Lambda Calculus

 IntroductionCIS352 — Spring 2023
Kris Micinski

The Lambda Calculus (1930s)

- Variables
- Function application
- Lambda abstraction

Just these three elements form a complete computational system

Original Syntax

$$
\begin{array}{rlr}
e::= & x & \text { Variables } \\
& \mid \lambda x . e & \text { Lambdas } \\
& \mid e_{0} e_{1} & \text { Applications }
\end{array}
$$

Scheme Syntax

$$
\begin{aligned}
e: & :=x & & \text { Variables } \\
& \mid(\lambda(x) e) & & \text { Lambdas } \\
& \mid\left(e_{0} e_{1}\right) & & \text { Applications }
\end{aligned}
$$

(define (expr? e)

(match e
[(? symbol? x) \#t]
['(lambda (,(? symbol? x)) ,(? expr? e-body)) \#t]
['(, (? expr? e0) ,(? expr? e1)) \#t]
[_ \#f]))

Lambda Calculus vs. Turing machines

Lambda Calculus equivalent (in expressivity) to Turing machines.

The Church-Turing Thesis states that turing machines / lambda calculus can encode any computable function.

In fact, it is possible to encode (most of) any Scheme program as a lambda calculus expression via a Church/Boehm encoding.

Now let's look at the three lambda calculus forms in detail..

An expression, abstracted over all possible values
for a formal parameter, in this case, x.

$(\lambda(x) e)$

Formal parameter
Function body

An expression, abstracted over all possible values for a formal parameter, in this case, x.

$(\lambda(x) e)$

In fact, you can read lambdas mathematically as "for all." This observation forms the basis for universal quantification in higherorder logics implemented using typed lambda calculus variants!

Next we have applications

Variables are only defined/assigned when a function is applied and its parameter bound to an argument.

Variable reference

How do we compute with the lambda calculus..?

Answer: via reductions, which define equivalent / transformed terms.

The most important reduction is β, which applies a function by substituting arguments
$((\lambda(f)(f(f(\lambda(x) x))))(\lambda(x) x))$

The most important reduction is β, which applies a function by substituting arguments
$((\lambda(f)(f(f(\lambda(x) x))))(\lambda(x) x))$

β
$((\lambda(x) x)((\lambda(x) x)(\lambda(x) x)))$

The most important reduction is β, which applies a function by substituting arguments

```
((\lambda (f) (f (f (\lambda (x) x)))) (\lambda (x) x))
    \beta
    ((\lambda (x) x) ((\lambda (x) x) (\lambda (x) x)))
    \beta
    ((\lambda (x) x) (\lambda (x) x))
```

The most important reduction is β, which applies a function by substituting arguments

```
((\lambda (f) (f (f (\lambda (x) x)))) (\lambda (x) x))
    \beta
    ((\lambda (x) x) ((\lambda (x) x) (\lambda (x) x)))
    \beta
    ((\lambda (x) x) (\lambda (x) x))
    \beta
    (\lambda (x) x)
```


Next lecture: carefully defining substitution!

$$
\begin{aligned}
& ((\lambda(x) x)(\lambda(x) x)) \\
& \downarrow \beta \\
& x[x \leftarrow(\lambda(x) x)]
\end{aligned}
$$

$$
((\lambda(x) x)(\lambda(x) x))
$$

$$
\begin{aligned}
& \quad{ }^{\|} \beta \\
& (\lambda(x) x)
\end{aligned}
$$

Can you beta-reduce the following term more than once...?

$$
((\lambda(x) \quad(x \quad x))(\lambda(x)(x \quad x)))
$$

$$
((\lambda(x) \quad(x \quad x)) \quad(\lambda(x) \quad(x \quad x)))
$$

β reduction may continue indefinitely (i.e., in nonterminating programs)

$$
\begin{aligned}
& ((\lambda(x) \quad(x \quad x))(\lambda(x)(x \quad x))) \\
& \beta \\
& ((\lambda(x)(x \quad x))(\lambda(x)(x \quad x))) \\
& \beta \\
& ((\lambda(x)(x \quad x))(\lambda(x)(x \quad x))) \\
& \beta \\
& (\lambda(x) x+x)(\lambda(x) x x) \\
& \beta
\end{aligned}
$$

$$
\begin{aligned}
& ((\lambda(x)(x \quad x))(\lambda(x)(x \quad x))) \\
& \downarrow \beta \\
& ((\lambda(x) \quad(x \quad x))(\lambda(x)(x \quad x)))
\end{aligned}
$$

This specific program is known as Ω (Omega)

$$
\begin{aligned}
& ((\lambda(x)(x \quad x))(\lambda(x)(x \quad x))) \\
& \beta \\
& ((\lambda(x) \quad(x \quad x))(\lambda(x)(x \quad x))) \\
& \beta \\
& (\lambda(x) x+x)(\lambda(x) x x) \\
& \beta
\end{aligned}
$$

Ω is the smallest nonterminating program!

Note how it reduces to itself in a single step!

```
((\lambda (x) (x x)) (\lambda (x) (x x)))
    \beta
((\lambda (x) (x x)) (\lambda (x) (x x)))
```

