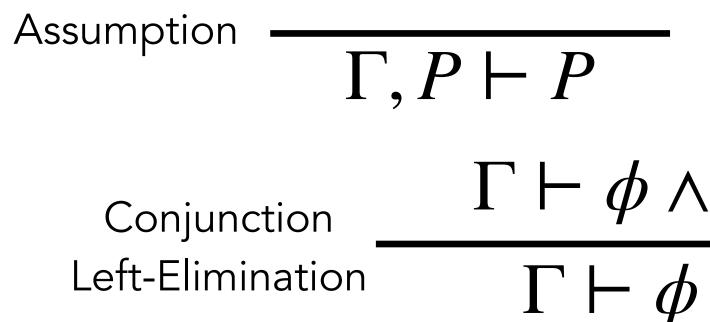
$$rac{\Gammadash * x}{\Gammadash * x:P} \left[x{:}P
ight] ext{ in } \Gamma = rac{\Gamma[x{:}P]dash N:Q}{\Gammadash (\lambda x{:}P)N: \left[x{:}P
ight]Q} rac{\Gammadash M: \left[x{:}P
ight]Q}{\Gammadash (MN): \left[N/x
ight]Q} rac{\Gammadash N:P}{\Gammadash (MN): \left[N/x
ight]Q}$$

s, t, A, B ::= xvariable $(x : A) \rightarrow B$ dependent function type lambda abstraction function application dependent pair type $(x : A) \times B$ dependent pairs $\langle s, t \rangle$ $\pi_2 t$ $\pi_1 t \mid$ projection universes $(i \in \{0..\})$ Set_i the unit type 1 $\langle \rangle$ the element of the unit type Γ, Δ $::= \varepsilon$ $| (x : A)\Gamma$ telescopes

Intuitionistic Propositional Logic

Constructive logic variant of traditional propositional (boolean) logic

Proofs in (intuitionistic) propositional logic are built from natural-deduction rules, including introduction and elimination rules



Conjunction $\Gamma \vdash \phi \quad \Gamma \vdash \psi$ Introduction $\Gamma \vdash \phi \land \psi$ Conjunction $\Gamma \vdash \phi \land \psi$ **Right-Elimination** $\Gamma \vdash \phi$

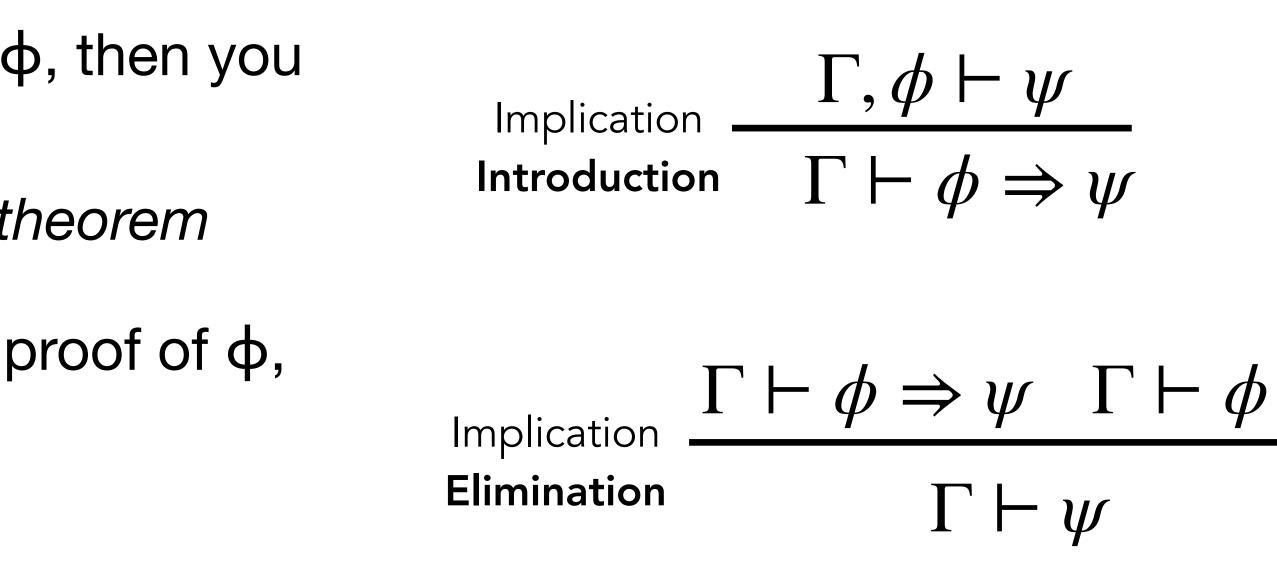
> More reading: https://www.classes.cs.uchicago.edu/archive/2003/spring/15300-1/intuitionism.pdf

