
Interpreting
IfArith
CIS352 — Spring 2021
Kris Micinski

2

Bug in P2 public testcases (TC)

• Very sorry about that—bonus portion I didn’t assign was buggy
(caused tests to be buggy)

• No changes needed to starter code—check out p2-fix from
autograde

• P2 is blackholed, you can’t submit—but you can copy-paste your
solution to p2-fix

• Deadline extended to Oct 15 (Saturday) since it was my fault

3

Today, we’re going to start building our own languages

We’re going to do this by writing interpreters

4

To build a programming language, we need two things:

A syntax for the language (and the ability to parse it)

A semantics for the language. Typically either an
interpreter or a compiler

5

For this class, all of our programs are going to be
written as Racket datums

This means we can just write programs in our
language just by building data in Racket

We specify syntax via a predicate that uses pattern
matching

6

(define (expr? e)
 (match e
 [(? integer? n) #t]
 [`(plus ,(? expr? e0) ,(? expr? e1)) #t]
 [`(div ,(? expr? e0) ,(? expr? e1)) #t]
 [`(not ,(? expr? e-guard)) #t]
 [`(if ,(? expr? e0) ,(? expr? e1) ,(? expr? e2)) #t]
 [_ #f]))

Here is the first language we will define:

7

(define (expr? e)
 (match e
 [(? integer? n) #t]
 [`(plus ,(? expr? e0) ,(? expr? e1)) #t]
 [`(div ,(? expr? e0) ,(? expr? e1)) #t]
 [`(not ,(? expr? e-guard)) #t]
 [`(if ,(? expr? e0) ,(? expr? e1) ,(? expr? e2)) #t]
 [_ #f]))

“Any integer is a program in our language.”

8

(define (expr? e)
 (match e
 [(? integer? n) #t]
 [`(plus ,(? expr? e0) ,(? expr? e1)) #t]
 [`(div ,(? expr? e0) ,(? expr? e1)) #t]
 [`(not ,(? expr? e-guard)) #t]
 [`(if ,(? expr? e0) ,(? expr? e1) ,(? expr? e2)) #t]
 [_ #f]))

“If e0 is an expression in our language, and e1 is an
expression in our language, `(plus ,e0 ,e1) is, too.”

9

(define (expr? e)
 (match e
 [(? integer? n) #t]
 [`(plus ,(? expr? e0) ,(? expr? e1)) #t]
 [`(div ,(? expr? e0) ,(? expr? e1)) #t]
 [`(not ,(? expr? e-guard)) #t]
 [`(if ,(? expr? e0) ,(? expr? e1) ,(? expr? e2)) #t]
 [_ #f]))

Here are some example expressions:
‘(plus 1 (div 2 3))
'(if 0 (plus 1 2) (div 2 2))
'(if 0 (plus 1 (div 2 3)) (if 1 (plus 2 3) 0))

10

IMPORTANT NOTE

We are defining a new language by using Racket. But
our language is not Racket. In Racket, booleans are #t
and #f. In our language, we will use 0 to represent false
and non-0 to represent true (as in C).

11

Again, because this is confusing

When writing interpreters, always be careful to mentally
separate the language you are defining and the
language you are using to build the interpreter (Racket).

This can become confusing as the languages we build
will “look like” Racket. Try to be mindful.

12

Key idea: write an interp function that takes in
expressions as an argument, and returns Racket values

13

Key idea: write an interp function that takes in
expressions as an argument, and returns Racket values

(define value? integer?)

The “result” of programs will be a Racket integer:

14

Key idea: write an interp function that takes in
expressions as an argument, and returns Racket values

(define value? integer?)

(define/contract (evaluate e)
 (-> expr? value?)
 ‘todo)

The “result” of programs will be a Racket integer:

15

What should the following return…?
Remember, this is our own new language we are
defining, not necessarily Racket

(evaluate '(plus 1 2))
=> 3
(evaluate '(if 0 (plus 1 2) (div 2 2)))
=> ‘todo
(evaluate '(if 1 (div 4 3) (plus 1 -1)))
=> ‘todo

16

What should the following return…?
Remember, this is our own new language we are
defining, not necessarily Racket

(evaluate '(plus 1 2))
=> 3
(evaluate '(if 0 (plus 1 2) (div 2 2)))
=> 1
(evaluate '(if 1 (div 4 3) (plus 1 -1)))
=> 4/3

17

Now, let’s build evaluate ourselves

18

In this lecture, we built a metacircular interpreter

Important Definition
A metacircular interpreter is an interpreter which uses
features of a “host” language to define the semantics of
a “target” language

Which features of Racket did we use to define our
language…?

