
Dynamic Dispatch,

Garbage Collection,

and Rust
CIS352 — Fall 2024

Kris Micinski

2

In this lecture, we’ll talk about three final topics, in
varying levels of detail

Dynamic Dispatch (implementing objects in C++)

Garbage Collection

Rust (borrow checker, etc…)

So far in class, I’ve focused on Racket / lambda calculus
—this time, I’ll mostly use other languages to show how
some of the ideas from the class apply

3

In Racket/lambda calculus/etc…: returning a lambda allocates a
closure. The closure captures (“closes over”) the free variables
that would be in scope:

(let ([x 5]) (lambda (y) (+ x y)))

Returns a closure of (lambda (y) (+ x y)) and the
captured environment,{x ↦ 5}

Need the environment to interpret x

Could use substitution—but that’s slow!

Closures

4

A very similar thing happens in OO languages: new allocates an
object, calling the constructor to store arguments in fields

In FP, the environment is implicitly captured via a lambda, but in
OOP, the constructor explicitly captures fields

In OOP, the primitive notion of a function is a method, which may
syntactically reference instance variables and arguments

In FP, the closure allows you to reference any free variables (the
contents of the environment stored by the closure) and arguments

Objects

5

class B

{

 virtual int f() { return 1; }

};

class A : public B

{

 virtual int f() { return 2; }

};

 

B* a = new A(); // Get a pointer to an A obj

std::cout << a->f() << std::endl; 

// 2 is printed out, because A is the runtime class

6

int add1(int x) { return x+1; }

In stored-program machines, all code sits somewhere in memory. 

 
In C/C++, you can obtain pointers to functions at run-time,

and invoke them! The pointer for add1 can be obtained with:

&add1

Function pointers

7

int add1(int x) { return x+1; }

int main()

{

 int (*f)(int) = &add1;

 // …

 int four = (*f)(3);

}

8

int sort(int* x, int len, bool (*cmp)(int,int))

{

 // … 

 // …

 if ((*cmp)(*x,*y))

 {

 swap(*x,*y); 

 // …

 }  

 // …

}

A function pointer, cmp,
passed to sort as an argument.

The function pointer, cmp,
dereferenced and invoked.

9

{

 // …

 sort(buff, length, &lessthan);

 // …

}

A pointer to function lessthan
is passed into sort.

10

template <bool (*cmp)(int,int)>

int sort(int* x, int len)

{

 // …

 if ((*cmp)(*x,*y))

 {

 swap(*x,*y);

 // …

int main()

{

 // …

 sort<&lessthan>(buff, length);

A function pointer, cmp, type int x int -> bool,
is a template parameter to sort.

Templated function sort is
invoked with a template

parameter like so: sort<…>(…)

11

class Cmp

{

 virtual bool cmp(int x, int y) = 0;

};

class LessThan : public Cmp

{

 virtual bool cmp(int x, int y)

 { return x < y; }

};

class GreaterThan : public Cmp

{

 virtual bool cmp(int x, int y)

 { return x > y; }

};

C++ dynamic dispatch: class polymorphism

12

int sort(int* x, int len, const Cmp& cmp)

{

 // …

 if (cmp.cmp(*x,*y))

 {

 swap(*x,*y);

 // …

int main()

{

 // …

 LessThan lessthan;

 sort(buff, length, lessthan);

An instance of type Cmp, cmp, has overloaded method cmp.

Pass in object lessthan
by reference to polymorphic

type Cmp supporting the
Cmp::cmp(int, int) member.

Virtual Tables (vtables)

13

Virtual Tables (vtables)

14

0xfefd0042

5

vmthd 0

vmthd 1

0

0xd0eff108

Object with virtual methods

A table of virtual methods
with a function pointer for each

vptr

data
members

vmthd 2

15

class Animal

{

 virtual const char* name() = 0;

 virtual int weight() const = 0;

 virtual void eat(Animal* prey)

 {

 if (this->weight()

 < 2 * prey->weight())

 return;

 delete prey;

 std::cout << prey->name()

 << “ was eaten!\n”;

 }

};

16

class Mouse : public Animal

{

 int grams;

 Mouse(int grams)

 : grams(grams) {}

 virtual const char* name()

 {

 return “Mouse”;

 }

 virtual int weight() const

 {

 return this->grams;

 }

};

17

class Cat : public Animal

{

 Cat() {}

 virtual const char* name()

 {

 return “Cat”;

 }

 virtual int weight() const

 {

 return 4260;

 }

};

18

class Giraffe : public Animal

{

 virtual const char* name()

 {

 return “Giraffe”;