Implication in IPL

Implication is performed by *introducing-then-discharging*

"If you can prove ψ by assuming ϕ , then you can prove $\phi \Rightarrow \psi$ " Sometimes called the *deduction theorem* "If you have a proof of $\phi \Rightarrow \psi$, and a proof of ϕ , then you can have a proof of ψ "

Sometimes called *modus ponens*



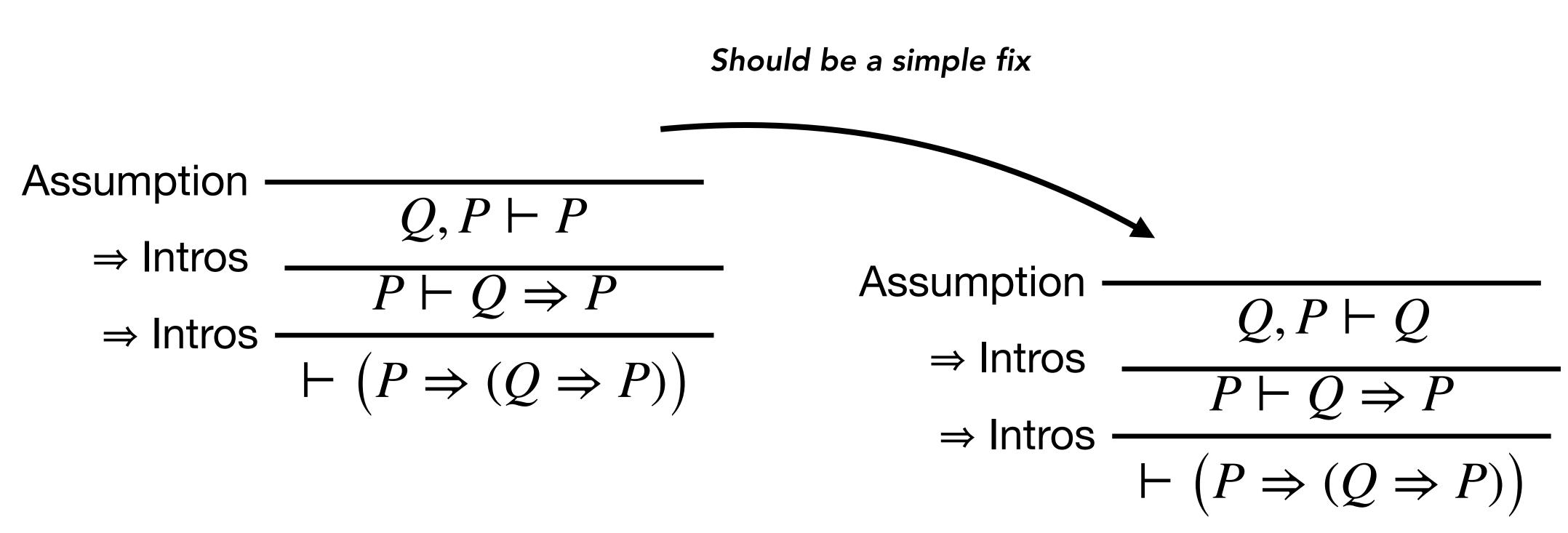
Proving $P \Rightarrow (Q \Rightarrow P)$

Assumption — \Rightarrow Intros — \Rightarrow Intros —

Start with a **goal** and then grow a proof according to the rules

$$Q, P \vdash P$$
$$P \vdash Q \Rightarrow P$$
$$\left(P \Rightarrow (Q \Rightarrow P)\right)$$

Small Point: Proving $P \Rightarrow (Q \Rightarrow Q)$



To fix this, we typically add **structural rules** to allow Unfortunately, our assumption rule **forbids** this: identifying contexts under reorderings. Some "sub-Assumption - $\Gamma, P \vdash P$ structural" logics (linear, affine) explicitly restrict this for particular uses (tracking resources, etc...)

