Interpreting IfArith

CIS352 — Spring 2021
Kris Micinski

Bug in P2 public testcases (TC)

- Very sorry about that-bonus portion I didn't assign was buggy (caused tests to be buggy)
- No changes needed to starter code—check out p2-fix from autograde
- P2 is blackholed, you can't submit-but you can copy-paste your solution to p2-fix
- Deadline extended to Oct 15 (Saturday) since it was my fault

Today, we're going to start building our own languages

We're going to do this by writing interpreters

To build a programming language, we need two things:

A syntax for the language (and the ability to parse it)
A semantics for the language. Typically either an interpreter or a compiler

For this class, all of our programs are going to be written as Racket datums

We specify syntax via a predicate that uses pattern matching

This means we can just write programs in our language just by building data in Racket

Here is the first language we will define:

```
(define (expr? e)
    (match e
        [(? integer? n) #t]
        [`(plus ,(? expr? e0) ,(? expr? e1)) #t]
        [`(div ,(? expr? e0) ,(? expr? e1)) #t]
        [`(not ,(? expr? e-guard)) #t]
        [`(if ,(? expr? e0) ,(? expr? e1) ,(? expr? e2)) #t]
        [_ #f]))
```

```
(define (expr? e)
    (match e
        [(? integer? n) #t]
        [`(plus^,(? expr? e0) ,(? expr? e1)) #t]
        [`(div ,(? expr? e0) ,(? expr? e1)) #t]
        [`(not/,(? expr? e-guard)) #t]
        [`(if ,(? expr? e0) ,(? expr? e1) ,(? expr? e2)) #t]
        [_ #f())
```

"Any integer is a program in our language."

```
(define (expr? e)
    (match e
        [(? integer? n) #t]
        [`(plus ,(? expr? e0) ,(? expr? e1)) #t]
        [`(div (?'? expr? e0) ,(? expr? e1)) #t]
        [`(not/,(? expr? e-guard)) #t]
        [`(if),(? expr? e0) ,(? expr? e1) ,(? expr? e2)) #t]
        [_ #f/))
"If e0 is an expression in our language, and e1 is an expression in our language, '(plus ,e0 ,e1) is, too."
```


(define (expr? e)

(match e
[(? integer? n) \#t]
[’(plus ,(? expr? e0) ,(? expr? e1)) \#t]
[`(div ,(? expr? e0) ,(? expr? e1)) \#t]
['(not , (? expr? e-guard)) \#t]
[’(if ,(? expr? e0) ,(? expr? e1) ,(? expr? e2)) \#t]
[_ \#f]))
Here are some example expressions:
'(plus 1 (div 2 3))
'(if 0 (plus 1 2) (div 2 2))
'(if 0 (plus 1 (div 2 3)) (if 1 (plus 2 3) 0))

IMPORTANT NOTE

We are defining a new language by using Racket. But our language is not Racket. In Racket, booleans are \#t and \#f. In our language, we will use 0 to represent false and non-0 to represent true (as in C).

Again, because this is confusing

When writing interpreters, always be careful to mentally separate the language you are defining and the language you are using to build the interpreter (Racket).

This can become confusing as the languages we build will "look like" Racket. Try to be mindful.

Key idea: write an interp function that takes in expressions as an argument, and returns Racket values

Key idea: write an interp function that takes in expressions as an argument, and returns Racket values

The "result" of programs will be a Racket integer:
(define value? integer?)

Key idea: write an interp function that takes in expressions as an argument, and returns Racket values

The "result" of programs will be a Racket integer:
(define value? integer?)
(define/contract (evaluate e)
(-> expr? value?)
'todo)

What should the following return...?
Remember, this is our own new language we are defining, not necessarily Racket

```
(evaluate '(plus 1 2))
=> 3
(evaluate '(if 0 (plus 1 2) (div 2 2)))
=> 'todo
(evaluate '(if 1 (div 4 3) (plus 1 -1)))
=> 'todo
```

What should the following return...?
Remember, this is our own new language we are defining, not necessarily Racket

```
(evaluate '(plus 1 2))
=> 3
(evaluate '(if 0 (plus 1 2) (div 2 2)))
=> 1
(evaluate '(if 1 (div 4 3) (plus 1 -1)))
=> 4/3
```

Now, let's build evaluate ourselves

In this lecture, we built a metacircular interpreter

Important Definition

A metacircular interpreter is an interpreter which uses features of a "host" language to define the semantics of
a "target" language

Which features of Racket did we use to define our language...?