 }

 virtual int weight() const

 {

 return 1570000;

 }

 virtual void eat(Animal* prey)

 {

 std::cout << this->name()

 << “ wont eat that.\n”;

 }

};

19

// vtable struct for Animal subclasses

struct AnimalVTable

{

 const char* (*name)(void*);

 int (*weight)(const void*);

 void (*eat)(void*,void*);

 AnimalVTable(const char* (*name)(void*),

 int (*weight)(const void*),

 void (*eat)(void*,void*))

 : name(name), weight(weight), eat(eat)

 {}

};

// Allocate a vtable for each concrete Animal

AnimalVTable mouse_vtable(&nameMouse, 
 &weightMouse,

 &eatAnimal);

20

// Class Mouse compiled to a struct

struct Mouse

{

 AnimalVTable* vptr;

 int grams;

};

// An allocator/constructor for Mouse

Mouse* newMouse(int grams)

{

 Mouse* m = (Mouse*)malloc(sizeof(Mouse));

 m->vptr = &mouse_vtable;

 m->grams = grams;

 return m;

}

21

// A name method for Mouse instances

const char* nameMouse(void* _ths)

{

 return “Mouse”;

}

// A weight method for Mouse instances

int weightMouse(const void* _ths)

{

 const Mouse* ths = (const Mouse*)_ths;

 return ths->grams;

}

22

// Looks up the vtable for an object

VTable* vtable(void* obj)

{

 return (VTable*)((void**) obj)[0];

}

{

 // To call a member function f:

 // e.g., obj->f(arg0, arg1, …);

 vtable(obj)->f(obj, arg0, arg1, …);

}

23

// Looks up the vtable for an Animal object

AnimalVTable* vtable(void* obj)

{

 return (AnimalVTable*)((void**) obj)[0];

}

// A default eat method for Animals

void eatAnimal(void* ths, void* prey)

{

 if (vtable(ths)->weight(ths)

 < 2 * vtable(prey)->weight(prey))

 return;

 delete prey; // vtable(prey)->~Animal…

 std::cout << vtable(prey)->name(prey)

 << “ was eaten!\n”;

}

Try an example:

How do you define the constructor

for Giraffe?

24

25

// Class Giraffe compiled to a struct

struct Giraffe

{

 AnimalVTable* vptr;

 // No data members

};

AnimalVTable giraffe_vtable(&nameGiraffe, 
 &weightGiraffe,

 &eatGiraffe);

// An allocator/constructor for Giraffe

Giraffe* newGiraffe()

{

 Giraffe* g = new Giraffe();

 g->vptr = giraffe_vtable;

 return g;

}

Try an example:

How do you define the virtual

member functions for Giraffe?

26

27

const char* nameGiraffe(void* _ths)

{

 return “Giraffe”;

}

int weightGiraffe(const void* _ths)

{

 return 1570000;

}

void eatGiraffe(void* _ths)

{

 Giraffe* ths = (Giraffe*)_ths;

 std::cout << vtable(ths)->name(ths)

 << “ wont eat that.\n”;

}

28

In C/C++, all memory is manually managed. This is a real
problem, because the reality is that—even for good programmers
—it is very tricky to ensure that memory does not:

Get freed twice (double free)

Get leaked (reference falls out of scope without free)

Get corrupted (pointers go out of bounds, SIGSEGV)

In practice, each of the above can / do lead to potentially-serious
security vulnerabilities in systems of sufficient complexity.

Manual Memory Management (C/C++/…)

29

In contrast to manual memory management, Racket/Java/JS/…
use automatic memory management (via garbage collection)

No explicit memory allocation, no explicit pointers even (no
pointer arithmetic!), only references

The garbage collector (GC) runs occasionally, in the background

This allows temporary waste (unreachable/dead objects) until a
GC pause (“stop the world”), at which point we throw away
everything which we know must be trash.

GC is very good/fast now, and a hallmark of modern languages!