Curry-Howard-Isomorphism

intuitionistic propositional logic

(lambda (x : int) x) : int -> int

(lambda (x : int) (lambda (y : bool) x)) : (int -> (bool -> int))

Every well-typed STLC term is a proof of a theorem in

Can be interpreted as "P implies P" ($P \Rightarrow P$, more properly int \Rightarrow int)

Can be interpreted " $P \Rightarrow (Q \Rightarrow P)$ "

The key idea is to realize that the typing derivation for STLC precisely mirrors the deductive rules of IPL

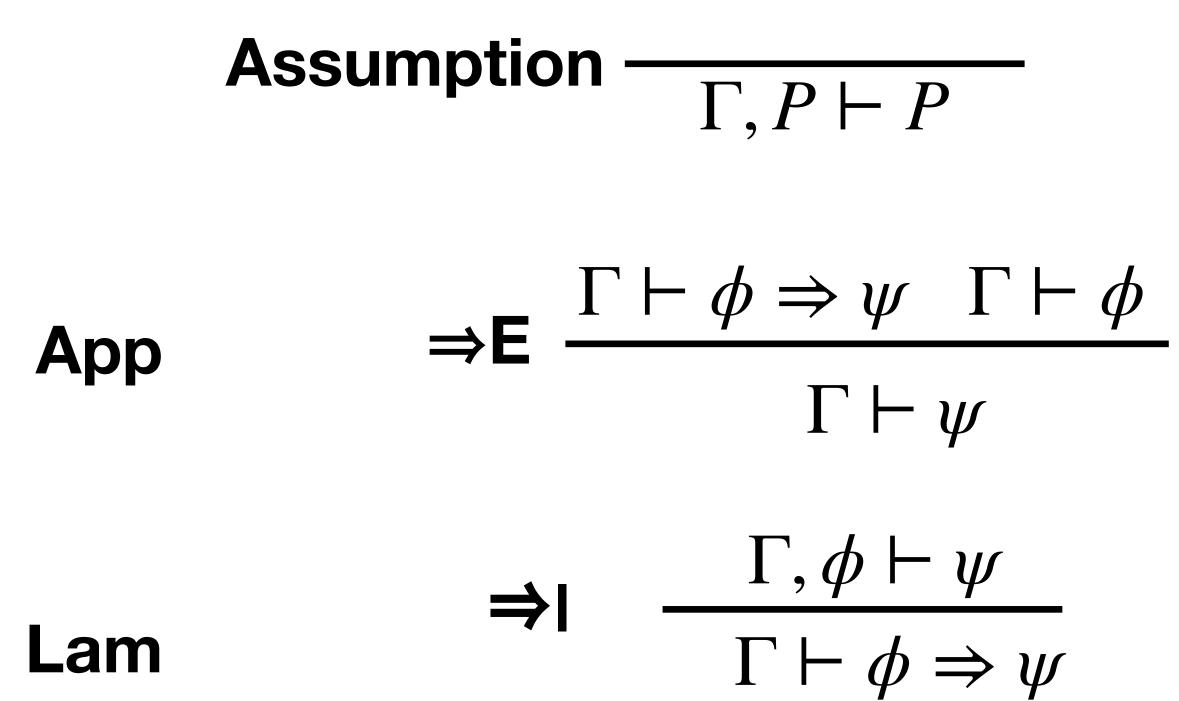
$$\frac{x \mapsto t \in \Gamma}{\Gamma \vdash x : t} \quad \text{Var}$$

