Interpreting
IfArith

CIS352 — Spring 2021
Kris Micinski

Bug in P2 public testcases (TC)

® \ery sorry about that—bonus portion | didn’t assign was buggy
(caused tests to be buggy)

® No changes needed to starter code—check out p2-fix from
autograde

® P2 is blackholed, you can't submit—but you can copy-paste your
solution to p2-tix

® Deadline extended to Oct 15 (Saturday) since it was my fault

Today, we're going to start building our own languages

We're going to do this by writing interpreters

o build a programming language, we need two things:

A syntax for the language (and the ability to parse it)

A semantics for the language. Typically either an
interpreter or a compiler

For this class, all of our programs are going to be
written as Racket datums

We specity syntax via a predicate that uses pattern
matching

This means we can just write programs in our
language just by building data in Racket

Here is the first language we will define:

(define (expr? e)
(match e
(? 1nteger? n) #t]
“(plus ,(? expr? e@) ,(?7 expr? el)) #t]
“(div ,(7 expr? ed) ,(? expr? el)) #t]
"(not ,(? expr? e-qguard)) #t]
“(if L, (7 expr? ed) ,(? expr? el) ,(? expr? e2)) #t]
_ #t1))

(define (expr? e)
(match e
(? 1nteger? n) #t]
"(plusp,(? expr? ed) ,(?7 expr? el)) #t]
“(div [, (7?7 expr? e@) ,(? expr? el)) #t]
"(notf,(? expr? e-qguard)) #t]
“(if [, (7 expr? ed) ,(? expr? el) ,(? expr? e2)) #t]
_ #fD))

"Any integer is a program in our language.”

(define (expr? e)
(match e
(? 1nteger? n) #t]
(plus ,(? expr? ed) ,(? expr? el)) #t]
“(div J(? expr? ed) ,(? expr? el)) #t]
(not ,(? expr? e-guard)) #t]
Lf [, (7 expr? e@) ,(?7 expr? el) ,(?7 expr? e2)) #t]
_ #7]))

“If e0 is an expression in our language, and e is an

expression in our language, (plus ,e0 ,e1) is, too.”

(define (expr? e)
(match e
(? 1nteger? n) #t]
“(plus ,(? expr? ed) ,(? expr? el)) #t]
(div ,(? expr? ed) ,(?7 expr? el)) #t]
(not ,(? expr? e-guard)) #t]
T (if ,(?7 expr? ed) ,(? expr? el) ,(? expr? e2)) #t]
_ #]1))

Here are some example expressions:

‘“(plus 1 (div 2 3))
"(1f 0 (plus 1 2) (div 2 2))
"(1f @0 (plus 1 (div 2 3)) (1f 1 (plus 2 3) 0))

IMPORTANT NOTE

We are defining a new language by using Racket. But
our language is not Racket. In Racket, booleans are #t

and #f. In our language, we will use O to represent false
and non-0 to represent true (as in C).

10

Again, because this is confusing

When writing interpreters, always be careful to mentally
separate the language you are defining and the
language you are using to build the interpreter (Racket).

This can become confusing as the languages we build
will “look like” Racket. Try to be mindftul.

11

Key idea: write an interp function that takes in
expressions as an argument, and returns Racket values

12

Key idea: write an interp function that takes in
expressions as an argument, and returns Racket values

The "result” of programs will be a Racket integer:

(define value? 1integer?)

13

Key idea: write an interp function that takes in
expressions as an argument, and returns Racket values

The "result” of programs will be a Racket integer:

(define value? 1integer?)
(define/contract (evaluate e)

(-> expr? value?)
‘todo)

14

What should the tollowing return...?
Remember, this is our own new language we are
defining, not necessarily Racket

(evaluate "(plus 1 2))

=> 3

(evaluate '(1f 0 (plus 1 2) (div 2 2)))
=> ‘todo

(evaluate "(1f 1 (div 4 3) (plus 1 -1)))
=> ‘todo

15

What should the tollowing return...?
Remember, this is our own new language we are
defining, not necessarily Racket

(evaluate "(plus 1 2))

=> 3

(evaluate '(1f 0 (plus 1 2) (div 2 2)))
=> 1

(evaluate "(1f 1 (div 4 3) (plus 1 -1)))
=> 4/3

16

Now, let's build evaluate ourselves

17

In this lecture, we built a metacircular interpreter

Important Definition

A metacircular interpreter is an interpreter which uses
features of a "host” language to define the semantics of
a "target” language

Which features of Racket did we use to define our
language...?

