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Bug in P2 public testcases (TC)

• Very sorry about that—bonus portion I didn’t assign was buggy 
(caused tests to be buggy) 

• No changes needed to starter code—check out p2-fix from 
autograde 

• P2 is blackholed, you can’t submit—but you can copy-paste your 
solution to p2-fix 

• Deadline extended to Oct 15 (Saturday) since it was my fault
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Today, we’re going to start building our own languages

We’re going to do this by writing interpreters
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To build a programming language, we need two things:

A syntax for the language (and the ability to parse it)

A semantics for the language. Typically either an 
interpreter or a compiler
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For this class, all of our programs are going to be 
written as Racket datums

This means we can just write programs in our 
language just by building data in Racket

We specify syntax via a predicate that uses pattern 
matching
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(define (expr? e)
  (match e
    [(? integer? n) #t]
    [`(plus ,(? expr? e0) ,(? expr? e1)) #t]
    [`(div ,(? expr? e0) ,(? expr? e1)) #t]
    [`(not ,(? expr? e-guard)) #t]
    [`(if ,(? expr? e0) ,(? expr? e1) ,(? expr? e2)) #t]
    [_ #f]))

Here is the first language we will define:
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(define (expr? e)
  (match e
    [(? integer? n) #t]
    [`(plus ,(? expr? e0) ,(? expr? e1)) #t]
    [`(div ,(? expr? e0) ,(? expr? e1)) #t]
    [`(not ,(? expr? e-guard)) #t]
    [`(if ,(? expr? e0) ,(? expr? e1) ,(? expr? e2)) #t]
    [_ #f]))

“Any integer is a program in our language.” 



8

(define (expr? e)
  (match e
    [(? integer? n) #t]
    [`(plus ,(? expr? e0) ,(? expr? e1)) #t]
    [`(div ,(? expr? e0) ,(? expr? e1)) #t]
    [`(not ,(? expr? e-guard)) #t]
    [`(if ,(? expr? e0) ,(? expr? e1) ,(? expr? e2)) #t]
    [_ #f]))

“If e0 is an expression in our language, and e1 is an  
expression in our language, `(plus ,e0 ,e1) is, too.”
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(define (expr? e)
  (match e
    [(? integer? n) #t]
    [`(plus ,(? expr? e0) ,(? expr? e1)) #t]
    [`(div ,(? expr? e0) ,(? expr? e1)) #t]
    [`(not ,(? expr? e-guard)) #t]
    [`(if ,(? expr? e0) ,(? expr? e1) ,(? expr? e2)) #t]
    [_ #f]))

Here are some example expressions: 
‘(plus 1 (div 2 3))
'(if 0 (plus 1 2) (div 2 2))
'(if 0 (plus 1 (div 2 3)) (if 1 (plus 2 3) 0))
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IMPORTANT NOTE

We are defining a new language by using Racket. But 
our language is not Racket. In Racket, booleans are #t 
and #f. In our language, we will use 0 to represent false 
and non-0 to represent true (as in C).
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Again, because this is confusing

When writing interpreters, always be careful to mentally 
separate the language you are defining and the 
language you are using to build the interpreter (Racket). 

This can become confusing as the languages we build 
will “look like” Racket. Try to be mindful.
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Key idea: write an interp function that takes in 
expressions as an argument, and returns Racket values
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Key idea: write an interp function that takes in 
expressions as an argument, and returns Racket values

(define value? integer?)

The “result” of programs will be a Racket integer:
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Key idea: write an interp function that takes in 
expressions as an argument, and returns Racket values

(define value? integer?)

(define/contract (evaluate e)
 (-> expr? value?)
 ‘todo)

The “result” of programs will be a Racket integer:
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What should the following return…? 
Remember, this is our own new language we are 
defining, not necessarily Racket

(evaluate '(plus 1 2))
=> 3
(evaluate '(if 0 (plus 1 2) (div 2 2)))
=> ‘todo
(evaluate '(if 1 (div 4 3) (plus 1 -1)))
=> ‘todo
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What should the following return…? 
Remember, this is our own new language we are 
defining, not necessarily Racket

(evaluate '(plus 1 2))
=> 3
(evaluate '(if 0 (plus 1 2) (div 2 2)))
=> 1
(evaluate '(if 1 (div 4 3) (plus 1 -1)))
=> 4/3
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Now, let’s build evaluate ourselves
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In this lecture, we built a metacircular interpreter