$$\Gamma \vdash e : t \to t' \quad \Gamma \vdash e' : t$$

$$\Gamma \vdash (e \ e') : t'$$

$$\Gamma, \{x \mapsto t\} \vdash e : t'$$

$$\Gamma \vdash (\lambda (x : t) \ e) : t \to t'$$



$$\frac{x \mapsto t \in \Gamma}{\Gamma \vdash x : t} \quad \text{Var}$$

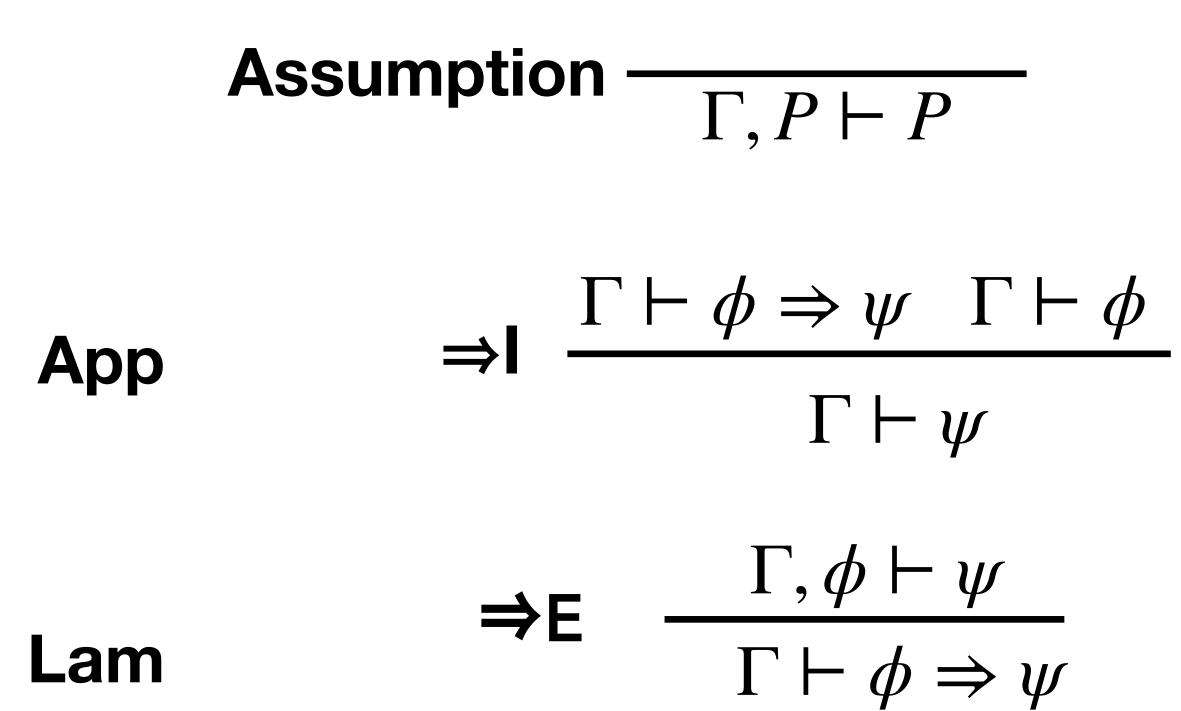
$$\Gamma \vdash e : t \to t' \quad \Gamma \vdash e' : t$$

$$\Gamma \vdash (e \ e') : t'$$

$$\Gamma, \{x \mapsto t\} \vdash e : t'$$

$$\Gamma \vdash (\lambda (x : t) \ e) : t \to t'$$

This means that every proof tree for STLC can be **trivially-mapped** to a proof tree in IPL. I.e., if (e : t) is typeable in STLC, the theorem t holds in IPL by construction of the proof built using this mapping



A family of logics / type systems

The Curry-Howard Isomorphism is a principle we can use to interpret either type systems or constructive logics

- (Always constructive logics because structural type systems are fullymaterialized, structured proofs)

IPL is a boring logic — it can't say much. Expressive power is limited to propositional logic

To prove interesting theorems, we want to say things like: \forall (l : list A) : {l' : sorted l' $\land \forall x$. (member l x) \Rightarrow (member l' x)}

- For all input lists I
- The output is a list I', along with a proof that:
 - (a) l' is sorted (specified elsewhere)
 - (b) every member of I is also a member of I'
- Any issues?
 - (Maybe we also want to assert length is the same?)

Dependent Type Systems

type (something like)

- These are called *dependent types*, because types can depend on *values* - This allows expressing that I' is sorted
- Unfortunately, these type systems are way more complicated - Worse, even type *checking* may be **undecidable** (in general)

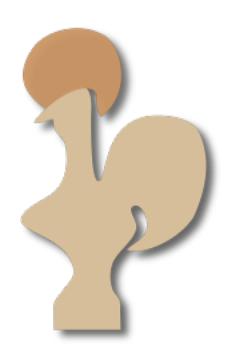
Precise formalization of these systems is beyond the scope of this class

- We can construct type systems / programming languages where terms can be of
 - \forall (l : list A) : {l' : sorted l' $\land \forall$ (x : A). (member l x) \Rightarrow (member l' x)}

and subsequently enable "fully-verified" programming

They hit a variety of expressivity points. The fundamental trade off is: (a) expressivity vs. (b) automation.

manual annotation (potentially).



```
"prove(M,I) :- append(Q,[C|R],M), \+member(-_,C),
 append(Q,R,S), prove([!],[[-!|C]|S],[],I).
prove([],_,_,_).
prove([L|C],M,P,I) := (-N=L; -L=N) \rightarrow (member(N,P);
 append(Q,[D|R],M), copy_term(D,E), append(A,[N|B],E),
 append(A,B,F), (D==E -> append(R,Q,S); length(P,K), K<I,
 append(R,[D|Q],S)), prove(F,S,[L|P],I)), prove(C,M,P,I)."
```

- A huge family of languages have popped up to implement dependent type systems
- Highly-expressive systems require you to write all the proofs yourself, and a lot of

