Dynamic Dispatch,
Garbage Collection,

and Rust

CIS352 — Fall 2024
Kris Micinski

> In this lecture, we’ll talk about three final topics, In
varying levels of detall

> Dynamic Dispatch (implementing objects in C++)

> Garbage Collection

- Rust (borrow checker, etc...)

> So far in class, I’'ve focused on Racket / lambda calculus
—this time, I'll mostly use other languages to show how
some of the ideas from the class apply

Closures

~ In Racket/lambda calculus/etc...: returning a lambda allocates a
closure. The closure captures (“closes over”) the free variables
that would be Iin scope:
»(let ([x 5]) (lambda (y) (+ x y)))
> Returns a closure of (lambda (y) (+ x y)) andthe
captured environment,{x » 5}
- Need the environment to interpret x
- Could use substitution—but that’s slow!

Objects

> A very similar thing happens in OO languages: new allocates an
object, calling the constructor to store arguments in fields
> In FP, the environment is implicitly captured via a lambda, but In

OOP, the constructor explicitly captures fields

> In OOP, the primitive notion of a function is a method, which may
syntactically reference instance variables and arguments

- In FP, the closure allows you to reference any free variables (the
contents of the environment stored by the closure) and arguments

class B

{

virtual int f() { return 1; }
'
class A : public B
{

virtual int f() { return 2; }
'

B* a = new A(); // Geta pointer to an A obj
std: :cout << a->f() << std::endl;

/1 2 is printed out, because A is the runtime class

Function pointers

int addl(int x) { return x+1; }

In stored-program machines, all code sits somewhere in memory.

In C/C++, you can obtain pointers to functions at run-time,
and invoke them! The pointer for add1 can be obtained with:

&addl

int addl(int x) { return x+1; }

int main()

{
int (*f)(i1int) = &addl;
/] ..

int four = (*f)(3);

A function pointer, cmp,
passed to sOrt as an argument.

int sort(int* x, int len, bool (*cmp)(int,int))

{

/] ..
/] ..
1T ((*cmp) (*X, *y))
swap (*x,*y);
/] ..
; The function pointer, Cmp,
dereferenced and invoked.
/] ..

/] ..
sort(buff, length, &lessthan);

/] ..

A pointer to function lessthan
Is passed into sort.

. A function pointer, cmp, type int x int -> bool,
Is a template parameter to sort.

template <bool (*cmp) (int,int)>
int sort(int* x, 1nt len)
{
/] ..
1T ((*emp) (*x,*y))
{
/] ..

Templated function sort is
iInvoked with a template
parameter like so: sort<..>(...)
int main()

f

sort<&lessthan>(buff, length);

10

C++ dynamic dispatch: class polymorphism

class Cmp

{ virtual bool cmp(int x, int y) = 0;
ziass LessThan : public Cmp

{ virtual bool cmp(int x, 1nt y)

. { return x < vy; }

class GreaterThan : public Cmp

f

virtual bool cmp(int x, 1nt y)
{ return x > vy, }

'

171

An instance of type Cmp, cmp, has overloaded method cmp.

int sort(int* x, int len, const Cmp& cmp)

{

/] ..
1T (cmp.cmp(*Xx, *y))
{
swap(*x,*y) ;
/] ..
Pass In object lessthan
by reference to polymorphic
: : type Cmp supporting the
} nt main() Cmp::cmp(int, int) member.

/] ..
LessThan lessthan; /
sort(buff, length, lessthan);

12

Virtual Tables (vtables)

13

Virtual Tables (vtables)

A table of virtual methods
with a function pointer for each

Object with virtual methods

—

vptr

vmthd 0O

vmthd 1
vmthd 2

Oxfefd0042

data
members

OxdOeff108

14

class Animal

{
virtual const char* name/()
virtual 1nt weight() const
virtual void eat(Animal* prey

!

O;
o,
)

1T (this->weight ()
< 2 * prey->weight())
return;
delete prey,;
std::cout << prey->name()
<< * was eaten!\n”;

10

class Mouse : public Animal

!

int grams;

Mouse(int grams)
. grams(grams) {}

virtual const char* name/()

!
;

return “Mouse”:

virtual 1int weight() const

!
J

return this->grams;

'

16

class Cat : public Animal

{
Cat() {}

virtual const char* name/()

!
;

return “Cat”;

virtual 1int weight() const

!
J

return 4260;
'

17

class Giraffe : public Animal

! virtual const char* name()
! return “Giraffe”;
iirtual int weight() const
; return 1570000;

virtual void eat(Animal* prey)

!

std: :cout << this->name ()
<< “ wont eat that.\n”;

18

// vtable struct for Animal subclasses
struct AnimalVTable

{
const char* (*name) (void*) ;
int (*weight) (const void*);
void (*eat) (void*,void*) ;
AnimalVTable(const char* (*name) (void*),
int (*weight) (const void*),
void (*eat) (void*,void*))
. name(name), weight(weight), eat(eat)
{}
!