Important Definition

```
A metacircular interpreter is an interpreter which uses
features of a "host" language to define the semantics of
a "target" language
```

(define (evaluate e)
(match e
[(? integer? n) n]
['(plus ,(? expr? e0) ,(? expr? e1))
(+ (evaluate e0) (evaluate e1))]

Notice how we inherit the definition of + from Racket

John Reynolds introduced metacircular interpreters in 1978. One key idea: metacircular interpreters inherit properties of their host language!


```
    R
    Regnovas/Definctional
```

Higher-order progranming languages (i.e.
languages in which procedures or labcis

by interpreters which are themselves
by interpreters winich are themselves
witten in a oprogranraing language based

applicative lanouapes such as pure LISP)
Examples include
Examples include wiecarthy's definition
of LISP, Landin's SECD machine, the
Vienna definitjon of PL/I, Reynolas
definitions o GEDMGEM, ana recent
unpublishod work by L. forris and
c. Wadsworth. Such definitions can be
. Wasworth. Such definitions can
Ciassified according to whether ths
interpreter contains higher-orier
functions, and wiether the order of

InTRODUCTJON
An important and frequently usod
method of defining an prougranging languago
is to give an intorproter for the lanaige
which is wri.tert in a second, hoplafuliy
which is wis.tteri, in a second, hopefull
better uncerstood language. (Tie will
call thesc two
call these two languages the defined
and dofining languages, jespectively
In this paper, we will describe and
classify soveral varicticse of such
interpreters and show how they may be
iecred
interpretors, and show how they may be
derived from one another by informal but
construt
onstructive methods. Although ous
approach to "constructive classificatio
is original, the paper is basically an
attempt to review and systematize

Note: our interpreter is direct-style, it is not tail recursive

This means we are relying on Racket's stack as well We will later see how to eliminate the need for this

Natural Deduction

 for IfArithCIS352 — Fall 2022 Kris Micinski

In this lecture, we'll introduce natural deduction

Natural deduction is a mathematical formalism that helps ground the ideas in metacircular interpreters

Natural deduction first used in mathematical logic, to specify proofs using inductive data

We will use natural deduction as a framework for specifying semantics of various languages throughout the course

Introduction Rules
Elimination Rules

$$
\begin{array}{ll}
\frac{\vdash^{N} A}{} u \\
\vdots \\
\frac{\vdash^{N} B}{\vdash^{N} A \supset B} \supset \mathrm{I}^{u} & \frac{\vdash^{N} A \supset B \quad \vdash^{N} A}{\vdash^{N} B} \supset \mathrm{E} \\
\frac{\vdash^{N} A}{} u & \\
\vdots \\
\frac{\vdash^{N} p}{\vdash^{N} \neg A} \neg \mathrm{I}^{p, u} & \frac{\vdash^{N} \neg A \quad \vdash^{N} A}{\vdash^{N} C} \neg \mathrm{E} \\
\frac{\digamma^{N}[a / x] A}{N^{N}} \forall \mathrm{I}^{a} & \underline{\vdash^{N} \forall x . A} \forall \mathrm{E}
\end{array}
$$

When we specify the semantics of a language using natural deduction, we give its semantics via a set of inference rules

Rules read: if the thing on the top is true, then the thing on the bottom is also true.

This rule says: "if c is an integer
(mathematically: $c \in \mathbb{Q}$), then c evaluates to c."

$$
\text { Const }: \frac{c \in \mathbb{Q}}{c \Downarrow c}
$$

Note: the notation $e \sqrt{ } v$ is read "e evaluates to $v . "$

Some rules will have more than one antecedent (thing on the top).

You read these: "if the first thing, and second thing, and ... are all true, then the thing on the bottom is true."

$$
\text { Plus }: \frac{e_{0} \Downarrow n_{0} e_{1} \Downarrow n_{1} n^{\prime}=n_{0}+n_{1}}{\left(\text { plus } e_{0} e_{1}\right) \Downarrow n^{\prime}}
$$

"If $e_{0} V n_{0^{\prime}}$, and $e_{1} V V n_{1}$, and $n^{\prime}=n_{0}+n 1$, then I can say (plus $e_{0} e_{1}$) $ل n^{\prime}$."

Plus : $\frac{e_{0} \Downarrow n_{0} e_{1} \Downarrow n_{1} n^{\prime}=n_{0}+n_{1}}{\left(\text { plus } e_{0} e_{1}\right) \Downarrow n^{\prime}}$

$$
\begin{gathered}
\text { Const }: \frac{c \in \mathbb{Q}}{c \Downarrow c} \quad \text { Plus }: \frac{e_{0} \Downarrow n_{0} e_{1} \Downarrow n_{1} n^{\prime}=n_{0}+n_{1}}{\left(\text { plus } e_{0} e_{1}\right) \Downarrow n^{\prime}} \\
\operatorname{Div}: \frac{e_{0} \Downarrow n_{0} e_{1} \Downarrow n_{1} n^{\prime}=n_{0} / n_{1}}{\left(\operatorname{div} e_{0} e_{1}\right) \Downarrow n^{\prime}}
\end{gathered}
$$

