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Projects

Want to start by talking about project...

Projects are the core part of the course
Independent experience broadly related to the class
Why do we do the projects?

® Main goal: require you to learn debugging

® The projects become conceptually nontrivial, and even the
most experienced programmers will make mistakes

® Understand how to make hypotheses about what may be

buggy is crucial—I| would like to do a better job of teaching this
in subsequent (smaller) classes



Project Performance

® Overall quite good project performance
® About 85% of the class did P1

® Almost everyone got ~100%
® About 85% of the class did P2

® >/5% of those got >85% (many >100)
® About 75% ot the class did P3

e 2/3 of those got >80%, rest got ~40-80
® About 70% of the class did P4

® On average people did better than P3



Project Thoughts

® One was a warmup project with Racket / Autograder/ ...
® Reiterating lessons of recursion, symbols, lists
® Second is PageRank:

® Accumulating a hash—immutable maps are a key concept

® Three was a Scheme interpreter:

® Functionally implement set! via “threading” store through recursive
interpreter—this is an instance of the State monad (Haskell)

® | ast, the Church encoder

® Teaches concepts of compiler design: consume syntax as input, transform
to new syntax to be executed as lambda calculus



Project Design Aspects

® | ots of the course was just learning Racket’s mix of features
® As a design feature of the course, this has upsides and downsides

® Projects get harder and more open-ended as they progress

e Different students report different projects hardest

® | think the right order is:
® P3 (hardest, coding-wise, lots of places to make mistakes)
® P4 (easier coding, conceptually harder, trickiest to debug)
® P1 (learning Racket is hard, can be tedious, fast-paced)

® P2 (surprisingly, many find this easy once they understand folds)



http://courseteedback.syr.edu/



Some Course Concepts



Program with Expressions rather than Statements

® One significantly underrated aspect of functional programming

® \Which of the following looks better?

(define (foo x)

(1f x #t #£))
(define (foo X) X)

Why are we so tempted to write code that looks like the first?

(Potential) answer: common idiom from statement-based languages
(Python/Java/...)—use sequence of if/else/switch to set a flag to return
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Folds are specitic kind of loop

® Folds are akin to a for loop that iterates over an ordered

sequence and accumulates a value

® Trivial extensions: iterate over a set (call set->list),
accumulate a hash / pair / set of values



Every fold corresponds to a for loop and tail-recursive function

(define (rec-reverse 1)
(define (h 1 acc)
(match 1
[ () acc]
[ (,hd . ,tl) (h tl (cons hd acc))]))
(h'1 '()))
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Every fold corresponds to a for loop and tail-recursive function

(define (rec-reverse 1)
(define (h 1 acc)
(match 1
[ () acc]
[ (,hd . ,tl) (h tl (cons hd acc))]))
(h'1 '()))

(define (fold-reverse 1)
(foldl (lambda (x acc) (cons X acc))

()
1))

11



Every fold corresponds to a for loop and tail-recursive function

(define (rec-reverse 1)

(define (for-reverse 1) (define (h 1 acc)

(define acc '()) (match 1
(for ([1 17])

' . [ ' () acc]
(set! acc (cons 1 acc)))

[ (,hd . ,tl) (h tl (cons hd acc))]))
(h 1 "()))

X)

73 (for-reverse '(1 2 3))

(define (fold-reverse 1)
(foldl (lambda (x acc) (cons X acc))

()
1))
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Every fold corresponds to a for loop and tail-recursive function

(define (rec-reverse 1)

(deflne (fOr—reverse l) (define (h 1 acc)

(define acc '()) (match 1
(for ([1 1])

| . [' () acc]
(set! acc (cons 1 acc)))

[ (,hd . ,tl) (h tl (cons hd acc))]))
(h 1 "()))

X)

73 (for-reverse '(1 2 3))

(define (fold-reverse 1)
(foldl (lambda (x acc) (cons X acc))

()
1))
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Representing / Manipulating Syntax

® To define semantics / language features
® Interpreters—consume syntax and produce values
® Compilers—consume syntax and produce programs