Important Definition 
A metacircular interpreter is an interpreter which uses 
features of a “host” language to define the semantics of 
a “target” language

Which features of Racket did we use to define our 
language…?
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(define (evaluate e)
  (match e
    [(? integer? n) n]
    [`(plus ,(? expr? e0) ,(? expr? e1))
     (+ (evaluate e0) (evaluate e1))]
    …

Important Definition 
A metacircular interpreter is an interpreter which uses 
features of a “host” language to define the semantics of 
a “target” language

Notice how we inherit the definition of + from Racket
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John Reynolds introduced metacircular interpreters in 
1978. One key idea: metacircular interpreters inherit 
properties of their host language!
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Note: our interpreter is direct-style, it is not tail recursive

(define (evaluate e)
  (match e
    [(? integer? n) n]
    [`(plus ,(? expr? e0) ,(? expr? e1))
     (+ (evaluate e0) (evaluate e1))]
    …

This means we are relying on Racket’s stack as well 
We will later see how to eliminate the need for this
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In this lecture, we’ll introduce natural deduction

Natural deduction is a mathematical formalism that helps 
ground the ideas in metacircular interpreters
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Natural deduction first used in mathematical logic, to 
specify proofs using inductive data 

We will use natural deduction as a framework for 
specifying semantics of various languages throughout the 
course
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When we specify the semantics of a language using 
natural deduction, we give its semantics via a set of 
inference rules



26

Rules read: if the thing on the top is true, then the thing 
on the bottom is also true.

Const :
c ∈ ℚ
c ⇓ c

This rule says: “if c is an integer 
(mathematically: c ∈ ℚ), then c evaluates to c.”

Note: the notation e ⇓ v is read “e evaluates to v.”
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Some rules will have more than one antecedent (thing on 
the top).  

You read these: “if the first thing, and second thing, and … 
are all true, then the thing on the bottom is true.”

Plus :
e0 ⇓ n0 e1 ⇓ n1 n′ = n0 + n1

(plus e0 e1) ⇓ n′ 
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Plus :
e0 ⇓ n0 e1 ⇓ n1 n′ = n0 + n1

(plus e0 e1) ⇓ n′ 

“If e₀ ⇓ n₀, and e₁ ⇓ n₁, and n' = n₀ + n1, then I can say  
(plus e₀ e₁) ⇓ n’.”
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Const :
c ∈ ℚ
c ⇓ c

Plus :
e0 ⇓ n0 e1 ⇓ n1 n′ = n0 + n1

(plus e0 e1) ⇓ n′ 

Div :
e0 ⇓ n0 e1 ⇓ n1 n′ = n0/n1

(div e0 e1) ⇓ n′ 

The natural deduction rule for div is similar 
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Const :
c ∈ ℚ
c ⇓ c

Plus :
e0 ⇓ n0 e1 ⇓ n1 n′ = n0 + n1

(plus e0 e1) ⇓ n′ 

Div :
e0 ⇓ n0 e1 ⇓ n1 n′ = n0/n1

(div e0 e1) ⇓ n′ 

Not0 :
e ⇓ 0

(not e) ⇓ 1
Not1 :

e ⇓ n n ≠ 0
(not e) ⇓ 0

We have two rules for not
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Const :
c ∈ ℚ
c ⇓ c

Plus :
e0 ⇓ n0 e1 ⇓ n1 n′ = n0 + n1

(plus e0 e1) ⇓ n′ 

Div :
e0 ⇓ n0 e1 ⇓ n1 n′ = n0/n1

(div e0 e1) ⇓ n′ 

Not0 :
e ⇓ 0

(not e) ⇓ 1
Not1 :

e ⇓ n n ≠ 0
(not e) ⇓ 0

Natural Deduction Rules for IfArith

IfT :
e0 ⇓ 0 e1 ⇓ n′ 

(if e0 e1 e2) ⇓ n′ 

IfF :
e0 ⇓ n n = 0 e2 ⇓ n′ 

(if e0 e1 e2) ⇓ n′ 
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Question: Now that we have the rules, what 
can we do with them? 

Answer: Use them to formally prove that 
some program calculates some result
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Let’s say I want to prove that the following 
program evaluates to 4: 

(if (plus 1 -1) 3 4) 
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???

(if (plus 1 − 1) 3 4) ⇓ 4

What rule could go here..?
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???