19

(define (evaluate e)
 (match e
 [(? integer? n) n]
 [`(plus ,(? expr? e0) ,(? expr? e1))
 (+ (evaluate e0) (evaluate e1))]
 …

Important Definition
A metacircular interpreter is an interpreter which uses
features of a “host” language to define the semantics of
a “target” language

Notice how we inherit the definition of + from Racket

20

John Reynolds introduced metacircular interpreters in
1978. One key idea: metacircular interpreters inherit
properties of their host language!

21

Note: our interpreter is direct-style, it is not tail recursive

(define (evaluate e)
 (match e
 [(? integer? n) n]
 [`(plus ,(? expr? e0) ,(? expr? e1))
 (+ (evaluate e0) (evaluate e1))]
 …

This means we are relying on Racket’s stack as well
We will later see how to eliminate the need for this

Natural Deduction
for IfArith
CIS352 — Fall 2022
Kris Micinski

23

In this lecture, we’ll introduce natural deduction

Natural deduction is a mathematical formalism that helps
ground the ideas in metacircular interpreters

24

Natural deduction first used in mathematical logic, to
specify proofs using inductive data

We will use natural deduction as a framework for
specifying semantics of various languages throughout the
course

25

When we specify the semantics of a language using
natural deduction, we give its semantics via a set of
inference rules

26

Rules read: if the thing on the top is true, then the thing
on the bottom is also true.

Const :
c ∈ ℚ
c ⇓ c

This rule says: “if c is an integer
(mathematically: c ∈ ℚ), then c evaluates to c.”

Note: the notation e ⇓ v is read “e evaluates to v.”

27

Some rules will have more than one antecedent (thing on
the top).

You read these: “if the first thing, and second thing, and …
are all true, then the thing on the bottom is true.”

Plus :
e0 ⇓ n0 e1 ⇓ n1 n′ = n0 + n1

(plus e0 e1) ⇓ n′

28

Plus :
e0 ⇓ n0 e1 ⇓ n1 n′ = n0 + n1

(plus e0 e1) ⇓ n′

“If e₀ ⇓ n₀, and e₁ ⇓ n₁, and n' = n₀ + n1, then I can say
(plus e₀ e₁) ⇓ n’.”

29

Const :
c ∈ ℚ
c ⇓ c

Plus :
e0 ⇓ n0 e1 ⇓ n1 n′ = n0 + n1

(plus e0 e1) ⇓ n′

Div :
e0 ⇓ n0 e1 ⇓ n1 n′ = n0/n1

(div e0 e1) ⇓ n′

The natural deduction rule for div is similar

30

Const :
c ∈ ℚ
c ⇓ c

Plus :
e0 ⇓ n0 e1 ⇓ n1 n′ = n0 + n1

(plus e0 e1) ⇓ n′

Div :
e0 ⇓ n0 e1 ⇓ n1 n′ = n0/n1

(div e0 e1) ⇓ n′

Not0 :
e ⇓ 0

(not e) ⇓ 1
Not1 :

e ⇓ n n ≠ 0
(not e) ⇓ 0

We have two rules for not

31

Const :
c ∈ ℚ
c ⇓ c

Plus :
e0 ⇓ n0 e1 ⇓ n1 n′ = n0 + n1

(plus e0 e1) ⇓ n′

Div :
e0 ⇓ n0 e1 ⇓ n1 n′ = n0/n1

(div e0 e1) ⇓ n′

Not0 :
e ⇓ 0

(not e) ⇓ 1
Not1 :

e ⇓ n n ≠ 0
(not e) ⇓ 0

Natural Deduction Rules for IfArith

IfT :
e0 ⇓ 0 e1 ⇓ n′

(if e0 e1 e2) ⇓ n′

IfF :
e0 ⇓ n n = 0 e2 ⇓ n′

(if e0 e1 e2) ⇓ n′

32

Question: Now that we have the rules, what
can we do with them?

Answer: Use them to formally prove that
some program calculates some result

33

Let’s say I want to prove that the following
program evaluates to 4:

(if (plus 1 -1) 3 4)

34

???

