
Folding over Lists
CIS352 — Spring 2023
Kris Micinski

2

Iterating over a list to accumulate a result is one of the
most typical programming patterns

3

Iterating over a list to accumulate a result is one of the
most typical programming patterns

(define (sum-list l)
 (match l
 ['() 0]
 [`(,hd . ,tl) (+ hd (sum-list tl))]))

4

Iterating over a list to accumulate a result is one of the
most typical programming patterns

(define (list-product l)
 (match l
 ['() 1]
 [`(,hd . ,tl) (* hd (list-product tl))]))

5

Iterating over a list to accumulate a result is one of the
most typical programming patterns

(define (filter f l)
 (match l
 ['() '()]
 [`(,hd . ,tl)
 (if (f hd)
 (cons hd (filter f tl))
 (filter f tl))]))

6

What do all these functions have in common?

(define (filter f l)
 (match l
 ['() '()]
 [`(,hd . ,tl)
 (if (f hd) (cons hd (filter f tl)) (filter f tl))]))

(define (list-product l)
 (match l
 ['() 1]
 [`(,hd . ,tl) (* hd (list-product tl))]))

(define (sum-list l)
 (match l
 ['() 0]
 [`(,hd . ,tl) (+ hd (sum-list tl))]))

7

Each matches on the list

(define (filter f l)
 (match l
 ['() '()]
 [`(,hd . ,tl)
 (if (f hd) (cons hd (filter f tl)) (filter f tl))]))

(define (list-product l)
 (match l
 ['() 1]
 [`(,hd . ,tl) (* hd (list-product tl))]))

(define (sum-list l)
 (match l
 ['() 0]
 [`(,hd . ,tl) (+ hd (sum-list tl))]))

8

Each returns an initial value

(define (filter f l)
 (match l
 ['() '()]
 [`(,hd . ,tl)
 (if (f hd) (cons hd (filter f tl)) (filter f tl))]))

(define (list-product l)
 (match l
 ['() 1]
 [`(,hd . ,tl) (* hd (list-product tl))]))

(define (sum-list l)
 (match l
 ['() 0]
 [`(,hd . ,tl) (+ hd (sum-list tl))]))

9

Each of them makes a recursive call and then combines
the result with hd

(define (filter f l)
 (match l
 ['() '()]
 [`(,hd . ,tl)
 (if (f hd) (cons hd (filter f tl)) (filter f tl))]))

(define (list-product l)
 (match l
 ['() 1]
 [`(,hd . ,tl) (* hd (list-product tl))]))

(define (sum-list l)
 (match l
 ['() 0]
 [`(,hd . ,tl) (+ hd (sum-list tl))]))

10

Let’s think about how sum-list operates over lists…

(define (sum-list l)
 (match l
 ['() 0]
 [`(,hd . ,tl) (+ hd (sum-list tl))]))

(sum-list (cons 1 (cons 2 ‘())))
 … => (+ 1 (+ 2 0))

You can think of this as replacing cons with + and ‘() with 0

11

Now let’s look at list-product

(define (list-product l)
 (match l
 ['() 1]
 [`(,hd . ,tl) (* hd (list-product tl))]))

(list-product (cons 1 (cons 2 ‘())))
 … => (* 1 (* 2 1))

You can think of this as replacing cons with * and ‘() with 1

12

(fold f i (cons 1 (cons 2 ‘())))
 … => (f 1 (f 2 i))

13

Folds abstract this common pattern:
• Iterating over list to accumulate some result
• Some default or initial value to handle empty list
• Some two-argument reducer function

• Combines first element w/ processed tail

(define (fold reducer init lst)
 (match lst
 ['() init]
 [`(,hd . ,tl)
 (reducer hd (fold reducer init tl))]))

14

Use fold to write sum-list

(define (fold reducer init lst)
 (match lst
 ['() init]
 [`(,hd . ,tl)
 (reducer hd (fold reducer init tl))]))

Exercise

15

Use fold to write list-product

(define (fold reducer init lst)
 (match lst
 ['() init]
 [`(,hd . ,tl)
 (reducer hd (fold reducer init tl))]))

Exercise

16

Use fold to write filter-list

(define (fold reducer init lst)
 (match lst
 ['() init]
 [`(,hd . ,tl)
 (reducer hd (fold reducer init tl))]))

Exercise

17

This version of fold is direct-style, meaning it will push
stack frames

(define (foldr reducer init lst)
 (match lst
 ['() init]
 [`(,hd . ,tl)
 (reducer hd (foldr reducer init tl))]))

18

This version of fold is direct-style, meaning it will push
stack frames

(define (foldr reducer init lst)
 (match lst
 ['() init]
 [`(,hd . ,tl)
 (reducer hd (fold reducer init tl))]))

Traditionally this is called a “right” fold because it bottoms
out at the end (right side) of the list, and reconstructs back
up.

* Diagram from the Haskell wiki

19

We can also write a tail-recursive version of fold by
swapping the argument order to reducer

(define (foldl reducer acc lst)
 (match lst
 ['() acc]
 [`(,hd . ,tl)
 (foldl reducer (reducer hd acc) tl)]))

This is called a left fold because it “starts” from the left
(reducer will be called on first element w/ the “zero”)

* Diagram from the Haskell wiki

20

Use foldl to write reverse

(define (foldl reducer acc lst)
 (match lst
 ['() acc]
 [`(,hd . ,tl)
 (fold reducer (reducer hd acc) tl)]))

Exercise

21

Biggest takeaways for you:

• Consider using fold when possible
• Use Racket’s foldl or foldr

• Mostly the same, but process list differently
• You need a two argument reducer function
• You need an initial value