(if (plus 1 − 1) 3 4) ⇓ 4

IfT :
e0 ⇓ n n ≠ 0 e1 ⇓ n′ 

(if e0 e1 e2) ⇓ n′ 

IfF :
e0 ⇓ 0 e2 ⇓ n′ 

(if e0 e1 e2) ⇓ n′ 
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???

(if (plus 1 − 1) 3 4) ⇓ 4

IfT :
e0 ⇓ n n ≠ 0 e1 ⇓ n′ 

(if e0 e1 e2) ⇓ n′ 

To apply a natural-deduction rule, 
we must perform unification

There can be no variables in the 
resulting unification!

IfF :
e0 ⇓ 0 e2 ⇓ n′ 

(if e0 e1 e2) ⇓ n′ 
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IfF :
e0 ⇓ 0 e2 ⇓ n′ 

(if e0 e1 e2) ⇓ n′ 

We perform unification: 
e₀: (plus 1 -1), e₁: 3 
e₂: 4, n’: 4

(plus 1 − 1) ⇓ 0 4 ⇓ 4

(if (plus 1 − 1) 3 4) ⇓ 4
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(plus 1 − 1) ⇓ 0 4 ⇓ 4

(if (plus 1 − 1) 3 4) ⇓ 4

Not done yet, now we have to prove 
these things
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(plus 1 − 1) ⇓ 0 4 ∈ ℚ
4 ⇓ 4

(if (plus 1 − 1) 3 4) ⇓ 4

Why can we say 4 ⇓ 4? Because of 
the Const rule
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(plus 1 − 1) ⇓ 0 4 ∈ ℚ
4 ⇓ 4

(if (plus 1 − 1) 3 4) ⇓ 4

We’re not done yet, because plus 
requires an antecedent: 

Plus :
e0 ⇓ n0 e1 ⇓ n1 n′ = n0 + n1

(plus e0 e1) ⇓ n′ 
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1 ⇓ 1 − 1 ⇓ − 1 1 + −1 = 0

(plus 1 − 1) ⇓ 0

4 ∈ ℚ
4 ⇓ 4

(if (plus 1 − 1) 3 4) ⇓ 4

But we’re still not done, because we 
need to finish these three
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1 ∈ ℚ
1 ⇓ 1

−1 ∈ ℚ
−1 ⇓ − 1 1 + −1 = 0

(plus 1 − 1) ⇓ 0

4 ∈ ℚ
4 ⇓ 4

(if (plus 1 − 1) 3 4) ⇓ 4

Things that are simply true from 
algebra require no antecedents, we 
take them as “axioms.”



43

1 ∈ ℚ
1 ⇓ 1

−1 ∈ ℚ
−1 ⇓ − 1 1 + −1 = 0

(plus 1 − 1) ⇓ 0

4 ∈ ℚ
4 ⇓ 4

(if (plus 1 − 1) 3 4) ⇓ 4

This is a complete proof that the 
program computes 4
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Question: could you write this 
proof..? What would happen if you 
tried…?

???

(if (plus 1 − 1) 3 4 ⇓ 3)
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: (

(if (plus 1 − 1) 3 4) ⇓ 3

IfT :
e0 ⇓ n n ≠ 0 e1 ⇓ n′ 

(if e0 e1 e2) ⇓ n′ 

IfF :
e0 ⇓ 0 e2 ⇓ n′ 

(if e0 e1 e2) ⇓ n′ 

Answer: you can’t write this proof, 
because IfT will only let you evaluate 
e1 when e0 is non-0!
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???

(plus (plus 0 1) 2) ⇓ 3
???

(if 1 (div 1 1) 2) ⇓ 1

Const :
c ∈ ℚ
c ⇓ c

Plus :
e0 ⇓ n0 e1 ⇓ n1 n′ = n0 + n1

(plus e0 e1) ⇓ n′ 

Div :
e0 ⇓ n0 e1 ⇓ n1 n′ = n0/n1

(div e0 e1) ⇓ n′ 

Not0 :
e ⇓ 0

(not e) ⇓ 1
Not1 :

e ⇓ n n ≠ 0
(not e) ⇓ 0

IfT :
e0 ⇓ n n ≠ 0 e1 ⇓ n′ 

(if e0 e1 e2) ⇓ n′ 

IfF :
e0 ⇓ n n = 0 e2 ⇓ n′ 

(if e0 e1 e2) ⇓ n′ 


