CIS352 Course
Wrapup

May 3, 2022

Projects

Want to start by talking about project...

Projects are the core part of the course
Independent experience broadly related to the class
Why do we do the projects?

® Main goal: require you to learn debugging

® The projects become conceptually nontrivial, and even the
most experienced programmers will make mistakes

® Understand how to make hypotheses about what may be

buggy is crucial—I| would like to do a better job of teaching this
in subsequent (smaller) classes

Project Performance

® Overall quite good project performance
® About 85% of the class did P1

® Almost everyone got ~100%
® About 85% of the class did P2

® >/5% of those got >85% (many >100)
® About 75% ot the class did P3

e 2/3 of those got >80%, rest got ~40-80
® About 70% of the class did P4

® On average people did better than P3

Project Thoughts

® One was a warmup project with Racket / Autograder/ ...
® Reiterating lessons of recursion, symbols, lists
® Second is PageRank:

® Accumulating a hash—immutable maps are a key concept

® Three was a Scheme interpreter:

® Functionally implement set! via “threading” store through recursive
interpreter—this is an instance of the State monad (Haskell)

® | ast, the Church encoder

® Teaches concepts of compiler design: consume syntax as input, transform
to new syntax to be executed as lambda calculus

Project Design Aspects

® | ots of the course was just learning Racket’s mix of features
® As a design feature of the course, this has upsides and downsides

® Projects get harder and more open-ended as they progress

e Different students report different projects hardest

® | think the right order is:
® P3 (hardest, coding-wise, lots of places to make mistakes)
® P4 (easier coding, conceptually harder, trickiest to debug)
® P1 (learning Racket is hard, can be tedious, fast-paced)

® P2 (surprisingly, many find this easy once they understand folds)

http://courseteedback.syr.edu/

Some Course Concepts

Program with Expressions rather than Statements

® One significantly underrated aspect of functional programming

® \Which of the following looks better?

(define (foo x)

(1f x #t #£))
(define (foo X) X)

Why are we so tempted to write code that looks like the first?

(Potential) answer: common idiom from statement-based languages
(Python/Java/...)—use sequence of if/else/switch to set a flag to return

8

Folds are specitic kind of loop

® Folds are akin to a for loop that iterates over an ordered

sequence and accumulates a value

® Trivial extensions: iterate over a set (call set->list),
accumulate a hash / pair / set of values

Every fold corresponds to a for loop and tail-recursive function

(define (rec-reverse 1)
(define (h 1 acc)
(match 1
[() acc]
[(,hd . ,tl) (h tl (cons hd acc))]))
(h'1 '()))

10

Every fold corresponds to a for loop and tail-recursive function

(define (rec-reverse 1)
(define (h 1 acc)
(match 1
[() acc]
[(,hd . ,tl) (h tl (cons hd acc))]))
(h'1 '()))

(define (fold-reverse 1)
(foldl (lambda (x acc) (cons X acc))

()
1))

11

Every fold corresponds to a for loop and tail-recursive function

(define (rec-reverse 1)

(define (for-reverse 1) (define (h 1 acc)

(define acc '()) (match 1
(for ([1 17])

' . [' () acc]
(set! acc (cons 1 acc)))

[(,hd . ,tl) (h tl (cons hd acc))]))
(h 1 "()))

X)

73 (for-reverse '(1 2 3))

(define (fold-reverse 1)
(foldl (lambda (x acc) (cons X acc))

()
1))

12

Every fold corresponds to a for loop and tail-recursive function

(define (rec-reverse 1)

(deflne (fOr—reverse l) (define (h 1 acc)

(define acc '()) (match 1
(for ([1 1])

| . [' () acc]
(set! acc (cons 1 acc)))

[(,hd . ,tl) (h tl (cons hd acc))]))
(h 1 "()))

X)

73 (for-reverse '(1 2 3))

(define (fold-reverse 1)
(foldl (lambda (x acc) (cons X acc))

()
1))

13

Representing / Manipulating Syntax

® To define semantics / language features
® Interpreters—consume syntax and produce values
® Compilers—consume syntax and produce programs

® Subsequently run via lower-level machine, preserve semantics

14

(define (scoped-A-term? t)
(match t
[(? symbol? X) (set-member? p X)]
[(,t0 ,t1)
(and (scoped-A-term? t0 pP) (scoped-A-term? tl P))]
[(lambda (,(? symbol? xs) ...) ,e)
(scoped-A-term? e (set-union p (list->set xs)))]))

