Last lecture: reduction rules for the lambda calculus
This lecture: reduction strategies
As a computer scientist, we can view nondeterminism in the rules as a challenge—it is easier to implement deterministic machines.
As a computer scientist, we can view nondeterminism in the rules as a challenge—it is easier to implement deterministic machines.

\[
\begin{align*}
((\lambda x\ x)\ ((\lambda z\ z)\ y)) \\
((\lambda x\ x)\ y) & \xrightarrow[\beta]{\beta} \ ((\lambda z\ z)\ y) \\
 y & \xrightarrow[\beta]{\beta} \ y
\end{align*}
\]
We will assume a few basic, but important, choices:
- Evaluation of a term will occur top-down
We will assume a few basic, but important, choices:
- Evaluation of a term will occur top-down
- We will never reduce under a lambda
We will assume a few basic, but important, choices:
- Evaluation of a term will occur top-down
- We will never reduce under a lambda

\[
\text{lambda (x) ((lambda (y) (y y)) (lambda (y) (y y)))}
\]

We say that lambda expressions are in **Weak Head Normal Form (WHNF)**

Even though a potential redex exists under the lambda, we will not evaluate it (until application)
Two popular strategies:
- Call by value, reduce arguments *early* as possible
- Call by name, reduce arguments *late* as possible
Two popular strategies:
- Call by value, reduce arguments *early* as possible
 - Applicative order (innermost), but *not under lambdas*
- Call by name, reduce arguments *late* as possible
 - Normal order, but *not under lambdas*
Whenever you get to an application of a lambda, you have a choice:
- Attempt to evaluate argument?
- Perform application immediately

```
(((lambda (x) x) y) (((lambda (z) z) y)

β β

((lambda (x) x) y) ((lambda (z) z) y)
```

β β

y
Church-Rosser Theorem

For any expression e,
If $e \rightarrow^* e_0$ and $e \rightarrow^* e_1$
Then, both e_0 and e_1 step to some common term e'
Church-Rosser Theorem

For any expression e,
If \(e \rightarrow^* e_0 \) and \(e \rightarrow^* e_1 \)
Then, both \(e_0 \) and \(e_1 \) step to some **common** term \(e' \)

Corollary: all terminating paths result in same normal form!
Give the **reduction sequences** using…

- Call-by-Name
- Call-by-Value

\[((\texttt{lambda } (x) \ x) \ ((\texttt{lambda } (y) \ y) \ ((\texttt{lambda } (y) \ y))))\]
Give the *reduction sequences* using…
- Call-by-Name
- Call-by-Value

\[
\text{((lambda (x) x) ((lambda (y) y) y) (lambda (y) y))}
\]

CBN

\[
\text{((lambda (y) y) (lambda (y) y))}
\]

\[
\text{(lambda (y) y)}
\]

CBV

\[
\text{((lambda (x) x) (lambda (y) y))}
\]

\[
\text{(lambda (y) y)}
\]
Up to alpha equivalence, evaluate this term using:
- Call-by-Name
- Call-by-Value

\(((\text{\textit{lambda}} \ (x) \ (\text{\textit{lambda}} \ (y) \ y)) \\\n\ ((\text{\textit{lambda}} \ (x) \ (x \ x)) \ (\text{\textit{lambda}} \ (x) \ (x \ x)))\)
Up to alpha equivalence, evaluate this term using:
- Call-by-Name
- Call-by-Value

$$\left(\left(\text{lambda}\ (x)\ (\text{lambda}\ (y)\ y)\right)\ \left(\left(\text{lambda}\ (x)\ (x\ x)\right)\ (\text{lambda}\ (x)\ (x\ x))\right)\right)\ (\text{lambda}\ (y)\ y)$$

CBN
Up to alpha equivalence, evaluate this term using:
- Call-by-Name
- Call-by-Value

(((\(\lambda x\) \(\lambda y\) y))
 \(((\lambda x\) \((x\ x)\)) \(\lambda x\) (x x)))

\((\lambda y\) y)\)

CBN

CBV
Standardization theorem

If an expression can be evaluated to WHNF (i.e., it doesn’t loop), then it has a normal-order reduction sequence.

In other words: the lazy semantics is most permissive, in terms of termination.