18

Important Definition

A metacircular interpreter is an interpreter which uses
features of a "host” language to define the semantics of
a "target” language

(define (evaluate e)
(match e
[(? 1nteger? n) nj
[(plus ,(?7 expr? e@) ,(? expr? el))
(+ (evaluate e@) (evaluate el))]

Notice how we inherit the definition of + from Racket

19

John Reynolds introduced metacircular interpreters in
1978. One key idea: metacircular interpreters inherit

properties of their host language!

JLaatmmuonsl Lierpreters for Higher -Order Projramnung Languarppes
N

Y €, Rergigalz, Sytesuse Unnversity

Q‘,‘ﬁm-;ou. /Dz Fonctiam ok

Higher-order programming languages (i.e.,
languages in which procedures or labels
can os=ulr 45 values) are uwsually dofined
by interpreters which are themselves
written in a orogramming language based
on the lambda calculus (i.e., an
applicative lanouagre such as pure LISP}.
Examples include McCarthy's definition
of LISP, Landin's SECD machine, the
vVienna definition of PL/X, Reynolds'
definitions of GEDARIKEll, and recent
unpublished werk by L, Morris and

C, Wadsworth. Such definitions can be
classified according to whether the
interpreter contains higher-order
functions, and whether the order of
application (i.e., call-by=value versus
call-by-nane) in the defined language

T2L-tety

INTRODUCTJON

An important and freguently used
method of defining a programming language
is to give an interpreter for the languange
which is written in & second, hopefully
better understood language. (We will
call thesc two languages the defined
and defining lanouages, respectively.)

In this paper, we will) describe and
classify several varieties of such
interpreters, and show how they may be
derived from one another by informal but
constructive methods. Although our
approach to "constructive classification”
is original, the paper is basically an
attempt to review and systematize
previous work in the fiecld, and we have

Note: our interpreter is direct-style, it is not tail recursive

(define (evalugte e)
(match e
[(?7 1ntegkr? n) n]
["(plus ,(? expr? e®) ,(? expr? el))
(+ (evaluate e®) (evaluate el))]

This means we are relying on Racket’s stack as well
We will later see how to eliminate the need for this

21

Natural Deduction
for IfArith

CIS352 — Fall 2022
Kris Micinski

In this lecture, we'll introduce natural deduction

Natural deduction is a mathematical formalism that helps
ground the ideas in metacircular interpreters

23

Natural deduction first used in mathematical logic, to
specify proofs using inductive data

We will use natural deduction as a framework for

specifying semantics of various languages throughout the
course

Introduction Rules Elimination Rules
u
¥ A
" B ¥ A> B H A
oI OE
W ADB ¥ B
]
A
Fp A 'y
ﬁlp’u -K
=4 ¥ C
" lo/=lA F V2.4 o 24

When we specity the semantics of a language using
natural deduction, we give its semantics via a set of
inference rules

25

Rules read: if the thing on the top is true, then the thing
on the bottom is also true.

This rule says: "if c is an integer

(mathematically: ¢ € @Q), then c evaluates to c.”

Note: the notation e | v is read “e evaluates to v.”

26

Some rules will have more than one antecedent (thing on
the top).

