Lambda Calculus

Introduction

CIS352 — Spring 2023
Kris Micinski

The Lambda Calculus (19230s)

® \ariables
® Function application

® [ambda abstraction

Just these three elements form a
complete computational system

Original Syntax

X Variables
AX. e Lambdas

ey €; Applications

Scheme Syntax

X Variables
A (x)e) Lambdas
ey €1) Applications

(define (expr? e)
(match e
[(? symbol? x) #t]
[Clambda (,(? symbol? x)) ,(? expr? e-body)) #t]
[(,(?7 expr? e@) ,(? expr? el)) #t]
[#f1))

Lambda Calculus vs. Turing machines

Lambda Calculus equivalent (in expressivity) to Turing

machines.

The Church-Turing Thesis states that turing machines
/ lambda calculus can encode any computable

function.

In fact, it is possible to encode (most of) any Scheme
program as a lambda calculus expression via a
Church/Boehm encoding.

Now let's look at the three lambda calculus forms in
detail...

An expression, abstracted over all possible values
for a formal parameter, in this case, x.

(4 (x) €)

Formal parameter Function body

An expression, abstracted over all possible values
for a formal parameter, in this case, x.

(4 (x) €)

Formal parameter Function body

In fact, you can read lambdas mathematically as “for all.” This
observation forms the basis for universal quantification in higher-
order logics implemented using typed lambda calculus variants!

Next we have applications

Expression in Expression in
function position argument position

Variables are only defined/assigned when a function
is applied and its parameter bound to an argument.

X

b,

Variable reference

How do we compute with the lambda calculus..”?

Answer: via reductions, which define equivalent /
transformed terms.

The most important reduction is B, which applies
a function by substituting arguments

(CA (F) (F (T (A (X) x)))) (A (X) X))

The most important reduction is B, which applies
a function by substituting arguments

(CA (F) (F (T (A (X) x)))) (A (X) X))

¢

\4

(A (x) X) (A (X) X) (A (X) X)))

The most important reduction is B, which applies
a function by substituting arguments

(CA (F) (F (T (A (X) x)))) (A (X) X))

¢

\4

(A (x) X) (A (X) X) (A (X) X)))

¢

v

((A (X) X) (A (X) X))

The most important reduction is B, which applies
a function by substituting arguments

(CA (F) (F (T (A (X) x)))) (A (X) X))

¢

\4

(A (x) X) (A (X) X) (A (X) X)))

¢

v

((A (X) X) (A (X) X))

¢

(A (X) X)

Textual substitution. This says:
replace every x in Eg with Ej.

((A (x) Ee) E1) —g Eo[x < E1]

N

redex

(reducible expression)

Next lecture: carefully defining substitution!

(A (x) X) (A (X) X))

¢

\4

X[X < (A (X) X)]

((A (X) X) (A (X) X))

¢

(A (X) X)

Can you beta-reduce the following term
more than once...?

((A (X)) (X X)) (A (X) (X X)))

(A (x) (X X)) (A (X) (X X)))

B reduction may continue
indefinitely (i.e., in non- 3

terminating programs)

(A (x) (X X)) (A (X) (X X)))
&

\4

((A (X)) (X X)) (A (X) (X X)))

¢

\4

(A (x) (X X)) (A (X) (X X)))

¢

\4

(A (X)) X xX) (A (X)) X X)

¢

(A (x) (X X)) (A (X) (X X)))

¢

(A (x) (X X)) (A (X) (X X)))
This specific program is 3

known as Q2 (Omega)

\4

((A (X)) (X X)) (A (X) (X X)))

¢

\4

(A (x) (X X)) (A (X) (X X)))

¢

\4

(A (X)) X xX) (A (X)) X X)

¢

QQ is the smallest non-

terminating program!

Note how it reduces to itselt in a single step!

((A (X)) (X X)) (A (X) (X X)))

&

\4

(A (X)) (X X)) (A (X) (X X)))