Java, C#, JS, Python, many other languages you probably use

Garbage Collection

30

The most basic kind of collector is a mark/sweep collector

Occasionally, the interpreter is paused

Mark everything as dead

Start with a “root set,” which comprises all definitely reachable /
alive data (typically pointers on the stack, registers, globals, etc…)

Everything in the root set becomes alive

For every data structure, inspect its pointers—mark all of the
pointers as reachable / alive

Repeat this process until you’ve found everything reachable

Recall this is the transitive closure algorithm from project 2

Mark/Sweep Collectors

31

Stop-the-world nature

Undesirable in a real-time setting (safety-critical software, etc…)

In practice, mark/sweep garbage collection is very slow—it
examines the whole heap at every GC pause

Overall system throughput goes down, expensive, bad for
interactive apps

Fragmentation

Can ameliorate this via a copying/compacting collector

Challenging to make concurrent / parallel

Lots of cache eviction

Etc…

Issues with Mark/Sweep

32

Mark/sweep is popular, but modern GCs use a mix of insights

One insight is that—if an object has been around a while (multiple
GC cycles)—it will likely remain around a while

Generational GC partitions objects into generations based on
when they are allocated:

Allocate objects into a minor heap which is GCd frequently

Once they have been alive a while, move them into major heap

Minor GC only needs to look at the most-recently-allocated
objects (relatively small compared to the major heap often)

Run major GC cycle once in a while

Always possible to delay GC, you may just waste memory

Lower latency, better throughput, now in Java, OCaml, …

Generational GC

33

On multi-core machines, “stop the world” collectors really kill
throughput (Amdahl’s law); in a parallel setting, synchronization
almost always translates into a throughput hit

Many implementations now use concurrent GC:

Incremental marking

Break mark/sweep tasks into small chunks

E.g., V8 (JavaScript for Chrome, Firefox) incremental GC:

Stop-the-world for the minor heap, concurrent techniques for the
major heap. Make minor heap collection very fast (even if
sequential); Major heap collected concurrently, higher latency
but better overall throughput

Concurrent GC, etc..

34

If you program in a managed language (C#, JavaScript, Java, …)
you’ll have some kind of GC, and the dynamics of the GC may
matter, especially in situations with high data loads and lots of
concurrent actions occurring

If you use these languages in an enterprise setting, may want to
read more about the specific GC your runtime engine uses

If you use a native language (Rust, C++, C, …) then you need to
manage memory yourself

Modern C++ / Rust provides some features which provide quasi-
automatic memory management, e.g., auto pointers

Also, may want to use custom allocators, e.g., slab allocator:

Big array of chunks of data of a specific size, very fast

E.g., Chez Scheme uses a slab allocator for cons cells

Custom-Purpose Allocators

35

Garbage collection is fairly heavyweight—requires a runtime
system (typically seen in “managed” languages)

Reference counting is even simpler:

Every heap-allocated object gets an associated reference count

Every time the pointer is copied, the reference count is bumped

When pointer goes out of scope, reference count decremented

When reference count goes to zero, free the associated object

Reference Counting

36

{

 Foo *x = new Foo();

 // …

 {

 Foo *y = x;

 // …

 } // y goes out of scope

} // x goes out of scope

1 Foo’s fields, etc…

x is initialized, object is allocated on heap, constructor called
(initializes fields, etc…), reference count set to 1

37

{

 Foo *x = new Foo();

 // …

 {

 Foo *y = x;

 // …

 } // y goes out of scope

} // x goes out of scope

2 Foo’s fields, etc…

Pointer to x copied into y, underlying object’s reference count
bumped to 2

38

{

 Foo *x = new Foo();

 // …

 {

 Foo *y = x;

 // …

 } // y goes out of scope

} // x goes out of scope

1 Foo’s fields, etc…

y goes out of scope, pointer is now unreachable,
decrement count back to 1

39

{

 Foo *x = new Foo();

 // …

 {

 Foo *y = x;

 // …

 } // y goes out of scope

} // x goes out of scope

0 Foo’s fields, etc…

Finally, x goes out of scope: reference count goes down to
0 which triggers destruction and deallocation (freeing)

40

Reference counting offers many of the benefits of automatic
memory management without the need for a dedicated (stop the
world) garbage collector or runtime system

Runtime systems may be too expensive (memory / time-intensive)
in power-constrained settings

Implementations in many native languages

C++’s std::auto_ptr, Rusts’s Rc<…>

41

Relatively new (2015) systems-focused programming language

Replaces (mostly) C, C++, etc…

No runtime system, low-level access to memory layout (mostly)

Memory safe by design

Unlike C/C++, no concern over massive memory bugs (segfaults)

Type system takes inspiration from Haskell/OCaml, etc…

Includes a borrowing system to ensure that  
memory access invariants are maintained

Values are immutable by default, defined with let

Can make values mutable by using let mut

Rust

42

// Example 1: Ownership and Borrowing

fn main() {

 let s = String::from("hello");

 let len = calculate_length(&s);

 println!("The length of '{}' is {}.", s, len);

}

fn calculate_length(s: &String) -> usize {

 s.len()

}

calculate_length borrows a reference to a String

This avoids copying, which is (in general) costly

println! is a macro, which generates code at compile-time. Rust has a
powerful macro system, similar to Racket’s