You read these: “if the first thing, and second thing, and ...
are all true, then the thing on the bottom is true.”

eg) ng e I ng n"=ny+n

Plus :
(plus ey e)) I n’

27

“lfe ll n,ande L n,andn" =n +nT, then | can say

(plus e, e)l n".”

eg) ng e I ng n"=ny+n

Plus :
(plus ey e)) I n’

28

ceQ eg nyg e I ng n"=ny+n

. Plus :
c | c (plus ey e)) | n’
eg) ng e | ng n"=ny/n

Div : ,
(div ey e U n’

The natural deduction rule for div is similar

29

c e eg) ng e ng n"=ny+n

Const : Plus :
c | c (plus ey e)) | n’
. el ny e ng n=nyln
Div : ,
(div ey e U n’
0 0
Not, : ¢ Notlzeun ka
(note) | 1 (note) | O

We have two rules for not

30

Natural Deduction Rules for IfArith

= en ' ny ey ny n=ny+
Const:c - Plus : 0¥ M e v 0T ™

c | c (plus ¢y e)) | n’

. el ny e n n=ny/n

Div : :

(div ey e U n’
0 0

Not, : ¢ Notlze{Ln idia

(note) | 1 (not e) | O
If,, e 0 e Un IfF:eO{Ln n=0 e n

(it ey e; er) I 1’ (it ey e; er) I 1’

31

Question: Now that we have the rules, what
can we do with them?

Answer: Use them to formally prove that
some program calculates some result

32

Let's say | want to prove that the following
program evaluates to 4

(if (plus 1 -1) 3 4)

33

What rule could go here..?

277

(if (plus 1 —=1)34) | 4

34

‘eOJ\Ln n # 0 elUn’If | ep 0 e | n

If .
1 (it ey e e5) I 1’ ¥ (it ey e e5) I 1’

797
(if (plus 1 —=1)34) | 4

35

It el n nF(elUn’If el 0 e dn
P (ifeye) Y (ifeg e) U n
277

(if (plus 1 —=1)34) | 4

To apply a natural-deduction rule,
we must perform unification

There can be no variables in the
resulting unification!

36

ep 0 e | n

(|f €o €1 62) U« n'

If; :

(plus 1 —1) § 0 4 4

(if (plus 1 —=1)34) U 4

We perform unitication:
e : (plus 1-1), e:3
e:4,n:4

37

Not done yet, now we have to prove
these things

(plus1 =10 414
(if (plus 1 —=1)34) 4

38

Why can we say 4 || 4? Because of
the Const rule

4 € Q
(plus1 —1) Y0 T

(if (plus 1 —=1)34) y 4

39

We're not done yet, because plus
requires an antecedent:

eg) ng e ng n"=ny+n

Plus :
(plus ey e)) U n’

4 € Q
(plus1 —1) Y0 T

(if (plus 1 —=1)34) | 4

40

But we're still not done, because we
need to finish these three

ah

141 —14-11+-1=0 41eQ

plus1-1yo +44
(if (plus 1 —1)34) 4

41

Things that are simply true from
algebra require no antecedents, we
take them as ”axioms.”)

1 €
14

Plus1 -1 o 444
(if (plus 1 —=1)34) | 4

Q —-1€0
I —-14-1 1+-1=0 4 € Q)

42

This is a complete proof that the
program computes 4

Q 1€
I —-14-1 1+-1=0 4 € Q)

1
14

plus1 -1 o +44

(if (plus 1 —1)34) § 4

43

Question: could you write this
proof..? What would happen it you
tried...?

277
(if (plus 1 —1)3 4} 3)

44

egddn n#0 eI{Ln’If | eo 0 e | n
(it ey e; er) I 1’ (i ey e e) U1

If; :

 (
(if (plus 1 —=1)34) 43

Answer: you can’t write this proof,
because IfT will only let you evaluate
el when e0 is non-0!

45

?77? 299

(plus (plus 0 1) 2) 4 3 if1(divl1)2)y 1

c € () enlny eedny n"=n,+n
Const : Plus : — 0 | 1 b 1

c | c (plus ey e)) I n’

eog) ng e ng n'"=ny/n
(div ey e U n’

e 0 N0t°e{Ln n=+0

:(note){tl " (note) 0

Div :

Not,

eodn nz0 e dn It egn n=0 e |n
(it ey e; er) I 1’ T (ifey e e)) U 1

If; :

46