(scoped-A-term? '(lambda (xX) (X X)) (set))
(scoped-A-term? '((lambda (x) (lambda (y) (y X)))
(lambda (z X vyv) (X V)))
(set))
(scoped-A-term? '((lambda (x) (lambda (y) (zZ X)))
(lambda (z X yv) (X V)))
(set))

15

Metacircular Interpreters (P3)

® Write an interpreter for a target language in a source language reusing
features of source language

® Upside: expressive, succinct, straightforward to implement

® Downsides: (may be) slow if defining (meta) language is slow

16

Metacircular Interpreters (P3)

Write an interpreter for a target language in a source language reusing
features of source language

Upside: expressive, succinct, straightforward to implement
Downsides: (may be) slow it defining (meta) language is slow

Most dynamic languages (Pearl, Ruby, Python, ...) have relatively-tast
interpreters that use high-performance native (C++/Rust/...) data structures
but follow these same principles

Compilation has mostly focused on lower-level memory-unsafe languages
(C++) with the addition of compilation to bytecode (compile to IR; interpret
IR w/ very-efticient interpreter)

17

%o %o %o %o we we we we we we we e we

we we we we we we we we we we we e we

A language with two extra ops:
and printstk.
Assume P 1s Variable -> Value
Value ::=

(closure P e)

(stack e ...)
e 1S source expressions
e ::= X
(e e)
(lambda (x) e)
(getstk)
(

printstk e)
stk ::

18

getstk

list of expressions (stack e)

(define (eval-A+stack e p stk)
(match e

[(? symbol? x) (hash-ref p x)]

[(lambda (,x) ,e-body)

" (closure ,e ,pP)]

[(getstk) " (stack ,stk)]

[(printstk ,e+t)

(define stk-v (eval-A+stack e+ p (cons e stk)))

(displayln "Captured stack:")

(for ([expr stk-v])
(pretty-print expr))]

[(,e0 ,el)

(define v-e0 (eval-A+stack e0 p stk))

(match v-e0
[(closure (lambda (,x) ,e-body) ,p+)
(define v-a (eval-A+stack el p stk))
(eval-A+stack e-body (hash-set p+ x v-a) (cons e stk))]
[(error (format "can't apply ~a" v-e0))]1)1))

19

Debugging

We want you to form hypotheses for broken code

"When | have a piece of broken code, how can | interact with it to test a
hypothesis about what it is doing?”

Why is this hard? A: debugging difficulty / frustration is often related to the
amount of time between experiments

May have to modity code multiple times, hence multiple interactions

20

(define (bad-eval e p)
(match e

[(? number? n) n]
[(? symbol? x) (hash-ref p x)]
[(lambda (,x) ,e-body)
" (closure ,e ,pP)]
[(,e0 ,el)
(match (bad-eval e0 p)

[(closure (lambda (,x) ,e-body) ,p+)
(define v-a (bad-eval el p))
(bad-eval e-body (hash-set p+ x v-a))])]

[(+ ,e0 ,el)

(+ (bad-eval e0 p) (bad-eval el pP))]
[\(_ leo)

(- (bad-eval e0 pP))]))

21

(define (bad-eval e p)
(match e

[(? number? n) n]
[(? symbol? xX) (hash-ref p x)]
[(lambda (,x) ,e-body)
" (closure ,e ,pP)]
[(,e0 ,el)
(match (bad-eval e0 p)

[(closure (lambda (,x) ,e-body) ,pP+)
(define v-a (bad-eval el p))
(bad-eval e-body (hash-set p+ x v-a))])]

[(+ ,e0 ,el)

(+ (bad-eval e0 p) (bad-eval el pP))]
[\(— IeO)

(- (bad-eval e0 pP))]))

(bad-eval '((lambda (x) (+ x 2)) (+ 1 2)) (hash))
;7D

22

(define (bad-eval e p)
(match e

[(? number? n) n]

[(? symbol? xX) (hash-ref p x)]

[(lambda (,x) ,e-body)

“(closure ,e ,p)] L ooks good; but crucially broken.

[(,e0 ,el)

(match (bad-eval e0 p)
[(closure (lambda (,x) ,e-body) ,pP+)
(define v-a (bad-eval el p))
(bad-eval e-body (hash-set p+ x v-a))])]

[(+ ,e0 ,el)

(+ (bad-eval e0 p) (bad-eval el pP))]

[\(— IeO)

(- (bad-eval e0 pP))]))

(bad-eval '((lambda (x) (+ x 2)) (+ 1 2)) (hash))
;i

23

(define (bad-eval e p)

(match e This must fail!
[(? number? n)
[(? symbol? xX) (hash-ref p x)] But how!?