43

// Example 2: Pattern Matching with Enums

enum Coin {

 Penny,

 Nickel,

 Dime,

 Quarter,

}

fn value_in_cents(coin: Coin) -> u8 {

 match coin {

 Coin::Penny => 1,

 Coin::Nickel => 5,

 Coin::Dime => 10,

 Coin::Quarter => 25,

 }

}

fn main() {

 let coin = Coin::Quarter;

 println!("The value of the coin is {} cents.", value_in_cents(coin));

}

Rust has pattern matching, enums are enumerated types
given by a specific list of constructors

44

// Example 3: Error Handling with Result

use std::fs::File;

use std::io::Read;

fn read_file_content(filename: &str) -> Result<String, std::io::Error> {

 let mut file = File::open(filename)?;

 let mut content = String::new();

 file.read_to_string(&mut content)?;

 Ok(content)

}

fn main() {

 match read_file_content("example.txt") {

 Ok(content) => println!("File content:\n{}", content),

 Err(e) => println!("Error reading file: {}", e),

 }

}

Here we use Result to signal that the return type is
either a string or an error. The ? says roughly “if this

operation fails, return an error”

If we get to the end, we return Ok(…), which coerces
the string into a Result<…> type

45

// Example 4: Iterators and Closures

fn main() {

 let numbers = vec![1, 2, 3, 4, 5];

 let doubled: Vec<i32> = numbers.iter().map(|x| x * 2).collect();

 println!("Original: {:?}, Doubled: {:?}", numbers, doubled);

 let sum: i32 = numbers.iter().sum();

 println!("Sum of numbers: {}", sum);

}

Just like Racket, Rust has closures (|x| … is a lambda) which
work with iterators

vec! is a macro which builds an (immutable) vector

46

// Example 5: Structs and Traits

struct Rectangle {

 width: u32,

 height: u32,

}

impl Rectangle {

 fn area(&self) -> u32 {

 self.width * self.height

 }

}

fn main() {

 let rect = Rectangle { width: 10, height: 20 };

 println!("The area of the rectangle is {} square units.", rect.area());

}

Rust has structs, which are objects with fields and methods

The impl block defines methods callable on Rectangles

47

use std::collections::HashMap;

#[derive(Debug, Clone)]

enum Expr {

 Number(i64),

 Add(Box<Expr>, Box<Expr>),

 Var(String),

 Lambda(String, Box<Expr>),

 App(Box<Expr>, Box<Expr>),

}

#[derive(Debug, Clone)]

enum Value {

 Number(i64),

 Closure(String, Box<Expr>, Environment),

}

type Environment = HashMap<String, Value>;

Now let’s walk through an extended
example: translating exercise 3 into Rust

We use a Box<…>, which is a smart
pointer (with ownership) to an Expr

Environments use HashMap<String,Value>

48

fn interp(expr: Expr, env: &Environment) -> Value {

 println!("At expression: {:?}, env: {:?}", expr, env);

 match expr {

 Expr::Number(n) => Value::Number(n),

 Expr::Add(e0, e1) => {

 if let Value::Number(v0) = interp(*e0, env) {

 if let Value::Number(v1) = interp(*e1, env) {

 Value::Number(v0 + v1)

 } else {

 panic!("Expected a number in addition");

 }

 } else {

 panic!("Expected a number in addition");

 }

 }

 Expr::Var(x) => env.get(&x).cloned().unwrap_or_else(|| {

 panic!("Unknown variable: {}", x);

 }),

 Expr::Lambda(param, body) => Value::Closure(param, body, env.clone()),

 Expr::App(e0, e1) => {

 let v0 = interp(*e0, env);

 let v1 = interp(*e1, env);

 match v0 {

 Value::Closure(param, body, mut closure_env) => {

 closure_env.insert(param, v1);

 interp(*body, &closure_env)

 }

 _ => panic!("Tried to apply {:?}, but it is not a closure", v0),

 } } } }

We use *e0/e1 to get the
box’s underlying value

49

Objects and closures offer similar mechanisms for bundling code +
data together, objects with fields, closures w/ captured variables

Managed languages typically employ automatic memory
management in the form of garbage collection

GC runs in the background, cleans up unreachable memory

Rust is a new systems-focused language

Not managed, but still memory safe

Type system, borrow checker, designed to ensure memory access
is safe without necessitating a runtime system (GC, etc…)

Modern replacement for C/C++, which are often riddled by tons of
tricky memory errors that lead to vulnerable / hard-to-debug code

Summary