The natural deduction rule for div is similar

Const : $\frac{c \in \mathbb{Q}}{c \Downarrow c} \quad$ Plus $: \frac{e_{0} \Downarrow n_{0} e_{1} \Downarrow n_{1} n^{\prime}=n_{0}+n_{1}}{\left(\text { plus } e_{0} e_{1}\right) \Downarrow n^{\prime}}$

$$
\operatorname{Div}: \frac{e_{0} \Downarrow n_{0} e_{1} \Downarrow n_{1} n^{\prime}=n_{0} / n_{1}}{\left(\operatorname{div} e_{0} e_{1}\right) \Downarrow n^{\prime}}
$$

$$
\operatorname{Not}_{\mathbf{0}}: \frac{e \Downarrow 0}{(\operatorname{not} e) \Downarrow 1} \quad \operatorname{Not}_{\mathbf{1}}: \frac{e \Downarrow n n \neq 0}{(\operatorname{not} e) \Downarrow 0}
$$

We have two rules for not

Natural Deduction Rules for IfArith

Const : $\frac{c \in \mathbb{Q}}{c \Downarrow c} \quad$ Plus : $\frac{e_{0} \Downarrow n_{0} e_{1} \Downarrow n_{1} n^{\prime}=n_{0}+n_{1}}{\left(\text { plus } e_{0} e_{1}\right) \Downarrow n^{\prime}}$

$$
\operatorname{Div}: \frac{e_{0} \Downarrow n_{0} e_{1} \Downarrow n_{1} n^{\prime}=n_{0} / n_{1}}{\left(\operatorname{div} e_{0} e_{1}\right) \Downarrow n^{\prime}}
$$

$\operatorname{Not}_{\mathbf{0}}: \frac{e \Downarrow 0}{(\operatorname{not} e) \Downarrow 1} \quad \operatorname{Not}_{\mathbf{1}}: \frac{e \Downarrow n n \neq 0}{(\operatorname{not} e) \Downarrow 0}$
$\mathbf{I f}_{\mathbf{T}}: \frac{e_{0} \Downarrow 0 e_{1} \Downarrow n^{\prime}}{\left(\text { if } e_{0} e_{1} e_{2}\right) \Downarrow n^{\prime}} \quad \mathbf{I f}_{\mathbf{F}}: \frac{e_{0} \Downarrow n n=0 e_{2} \Downarrow n^{\prime}}{\left(\text { if } e_{0} e_{1} e_{2}\right) \Downarrow n^{\prime}}$

Question: Now that we have the rules, what can we do with them?

Answer: Use them to formally prove that some program calculates some result

Let's say I want to prove that the following program evaluates to 4:

(if (plus 1 -1) 3 4)

What rule could go here..?

$$
\frac{? ? ?}{(\text { if }(\text { plus } 1-1) 34) \Downarrow 4}
$$

$$
\mathbf{I f}_{\mathbf{T}}: \frac{e_{0} \Downarrow n \quad n \neq 0 \quad e_{1} \Downarrow n^{\prime}}{\left(\text { if } e_{0} e_{1} e_{2}\right) \Downarrow n^{\prime}} \mathbf{I f}_{\mathbf{F}}: \frac{e_{0} \Downarrow 0 \quad e_{2} \Downarrow n^{\prime}}{\left(\text { if } e_{0} e_{1} e_{2}\right) \Downarrow n^{\prime}}
$$

???
$\overline{(\text { if (plus } 1-1) 34) \Downarrow 4}$

$$
\mathbf{I f}_{\mathbf{T}}: \frac{e_{0} \Downarrow n n \neq 0 \quad e_{1} \Downarrow n^{\prime}}{\left(\text { if } e_{0} e_{1} e_{2}\right) \Downarrow n^{\prime}} \mathbf{I f}_{\mathbf{F}}: \frac{e_{0} \Downarrow 0 e_{2} \Downarrow n^{\prime}}{\left(\text { if } e_{0} e_{1} e_{2}\right) \Downarrow n^{\prime}}
$$

???

$$
\overline{(\text { if }(\text { plus } 1-1) 34) \Downarrow 4}
$$

To apply a natural-deduction rule, we must perform unification

There can be no variables in the resulting unification!

$$
\mathbf{I f}_{\mathbf{F}}: \frac{e_{0} \Downarrow 0 \quad e_{2} \Downarrow n^{\prime}}{\left(\text { if } e_{0} e_{1} e_{2}\right) \Downarrow n^{\prime}}
$$

(plus $1-1) \Downarrow 0 \quad 4 \Downarrow 4$
(if (plus $1-1$) 34) $\Downarrow 4$
We perform unification:
e_{0} : (plus $1-1$), $e_{1}: 3$
$e_{2}: 4, n^{\prime}: 4$