[(lambda (,x) ,e-body)
" (closure ,e ,pP)]
[~ (,e0 ,el) How could this happen?
(match (bad-eval e0 p)
[(closure (lambda (,x) ,e-body) ,p+)
(define v-a (bad-eval el pP))
(bad-eval e-body (hash-set p+ x v-a))])]
[(+ ,e0 ,el)
(+ (bad-eval e0 p) (bad-eval el pP))]
[\(_ IeO)
(- (bad-eval e0 p))1]1))

(bad-eval '((lambda (x) (+ (- x) 2)) (+ 1 2)) (hash))
; 7 hash-ref: no value found for key!

24

(define (bad-eval e D)
(match e
[(? number? n) n]
[(? symbol? X) (hash-ref p x)]

Now we look at the term and think: [(lambda (,x) ,e-body)
, (closure ,e ,P)]
when does this case happen? [>(,e0 ,el)

(match (bad-eval e0 pP)

[(closure (lambda (,x) ,e-body) ,p+)

(define v-a (bad-eval el p))

(bad-eval e-body (hash-set p+ x v-a))])]

[(+ ,e0 ,el)
(+ (bad-eval e0 p) (bad-eval el p))]
[\(_ Ieo)
— (bad-eval e0 pP))]))

Based on the tact hash-ref is in the
symbol case, it must be this
subexpression

(bad-eval '((lambda (x) (+ (= x) 2)) (+ 1 2)) (hash))

25

(define (bad-eval e)
(match e
[(? number? n) n]
[(? symbol? x) (hash-ref p x)]
Now we ask: What 1S the right thiﬂg [(lambda (,x) ,e-body)
that should happen? [Ecigsui)e /P)]
(match (bad-eval e0 p)

. e . [(closure (lambda (,x) ,e-body) ,p+)

the - branch.” (bad-eval e-body (hash-set p+ x v-a))])]
. [(+ ,e0 ,el)
(+ (bad-eval e0 p) (bad-eval el pP))]
: : . (- ,e0
To test this hypothesis we edit the [(c(iispiaj)(ln v (evaluating (- ..))")

Code... (- (bad—eval el p))]))

But why would this cause problems?

(bad-eval '((lambda (x) (+ (= x) 2)) (+ 1 2)) (hash))

26

(define (bad-eval e)
(match e
[(? number? n) n]
[(? symbol? X) (hash-ref p x)]
[(lambda (,x) ,e-body)

.) l [4 [4
Now we run the instrumented code - Ecegsui) e /P)]

with the same testcase (match (bad-eval e0 p)
[(closure (lambda (,x) ,e-body) ,p+)

(define v-a (bad-eval el pP))
(bad-eval e-body (hash-set p+ x v-a))])]
[(+ ,e0 ,el)
(+ (bad-eval e0 p) (bad-eval el pP))]
[\(_ leo)
(displayln “(evaluating (- ..))")
(- (bad-eval el pP))]))

But we never see our hew code

But how could that happen?

(bad-eval '((lambda (x) (+ (= x) 2)) (+ 1 2)) (hash))

27

(define (bad-eval e)
(match e
[(? number? n) n]
[(? symbol? X) (hash-ref p x)]

. [(lambda (,x) ,e-body)
Answer: our match statement is *(closure ,e ,p)]

broken! Function application =—— (/20 ,el)

(match (bad-eval e0 p)
eagerly matches (- x) [~ (closure (lambda (,x) ,e-body) ,p+)
(define v-a (bad-eval el pP))
(bad-eval e-body (hash-set p+ x v-a))])]
[(+ ,e0 ,el)

Thus, - is looked up via the (+ (bad-eval e0 p) (bad-eval el p))]
\(_ leo)
symbol case.. and crashes (displayln “(evaluating (- ..))”)

