Textual Reduction

CIS352 — Fall 2022
Kris Micinski

How does the computer evaluate this expression?

(* (+ 2 (* 4 6))
+ 35 7))

(

A C-like language would compile the expression

int x =
(2 + 4*%6)
* (3 + 5 + 7);

x86-64 clang 13.0.0 (C++, Editor #1, Compiler #1) X
x86-64 clang 13.0.0

v | @ Compiler options...

A~ £ Output...~

0 J o U & W N B

11
12
13
14
15
16
17
18
19
20
21
22
23

24
25

main:

Y Filter...~ M Libraries = Add new...~ 4”7 Add to
@main

push rbp
mov rbp, rsp
mov dword ptr [rbp - 4], O
mov dword ptr [rbp - 8], 2
mov dword ptr [rbp - 12], 4
mov dword ptr [rbp - 16], 6
mov eax, dword ptr [rbp - 12]
imul eax, dword ptr [rbp - 16]
mov dword ptr [rbp - 20], eax
mov eax, dword ptr [rbp - 8]
add eax, dword ptr [rbp - 20]
mov dword ptr [rbp - 24], eax
mov dword ptr [rbp - 28],
mov dword ptr [rbp - 32],
mov dword ptr [rbp - 36], 7
mov eax, dword ptr [rbp - 28]
add eax, dword ptr [rbp - 32
add eax, dword ptr [rbp - 36]
mov dword ptr [rbp - 40], eax
mov eax, dword ptr [rbp - 20]
imul eax, dword ptr [rbp - 40]
mov dword ptr [rbp - 44], eaXx
mov eax, dword ptr [rbp - 44]
DOD rbn

4

Computer executes instructions on a clock

: Instruction Decode Execute :
Instruction Fetch Register Fetch Address Calc. Memory Access Write Back
I8 D EX MEM WB
Next PC
Zz Next SEQ PC Next SEQ PC
g
RS1
RS2
Register
| File
—.l
— =
E g g L | E
— = m 3 ~
o
| PC e = E - 35
A ul @ Imm E
N A | A
WB Data

High-level observation:

every computation, in any language (running on your
processor) is broken down—somehow—into sequences
of atomic steps reified as instructions by your processor

A key idea in the course is that evaluation of
programs is often broken down into a sequence of
small atomic steps

A key idea in the course is that evaluation of
programs is often broken down into a sequence of
small atomic steps

Assembly languages (from your systems course) are
a special case where the processor's execution
makes each instruction atomic

A key idea in the course is that evaluation of
programs is often broken down into a sequence of
small atomic steps

Assembly languages (from your systems course) are
a special case where the processor’s execution
makes each instruction atomic

Modern microprocessors involve lots of places
where atomicity breaks down (cache coherence,
etc..) but this is a key abstraction layer in computing

In high-level languages, computations/expressions do not
have one-to-one correspondence with the processor’s

execution.

In fact, it is impossible (in general) to look at an expression
and say how many steps the processor will take to execute an

expression

; Some number of steps

(* (+ 2 (* 4 0))
(+ 35 7))

e

10

Textual reduction is a way of defining the semantics (i.e.,
meaning) of a program as a series of progressing steps,
where each step consists of a program (represented textually),
and a program to which it is “rewritten” (textually reduced)

Textual reduction semantics may be defined formally, but in
this lecture we will be illustrating them informally

11

This subexpression is reduced to...

(+ (* 3 2) 1)

/

-> (+ 5 1)

This expression, which is a value

12

Values

We often refer to the values of a programming
language. Intuitively, a value is something that
does not require any additional computation
to manifest

(+ 3 (* (foo 5) 6)) :;: not a value
'hello :: value
15.0 :: value

13

In terms of the computation, values are places where
computation stops

(* 3 (+ 4 5))

In terms of our intuitive semantics: a builtin function
may be applied when each of its arguments is a value

14

As an aside...

L ater, we will see that this construction is inefticient: it
means we are doing at least O(n) work to (a) identify
the redex and (b) then perform a transformation to
obtain our result.

Later in the course we will see several improvements to
this strategy, e.g., context-and-redex semantics or
continuations

At each point in time, we follow a two-step process:
identity what can be reduced, and then perform the
appropriate reduction

15

Example reduction sequence

(* (* 3 1) (+ 4 5))

-> (* 3 (+ 4 5))

-> (* 3 9)

-> 27 ;; Resulting value

16

Question: in the last slide, why not do this?

(* (* 3 1) (+ 4 5))

-> (* (* 3 1) 9)

-> (* 3 9)

-> 27 ;; Resulting wvalue

Answer: we could have! But typically we additionally
constrain the reductions so that they occur in some
predictable order

In most PLs, we process arguments left-to-right, then
apply builtins when their arguments are values

17

So far, we have described three rules for reducing arithmetic

expressions in a sequence of steps:

- Any number requires no additional work and is a value

- A builtin may be applied when its arguments have been
reduced to values

- When we reach a builtin application, we should reduce its
arguments from left-to-right

18

A sequence of reductions (i.e., steps) that follow these rules
is called a reduction sequence

19

Exercise D

Write a reduction sequence for...
(+ (* 3 1) (/ 2 2))

20

Exercise D

Write a reduction sequence for...
(+ (* 3 1) (/ 2 2))

(+ (* 3 1) (/ 2 2))
-> (+ 3 (/ 2 2))
-> (+ 3 1)
-> 4 ;; this 1s a value, computation stops.