Not done yet, now we have to prove these things

$$
\frac{(\text { plus } 1-1) \Downarrow 0}{(\text { if (plus } 1-1) 34) \Downarrow 4}
$$

Why can we say $4 \backslash \downarrow 4$? Because of the Const rule

$$
\begin{array}{ll}
(\text { plus } 1-1) \Downarrow 0 & \frac{4 \in \mathbb{Q}}{4 \Downarrow 4} \\
(\text { if }(\text { plus } 1-1) 34) \Downarrow
\end{array}
$$

We're not done yet, because plus requires an antecedent:

$$
\begin{aligned}
& \text { Plus : } \frac{e_{0} \Downarrow n_{0} e_{1} \Downarrow n_{1} n^{\prime}=n_{0}+n_{1}}{\text { (plus } \left.e_{0} e_{1}\right) \Downarrow n^{\prime}} \\
& \begin{array}{c}
\text { (plus } 1-1) \Downarrow 0 \quad \frac{4 \in \mathbb{Q}}{4 \Downarrow 4} \\
\hline
\end{array} \\
& \text { (if (plus } 1-1 \text {) } 34 \text {) } \Downarrow 4
\end{aligned}
$$

But we're still not done, because we need to finish these three

Things that are simply true from algebra require no antecedents, we take them as "axioms.")
$\frac{1 \in \mathbb{Q}}{1 \Downarrow 1} \frac{-1 \in \mathbb{Q}}{-1 \Downarrow-1} \frac{1+-1=0}{1+1}$ (plus $1-1$) $\Downarrow 0$
(if (plus $1-1$) 34) $\Downarrow 4$

This is a complete proof that the program computes 4

$$
\frac{\frac{\frac{1 \in Q}{\frac{-1 \in Q}{1 \Downarrow 1}} \frac{\frac{-1-1-1}{1+-1=0}}{(\text { plus } 1-1) \Downarrow 0}}{(\text { if (plus 1-1) } 34) \Downarrow 4}}{\frac{4 \in \mathbb{Q}}{4 \Downarrow 4}}
$$

Question: could you write this proof..? What would happen if you tried...?
???
(if (plus $1-1) 34 \Downarrow 3$)

$$
\begin{gathered}
\mathbf{I f}_{\mathbf{T}}: \frac{e_{0} \Downarrow n n \neq 0 e_{1} \Downarrow n^{\prime}}{\left(\text { if } e_{0} e_{1} e_{2}\right) \Downarrow n^{\prime}} \mathbf{I f}_{\mathbf{F}}: \frac{e_{0} \Downarrow 0 e_{2} \Downarrow n^{\prime}}{\left(\text { if } e_{0} e_{1} e_{2}\right) \Downarrow n^{\prime}} \\
\frac{:(}{(\text { if }(\text { plus } 1-1) 34) \Downarrow 3}
\end{gathered}
$$

Answer: you can't write this proof, because IfT will only let you evaluate e1 when e0 is non-0!

$$
\overline{(\text { plus }(\text { plus } 01) 2) \Downarrow 3}
$$

$\frac{? ? ?}{(\text { if } 1(\operatorname{div} 11) 2) \Downarrow 1}$

Const : $\frac{c \in \mathbb{Q}}{c \Downarrow c} \quad$ Plus $: \frac{e_{0} \Downarrow n_{0} e_{1} \Downarrow n_{1} n^{\prime}=n_{0}+n_{1}}{\left(\text { plus } e_{0} e_{1}\right) \Downarrow n^{\prime}}$

$$
\operatorname{Div}: \frac{e_{0} \Downarrow n_{0} e_{1} \Downarrow n_{1} n^{\prime}=n_{0} / n_{1}}{\left(\operatorname{div} e_{0} e_{1}\right) \Downarrow n^{\prime}}
$$

$$
\mathbf{N o t}_{\mathbf{0}}: \frac{e \Downarrow 0}{(\operatorname{not} e) \Downarrow 1} \quad \operatorname{Not}_{\mathbf{1}}: \frac{e \Downarrow n n \neq 0}{(\operatorname{not} e) \Downarrow 0}
$$

$$
\mathbf{I f}_{\mathbf{T}}: \frac{e_{0} \Downarrow n n \neq 0 \quad e_{1} \Downarrow n^{\prime}}{\left(\text { if } e_{0} e_{1} e_{2}\right) \Downarrow n^{\prime}} \mathbf{I f}_{\mathbf{F}}: \frac{e_{0} \Downarrow n n=0 \quad e_{2} \Downarrow n^{\prime}}{\left(\text { if } e_{0} e_{1} e_{2}\right) \Downarrow n^{\prime}}
$$