(if (plus 1 − 1) 3 4) ⇓ 4

What rule could go here..?

35

???

(if (plus 1 − 1) 3 4) ⇓ 4

IfT :
e0 ⇓ n n ≠ 0 e1 ⇓ n′

(if e0 e1 e2) ⇓ n′

IfF :
e0 ⇓ 0 e2 ⇓ n′

(if e0 e1 e2) ⇓ n′

36

???

(if (plus 1 − 1) 3 4) ⇓ 4

IfT :
e0 ⇓ n n ≠ 0 e1 ⇓ n′

(if e0 e1 e2) ⇓ n′

To apply a natural-deduction rule,
we must perform unification

There can be no variables in the
resulting unification!

IfF :
e0 ⇓ 0 e2 ⇓ n′

(if e0 e1 e2) ⇓ n′

37

IfF :
e0 ⇓ 0 e2 ⇓ n′

(if e0 e1 e2) ⇓ n′

We perform unification:
e₀: (plus 1 -1), e₁: 3
e₂: 4, n’: 4

(plus 1 − 1) ⇓ 0 4 ⇓ 4

(if (plus 1 − 1) 3 4) ⇓ 4

38

(plus 1 − 1) ⇓ 0 4 ⇓ 4

(if (plus 1 − 1) 3 4) ⇓ 4

Not done yet, now we have to prove
these things

39

(plus 1 − 1) ⇓ 0 4 ∈ ℚ
4 ⇓ 4

(if (plus 1 − 1) 3 4) ⇓ 4

Why can we say 4 ⇓ 4? Because of
the Const rule

40

(plus 1 − 1) ⇓ 0 4 ∈ ℚ
4 ⇓ 4

(if (plus 1 − 1) 3 4) ⇓ 4

We’re not done yet, because plus
requires an antecedent:

Plus :
e0 ⇓ n0 e1 ⇓ n1 n′ = n0 + n1

(plus e0 e1) ⇓ n′

41

1 ⇓ 1 − 1 ⇓ − 1 1 + −1 = 0

(plus 1 − 1) ⇓ 0

4 ∈ ℚ
4 ⇓ 4

(if (plus 1 − 1) 3 4) ⇓ 4

But we’re still not done, because we
need to finish these three

42

1 ∈ ℚ
1 ⇓ 1

−1 ∈ ℚ
−1 ⇓ − 1 1 + −1 = 0

(plus 1 − 1) ⇓ 0

4 ∈ ℚ
4 ⇓ 4

(if (plus 1 − 1) 3 4) ⇓ 4

Things that are simply true from
algebra require no antecedents, we
take them as “axioms.”

43

1 ∈ ℚ
1 ⇓ 1

−1 ∈ ℚ
−1 ⇓ − 1 1 + −1 = 0

(plus 1 − 1) ⇓ 0

4 ∈ ℚ
4 ⇓ 4

(if (plus 1 − 1) 3 4) ⇓ 4

This is a complete proof that the
program computes 4

44

Question: could you write this
proof..? What would happen if you
tried…?

???

(if (plus 1 − 1) 3 4 ⇓ 3)

45

: (

(if (plus 1 − 1) 3 4) ⇓ 3

IfT :
e0 ⇓ n n ≠ 0 e1 ⇓ n′

(if e0 e1 e2) ⇓ n′

IfF :
e0 ⇓ 0 e2 ⇓ n′

(if e0 e1 e2) ⇓ n′

Answer: you can’t write this proof,
because IfT will only let you evaluate
e1 when e0 is non-0!

46

???

(plus (plus 0 1) 2) ⇓ 3
???

(if 1 (div 1 1) 2) ⇓ 1

Const :
c ∈ ℚ
c ⇓ c

Plus :
e0 ⇓ n0 e1 ⇓ n1 n′ = n0 + n1

(plus e0 e1) ⇓ n′

Div :
e0 ⇓ n0 e1 ⇓ n1 n′ = n0/n1

(div e0 e1) ⇓ n′

Not0 :
e ⇓ 0

(not e) ⇓ 1
Not1 :

e ⇓ n n ≠ 0
(not e) ⇓ 0

IfT :
e0 ⇓ n n ≠ 0 e1 ⇓ n′

(if e0 e1 e2) ⇓ n′

IfF :
e0 ⇓ n n = 0 e2 ⇓ n′

(if e0 e1 e2) ⇓ n′