Explicit Theorem Proving / Hole-Based Synth

Here I give an Agda definition for products

{- In Agda: for all P / Q, P -> Q -> P -} g_q_p : (P Q : Set) -> P -> Q -> P $p_q_p P Q pf_P pf_Q = pf_P$ data _x_ (A : Set) (B : Set) : Set where (_,_) : А → B - - - - $\rightarrow A \times B$ proj1 : ∀ {A B : Set} $\rightarrow A \times B$ - - - - -→ A projl (x, xl) = xproj2 : ∀ {A B : Set} $\rightarrow A \times B$ → B $proj2 \langle x, x1 \rangle = x1$ **∏U:---** hello.agda 48% L36 <E> (Aada:Checked) U:%*- *All Done* All L1 <M> (AgdaInfo)

waterloo.ca/~plragde/747/notes/index.html

Explicit Theorem Proving / Hole-Based Synth

```
p : (PQ : Set) -> P × (Q × P) -> Q
 p P Q pf =
 {- proj1 (proj2 pf) -}
                                     (Agda)
]U:--- hello.agda
                      Bot L57
                                <E>
 13 : Q [ at /home/guest/hello.agda:59,12-13 ]
U:%*- *All Goals* All L1
                                    (AgdaInfo)
                             <M>
```

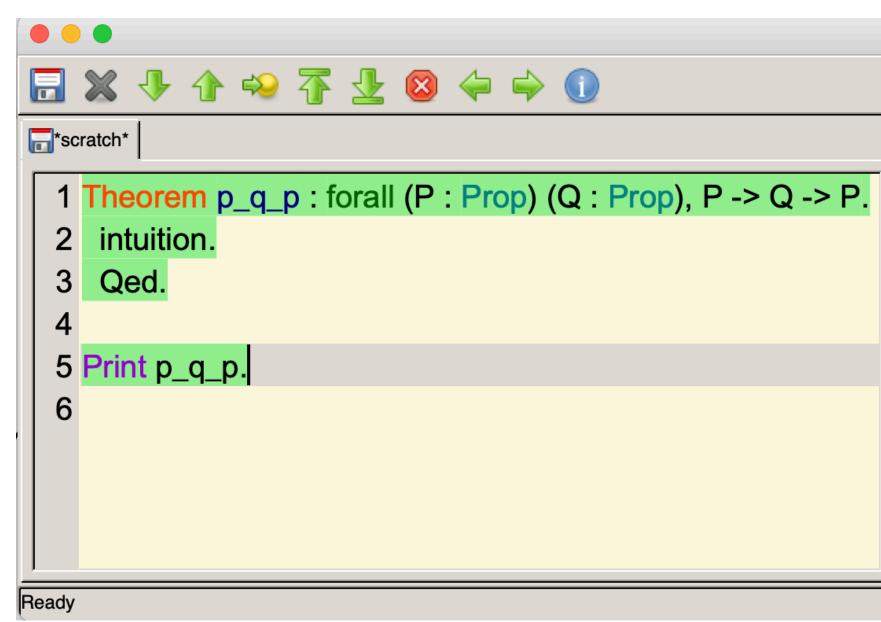
Agda will tell me what I need to fill in, allows me to use "holes" and then helps me hunt for a working proof.

```
proj1 : ∀ {A B : Set}
  \rightarrow A \times B
  → A
projl (x, xl) = x
proj2 : ∀ {A B : Set}
  → A × B
  → B
proj2 (x, x1) = x1
```

```
p : (P Q : Set) -> P \times (Q \times P) -> Q
p P Q pf = (proj1 (proj2 pf))
```


Tactic-Based Theorem Proving

Some systems provide logic-programming (i.e., *proof search*) to help assist users - CHI tells us that proof search is tantamount to program synthesis - Here I use Coq's "intuition" tactic to automatically construct a proof for me



right: printing the proof term)

Coqlde				
Warning: query commands should no p_q_p =	ot be inse	rted in scri	ipts	
fun (P Q : Prop) (H : P) (_ : Q) => H : forall P Q : Prop, P -> Q -> P				
Argument scopes are [type_scope typ	be_scope]		
<u></u>	Line:	5 Char: 13	Coqlide started	

(Using Coq to prove $P \Rightarrow Q \Rightarrow P$; left: using the "intuition" tactic,

Other systems for dependent type syntehsis

Some systems translate proof obligations into formulas which are then sent to SMT solvers (solves goals in first-order logic, such as Z3)

This can partially automate many otherwise-tricky proofs—in certain situations

F* based on this idea, but other proof search approaches exist (Idris, etc...)

The more expressive the type theory, the more work is required to build proofs.