21

So far, we have only handled arithmetic. Let’s also add if and
booleans to our language. It may also be useful to add
builtin comparison operators

22

IfArith, is a language consisting of numbers, booleans, and
arithmetic expressions (plus equality testing), along with it

Number : 0 | 1 |

Bool ::= #t | #f

Value Number | Bool

EXpr Value

(+ expr expr)

(* exXpr expr)

(/ expr expr)

(= exXpr expr)

(Lf expr expr expr)

We have already covered the highlighted subset

23

This grammar is in EBNF (Extended Backus-Naur form)

Number ::= 0 | 1 |

Bool 1= #t | #£

Value = Number | Bool
EXpr = Value

(+ exXpr expr)
(* exXpr expr)
(/ expr expr)
(= exXpr expr)
(Lf expr expr expr)

24

Textual reduction for = happens similarly to + and etc...,
except it produces a boolean rather than a number

(=1 (+ 2 3))
-> (=1 5)
-> #f

(1f (= (* 1 (+ 2 3)) 5) 0 1)
-> (1f (= (* 1 5) 5) 0 1)
-> (1f (= 55) 0 1)
-> (if #£f 0 1) ;; what next?

25

Q: What happens when you mess up the types?
A: This is one way in which this lecture is inspecitic—we have
several choices.

For now, we will say that terms that are “ill typed” get stuck,
i.e., have no successor states. Later on, we will build type
theory to show that well-typed terms do not get stuck

(+ (* 1 2) (=3 4))
> (+ 2 (= 3 4))
-> (+ 2 #f) <— === : can’'t make any progress

20

| ast, to evaluate an if: first evaluate its guard, then evaluate
either the true or false branch based on the guard’s value

(1f (=1 (+ 0 1)) (* 2 3) (* 3 1))
-> (1£f (=1 1) (* 2 3) (* 3 1))

-> (1f #t (* 2 3) (* 3 1))

-> (* 2 3) ;; replace with true branch
> 6

(if (=1 (+ 1 1)) (* 2 3) (* 3 1))
> (if (=1 2) (* 2 3) (* 3 1))
> (if #f (* 2 3) (* 3 1))

-> (* 3 1) ;; false
> 6

27

(Informal) Textual Reduction for IfArith:

- Any number/bool requires no additional work and is a
value

- A builtin (including =) may be applied when its arguments
have been reduced to values and are of the right type

- When we reach a builtin application, we should reduce its
arguments from left-to-right

- To reduce if, first reduce the guard, then reduce the
appropriate branch

28

A note on state...

In the textual reduction style, we transform a whole
program to another whole program. Thus, the state of the
computation is kept in the current string representing the

program

29

Looking Forward...

This lecture was an introduction to term-rewriting-style
formalisms we will learn later on. IfArith is a tiny sub-Turing-

complete language we will see again. With the addition of

just a single construct, lambdas (i.e., functions), we will
achieve a Turing-complete language!

The textual reduction style can capture arbitrarily-expressive
language features! But it is way too slow for a real
implementation, so we use it as ground truth that is simple
to understand. Then we retine to make it fast!

30

9 A

Case Splitting and

Lists Intro

CIS352 — Spring 2021
Kris Micinski

Cond

® Cond allows multiple guards to be checkea

e (cond [guarde bodys]
[guard: body;]

[else bodyewse]l) ;; optional

® Checks each guard sequentially, evaluates first body

(define (foo x)
(cond [(= x 42) 1]
[(> x 0) 2]
[else 3]1))

32

Exercise D

The absolute value of a number x is:
® x is x is greater than O
®@ Oiftx=0
® -x if xislessthan O

Translate this definition into a function using cond

33

Exercise D

The absolute value of a number x is:
® x is x is greater than O
®@ Oiftx=0
® -x if xislessthan O

Translate this definition into a function using cond

(define (abs x)
(cond [(> x @) Xx]
[(= x @) 0]
[(< x Q) (- x)]))

34

Exercise D

Say we have the tollowing:

(cond [ge bel

lelse betee])

How can we rewrite the above to use only if?

35

Exercise D

Say we have the tollowing:

(cond [ge bel

lelse betee])

How can we rewrite the above to use only if?

(1T ge bo
(1f g1 b1

(if Qn-1 bno1 betse) w))

36

Example

(3x) @)
| ((M) (X x)ﬂ

The function cons builds a cons cell / pair

(cons 0 1)

Example

(3x) @)
| ((M) (x x)))

The function car gets the left element

(car(cons @ 1)) is O

Example

() & x))
| ((M) (x x)))

The function cdr gets the right element

(cdr(cons @0 1)) is 1

(

(A x)ﬂ

(cdr(cons @0 1)) is 1

0

The names car and cdr come from the

original implementation of LISP on the
IBM 704

| I1sts

® Racket has lists—sequences of cons cells ending w/ * ()
® The empty list (or “null") is special, * ()
® Many ways to build them

e (list 1 2 3) :: Variadic function

e ‘(1 2 3) 3 Datum representation

® There are three operations on lists
o empty?/null?
o first/car

® rest/ cdr

41

| ists continued...

® Using empty?, car, and cdr, we can write many utilities
o All definable ourselves, also in Racket by detault
® (length |) — Length of |
® (list-ret|i) — Get ith element of list (O-indexed)
® (append |0 [1) — Append |1 to the end of |10
® (reverse |) — Reverse the list

® (member | x) — Check it xisin |

42

Exercise D

Using cond, write a function that takes a list | and an
index x and returns...

® The first elementif x =0

® The second element it x =1

® The third element it x = 2

® Otherwise return ‘unknown

43

9 A

Case Splitting and

Lists Intro

CIS352 — Spring 2021
Kris Micinski