(- (bad-eval el pP))]))

(bad-eval '((lambda (x) (+ (= x) 2)) (+ 1 2)) (hash))

28

(define (bad-eval e D)
(match e
(? number? n) n]
' (? symbol? x) (hash-ref p x)]
~ (lambda (,x) ,e-body)

Fix: move our expression match telosure ye Q)1 ... of"/
. , [(+ ,e0 ,el)
case down, copy and pasting it (+ (bad-eval e0 p) (bad-eval el p))]

[\(_ leo)
(- (bad-eval e0 pP))]
[(,e0 ,el)
., (match (bad-eval e0 p)
= [(closure (lambda (,x) ,e-body) ,p+)
(define v-a (bad-eval el p))
(bad-eval e-body (hash-set p+ x v-a))]l)1))

(bad-eval '((lambda (x) (+ (- x) 2)) (+ 1 2)) (hash))

A
e e 1 H
r s §>(

29

Compilers (P4)

® Traditionally, the C++-style compiler-engineering workforce was small

® As |language technology evolves (Rust, WebAssembly, ...), the language

design landscape has become more granular

® Developers harness application-specitic algorithmic and hardware features

® Examples include GPGPU (General-Purpose GPU)

i ™ s N
JavaScript > Eull-
Source) —=| |gnition - T

— . l Y 8 L J

Bytecode Unoggg;zed
] — TS a Optimized RTX 3090

T T "~~~ Code
J

Interpreted Baseline Optimized 3

LLVM

® Compiler backend for C-like languages
® |f you run a Mac, this is your native build toolchain
® Supersedes GCC in design methodology, robustness, & ease of extension

e Common compiler target that abstracts around register allocation, etc...

Clang C/C++/0ObjC LLVM
G Frontend X86 Backend | * 00
=~
LLVM LLVM
Fortran -#| llvm-gcc Frontend Optimizer PowerPC Backend | PowerPC
-~
LLVM
Haskell | GHC Frontend M IR LvmIr| ARM Backend -» ARM

31

The future of Chips

e All languages ultimately execute in native instruction set of some chip
® From 90s-2020: x86 (Pentium/Core iX/... chips), x86-64 (AMD64)
® AMD chips currently offer leading core-density via manufacture at TSMC

® TSMC able to print chips at densest scale due to its use of ASML's Extreme
UltraViolet (EUV) photolithography

M1 Ultra (Apple)

Apple has designed world-class chips since their experience w/ iPhone

Built on ARM, RISC assembly, much simpler than X86-64 (TSMC)

200

Instruction decoding much cheaper

180

Modern system-on-chips (M1 Ultra) 160

—e—Mac Pro Mid 2012

integrate CPU+GPU to achieve awesome § 140 e 0
'3 —&—\lac Pro Late 2013
Speeds § 120 2013 Ivy Bridge E5-16¢
5 »—Mac Pro Late 2013
€ 100 2013 Ivy Bridge E5-16°
: : M . : @ iMac Pro 27 2017
Application-specific instructions + toolchain £ st asenwotss
. . . :E 20 —e—iMac Pro 27 2018
integration (supports emulation) g
L 60 —e—Mac Pro 2019
Xeon W 2.5GHz (1x28)
40 —e— Mac Studio 2022
(@ ; 5 nm process Apple M1 Ultra (1x20)
N -
800GB/s i A oo Tl
L. 0 5 10 15 20 25 30
architecture Number of cores
nausryeaan — 128GB 33 http://hrtapps.com/blogs/20220427/

L anguages Into the Future

® Fast, high-level abstractions
® Highly-dynamic langs (Perl) intrinsically slow, good in-between spots (Rust)
® Application-specific acceleration via GPUs/ISA/...

e Safety generally prevails once runtime overhead eftectively mitigatea

® Garbage-collected langs: once GC fast enough

® "Fancy types for memory” languages (Rust)—once community built / good
compiler error msgs for type / borrow issues, etc...

® “"Desktop OS” idea will become less dominant
® Every app compiles its OS in, runs on a hypervisor situated on cloud/local server

® Common components (libraries, runtime, GC) shared

34

Exams and Participation

® Quizzes can be stressful, but designed to be checkpoints to
motivate you to study topics on a specific timeline

® Many students did corrections, almost all got 10/10
® Overall, most students averaging B to B- on exams
® Final will have 10 questions (like Q4)—up to 8 answers

¢ Monday, May 92, LSC 105 (normal room), 5:15 to 7:15 PM

® Roughly half of students will get bump to + for participation,
other half will see no change, very few will (possibly) get a -

35

Final Logistics

® |ast call for projects is May 8, 2022 @ 11:59PM

® Consult grade calculator, may trade up to 15 points between
categories

® |n practice, | may average (i.e., let you take as many points as
usetful) the two categories

® | will be flexible on grading in practice, but when bumping students
up | will prefer those with higher project grades vs. exam grades

® | may overlook late projects if they are otherwise correct
® | expect many As, many Bs, some Cs, and (possibly) a few <C-

® Great job in the course!

36