® Subsequently run via lower-level machine, preserve semantics
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(define (scoped-A-term? t )
(match t
[ (? symbol? X) (set-member? p X)]
[ (,t0 ,t1)
(and (scoped-A-term? t0 pP) (scoped-A-term? tl P))]
[ (lambda (,(? symbol? xs) ...) ,e)
(scoped-A-term? e (set-union p (list->set xs)))]))

(scoped-A-term? '(lambda (xX) (X X)) (set))
(scoped-A-term? '((lambda (x) (lambda (y) (y X)))
(lambda (z X vyv) (X V)))
(set))
(scoped-A-term? '((lambda (x) (lambda (y) (zZ X)))
(lambda (z X yv) (X V)))
(set))
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Metacircular Interpreters (P3)

® Write an interpreter for a target language in a source language reusing
features of source language

® Upside: expressive, succinct, straightforward to implement

® Downsides: (may be) slow if defining (meta) language is slow
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Metacircular Interpreters (P3)

Write an interpreter for a target language in a source language reusing
features of source language

Upside: expressive, succinct, straightforward to implement
Downsides: (may be) slow it defining (meta) language is slow

Most dynamic languages (Pearl, Ruby, Python, ...) have relatively-tast
interpreters that use high-performance native (C++/Rust/...) data structures
but follow these same principles

Compilation has mostly focused on lower-level memory-unsafe languages
(C++) with the addition of compilation to bytecode (compile to IR; interpret
IR w/ very-efticient interpreter)
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%o %o %o %o we we we we we we we e we

we we we we we we we we we we we e we

A language with two extra ops:
and printstk.
Assume P 1s Variable -> Value
Value ::=

(closure P e)

(stack e ...)
e 1S source expressions
e ::= X
(e e)
(lambda (x) e)
(getstk)
(

printstk e)
stk ::
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getstk

list of expressions (stack e)



(define (eval-A+stack e p stk)
(match e

[ (? symbol? x) (hash-ref p x)]

[ (lambda (,x) ,e-body)

" (closure ,e ,pP)]

[ (getstk) " (stack ,stk)]

[ (printstk ,e+t)

(define stk-v (eval-A+stack e+ p (cons e stk)))

(displayln "Captured stack:")

(for ([expr stk-v])
(pretty-print expr))]

[ (,e0 ,el)

(define v-e0 (eval-A+stack e0 p stk))

(match v-e0
[ (closure (lambda (,x) ,e-body) ,p+)
(define v-a (eval-A+stack el p stk))
(eval-A+stack e-body (hash-set p+ x v-a) (cons e stk))]
[ (error (format "can't apply ~a" v-e0))]1)1))
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Debugging

We want you to form hypotheses for broken code

"When | have a piece of broken code, how can | interact with it to test a
hypothesis about what it is doing?”

Why is this hard? A: debugging difficulty / frustration is often related to the
amount of time between experiments

May have to modity code multiple times, hence multiple interactions
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(define (bad-eval e p)
(match e

[ (? number? n) n]
[ (? symbol? x) (hash-ref p x)]
[ (lambda (,x) ,e-body)
" (closure ,e ,pP)]
[ (,e0 ,el)
(match (bad-eval e0 p)

[ (closure (lambda (,x) ,e-body) ,p+)
(define v-a (bad-eval el p))
(bad-eval e-body (hash-set p+ x v-a))])]

[ (+ ,e0 ,el)

(+ (bad-eval e0 p) (bad-eval el pP))]
[\(_ leo)

(- (bad-eval e0 pP))]))
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(define (bad-eval e p)
(match e

[ (? number? n) n]
[ (? symbol? xX) (hash-ref p x)]
[ (lambda (,x) ,e-body)
" (closure ,e ,pP)]
[ (,e0 ,el)
(match (bad-eval e0 p)

[ (closure (lambda (,x) ,e-body) ,pP+)
(define v-a (bad-eval el p))
(bad-eval e-body (hash-set p+ x v-a))])]

[ (+ ,e0 ,el)

(+ (bad-eval e0 p) (bad-eval el pP))]
[\(— IeO)

(- (bad-eval e0 pP))]))

(bad-eval '((lambda (x) (+ x 2)) (+ 1 2)) (hash))
;7D
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(define (bad-eval e p)
(match e

[ (? number? n) n]

[ (? symbol? xX) (hash-ref p x)]

[ (lambda (,x) ,e-body)

“(closure ,e ,p)] L ooks good; but crucially broken.

[ (,e0 ,el)

(match (bad-eval e0 p)
[ (closure (lambda (,x) ,e-body) ,pP+)
(define v-a (bad-eval el p))
(bad-eval e-body (hash-set p+ x v-a))])]

[ (+ ,e0 ,el)

(+ (bad-eval e0 p) (bad-eval el pP))]

[\(— IeO)

(- (bad-eval e0 pP))]))

(bad-eval '((lambda (x) (+ x 2)) (+ 1 2)) (hash))
;i
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(define (bad-eval e p)

(match e This must fail!
[ (? number? n)
[ (? symbol? xX) (hash-ref p x)] But how!?

[ (lambda (,x) ,e-body)
" (closure ,e ,pP)]
[~ (,e0 ,el) How could this happen?
(match (bad-eval e0 p)
[ (closure (lambda (,x) ,e-body) ,p+)
(define v-a (bad-eval el pP))
(bad-eval e-body (hash-set p+ x v-a))])]
[ (+ ,e0 ,el)
(+ (bad-eval e0 p) (bad-eval el pP))]
[\(_ IeO)
(- (bad-eval e0 p))1]1))

(bad-eval '((lambda (x) (+ (- x) 2)) (+ 1 2)) (hash))
; 7 hash-ref: no value found for key!
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(define (bad-eval e D)
(match e
[ (? number? n) n]
[ (? symbol? X) (hash-ref p x)]

Now we look at the term and think: [ (lambda (,x) ,e-body)
, (closure ,e ,P)]
when does this case happen? [>(,e0 ,el)

(match (bad-eval e0 pP)

[ (closure (lambda (,x) ,e-body) ,p+)

(define v-a (bad-eval el p))

(bad-eval e-body (hash-set p+ x v-a))])]

[ (+ ,e0 ,el)
(+ (bad-eval e0 p) (bad-eval el p))]
[\(_ Ieo)
— (bad-eval e0 pP))]))

Based on the tact hash-ref is in the
symbol case, it must be this
subexpression

(bad-eval '((lambda (x) (+ (= x) 2)) (+ 1 2)) (hash))
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(define (bad-eval e )
(match e
[ (? number? n) n]
[ (? symbol? x) (hash-ref p x)]
Now we ask: What 1S the right thiﬂg [ (lambda (,x) ,e-body)
that should happen? [Ecigsui)e /P)]
(match (bad-eval e0 p)

. e . [ (closure (lambda (,x) ,e-body) ,p+)

the - branch.” (bad-eval e-body (hash-set p+ x v-a))])]
. [ (+ ,e0 ,el)
(+ (bad-eval e0 p) (bad-eval el pP))]
: : . (- ,e0
To test this hypothesis we edit the [(c(iispiaj)(ln v (evaluating (- ..))")

Code... (- (bad—eval el p))]))

But why would this cause problems?

(bad-eval '((lambda (x) (+ (= x) 2)) (+ 1 2)) (hash))
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(define (bad-eval e )
(match e
[ (? number? n) n]
[ (? symbol? X) (hash-ref p x)]
[ (lambda (,x) ,e-body)

. ) l [ 4 [ 4
Now we run the instrumented code - Ecegsui) e /P)]

with the same testcase (match (bad-eval e0 p)
[ (closure (lambda (,x) ,e-body) ,p+)

(define v-a (bad-eval el pP))
(bad-eval e-body (hash-set p+ x v-a))])]
[ (+ ,e0 ,el)
(+ (bad-eval e0 p) (bad-eval el pP))]
[\(_ leo)
(displayln “(evaluating (- ..))")
(- (bad-eval el pP))]))

But we never see our hew code

But how could that happen?

(bad-eval '((lambda (x) (+ (= x) 2)) (+ 1 2)) (hash))
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(define (bad-eval e )
(match e
[ (? number? n) n]
[ (? symbol? X) (hash-ref p x)]

. [ (lambda (,x) ,e-body)
Answer: our match statement is *(closure ,e ,p)]

broken! Function application =—— (/20 ,el)

(match (bad-eval e0 p)
eagerly matches (- x) [~ (closure (lambda (,x) ,e-body) ,p+)
(define v-a (bad-eval el pP))
(bad-eval e-body (hash-set p+ x v-a))])]
[ (+ ,e0 ,el)

Thus, - is looked up via the (+ (bad-eval e0 p) (bad-eval el p))]
\(_ leo)
symbol case.. and crashes (displayln “(evaluating (- ..))”)

(- (bad-eval el pP))]))

(bad-eval '((lambda (x) (+ (= x) 2)) (+ 1 2)) (hash))
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(define (bad-eval e D)
(match e
(? number? n) n]
' (? symbol? x) (hash-ref p x)]
~ (lambda (,x) ,e-body)

Fix: move our expression match telosure ye Q)1 ... of"/
. , [ (+ ,e0 ,el)
case down, copy and pasting it (+ (bad-eval e0 p) (bad-eval el p))]

[\(_ leo)
(- (bad-eval e0 pP))]
[ (,e0 ,el)
., (match (bad-eval e0 p)
= [ (closure (lambda (,x) ,e-body) ,p+)
(define v-a (bad-eval el p))
(bad-eval e-body (hash-set p+ x v-a))]l)1))

(bad-eval '((lambda (x) (+ (- x) 2)) (+ 1 2)) (hash))

A
e e 1 H
r s §>(
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Compilers (P4)

® Traditionally, the C++-style compiler-engineering workforce was small

® As |language technology evolves (Rust, WebAssembly, ...), the language

design landscape has become more granular

® Developers harness application-specitic algorithmic and hardware features

® Examples include GPGPU (General-Purpose GPU)
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LLVM

® Compiler backend for C-like languages
® |f you run a Mac, this is your native build toolchain
® Supersedes GCC in design methodology, robustness, & ease of extension

e Common compiler target that abstracts around register allocation, etc...

Clang C/C++/0ObjC LLVM
G Frontend X86 Backend | * 00
=~
LLVM LLVM
Fortran -#| llvm-gcc Frontend Optimizer PowerPC Backend | PowerPC
-~
LLVM
Haskell | GHC Frontend M IR LvmIr| ARM Backend -» ARM
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The future of Chips

e All languages ultimately execute in native instruction set of some chip
® From 90s-2020: x86 (Pentium/Core iX/... chips), x86-64 (AMD64)
® AMD chips currently offer leading core-density via manufacture at TSMC

® TSMC able to print chips at densest scale due to its use of ASML's Extreme
UltraViolet (EUV) photolithography




M1 Ultra (Apple)

Apple has designed world-class chips since their experience w/ iPhone

Built on ARM, RISC assembly, much simpler than X86-64 (TSMC)

200

Instruction decoding much cheaper
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L anguages Into the Future

® Fast, high-level abstractions
® Highly-dynamic langs (Perl) intrinsically slow, good in-between spots (Rust)
® Application-specific acceleration via GPUs/ISA/...

e Safety generally prevails once runtime overhead eftectively mitigatea

® Garbage-collected langs: once GC fast enough

® "Fancy types for memory” languages (Rust)—once community built / good
compiler error msgs for type / borrow issues, etc...

® “"Desktop OS” idea will become less dominant
® Every app compiles its OS in, runs on a hypervisor situated on cloud/local server

® Common components (libraries, runtime, GC) shared
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Exams and Participation

® Quizzes can be stressful, but designed to be checkpoints to
motivate you to study topics on a specific timeline

® Many students did corrections, almost all got 10/10
® Overall, most students averaging B to B- on exams
® Final will have 10 questions (like Q4)—up to 8 answers

¢ Monday, May 92, LSC 105 (normal room), 5:15 to 7:15 PM

® Roughly half of students will get bump to + for participation,
other half will see no change, very few will (possibly) get a -
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Final Logistics

® |ast call for projects is May 8, 2022 @ 11:59PM

® Consult grade calculator, may trade up to 15 points between
categories

® |n practice, | may average (i.e., let you take as many points as
usetful) the two categories

® | will be flexible on grading in practice, but when bumping students
up | will prefer those with higher project grades vs. exam grades

® | may overlook late projects if they are otherwise correct
® | expect many As, many Bs, some Cs, and (possibly) a few <C-

® Great job in the course!

36