// Allocate a vtable for each concrete Animal

AnimalVTable mouse vtable(&nameMouse,
&weightMouse,
&eatAnimal) ;

19

// Class Mouse compiled to a struct
struct Mouse

{
AnimalVTable* vptr;

int grams;

'

// An allocator/constructor for Mouse
Mouse* newMouse(int grams)

{

Mouse* m = (Mouse*)malloc(sizeof (Mouse)) ;
m->vptr = &mouse vtable;

m->grams = grams;

return m;

20

// A name method for Mouse 1nstances
const char* nameMouse(void* ths)

!
J

return “Mouse”:

// A weight method for Mouse instances
int weightMouse(const void* ths)

{

const Mouse* ths = (const Mouse*) ths;
return ths->grams;

2

// Looks up the vtable for an object
VTable* vtable(void* obj)

{
;

return (VTable*) ((void**) obj) [0];

// To call a member function fT:
// e.g., obj->f(argd, argl, ..);

vtable(obj)->f(obj, argb, argl, ..);

22

// Looks up the vtable for an Animal object
AnimalVTable* vtable(void* obj)

!

J

// A default eat method for Animals
void eatAnimal(void* ths, void* prey)

!

return (AnimalVTable*) ((void**) obj)[0];

1T (vtable(ths)->weight(ths)
< 2 * vtable(prey)->weight(prey))
return;
delete prey; // vtable(prey)->~Animal..
std::cout << vtable(prey)->name(prey)
<< " was eaten!\n”;

23

Try an example:

How do you define the constructor
for Giraffe”?

24

// Class Giraffe compiled to a struct
struct Giraffe
{

AnimalVTable* vptr;

// No data members

'

AnimalVTable giraffe vtable(&nameGiraffe,
&weightGiraffe,
&eatGiraffe) ;

// An allocator/constructor for Giraffe
Giraffe* newGiraffe()
{

Giraffe* g = new Giraffe();

g->vptr = giraffe vtable;

return g;

20

Try an example:
How do you define the virtual
member functions for Giraffe”?

20

const char* nameGiraffe(void* ths)

{
;

int weightGiraftffe(const void* ths)

!
;

void eatGiraffe(void* ths)

!

return “Giraffe”;

return 1570000;

Giraffe* ths = (Giraffe*) ths;
std: :cout << vtable(ths)->name(ths)
<< “ wont eat that.\n”;

2/

Manual Memory Management (C/C++/...)

> In C/C++, all memory is manually managed. This is a real
problem, because the reality is that—even for good programmers
—It Is very tricky to ensure that memory does not:
- Get freed twice (double free)
- Get leaked (reference falls out of scope without free)
- Get corrupted (pointers go out of bounds, SIGSEGV)

In practice, each of the above can / do lead to potentially-serious
security vulnerabillities in systems of sufficient complexity.

28

Garbage Collection

- In contrast to manual memory management, Racket/Java/JS/...

use automatic memory management (via garbage collection)

-~ No explicit memory allocation, no explicit pointers even (no
pointer arithmetic!), only references

> The garbage collector (GC) runs occasionally, in the background

> This allows temporary waste (unreachable/dead objects) until a

GC pause (“stop the world”), at which point we throw away
everything which we know must be trash.

> GC is very good/fast now, and a hallmark of modern languages!
> Java, C#, JS, Python, many other languages you probably use

29

Mark/Sweep Collectors

- The most basic kind of collector is a mark/sweep collector

> Occasionally, the interpreter is paused

- Mark everything as dead

> Start with a “root set,” which comprises all definitely reachable /
alive data (typically pointers on the stack, registers, globals, etc...)
- Everything in the root set becomes alive

- For every data structure, inspect its pointers—mark all of the
pointers as reachable / alive

- Repeat this process until you’ve found everything reachable

> Recall this is the transitive closure algorithm from project 2

30

Issues with Mark/Sweep

- Stop-the-world nature
> Undesirable in a real-time setting (safety-critical software, etc...)
- In practice, mark/sweep garbage collection is very slow—it
examines the whole heap at every GC pause
- Overall system throughput goes down, expensive, bad for
Interactive apps
> Fragmentation
> Can ameliorate this via a copying/compacting collector
> Challenging to make concurrent / parallel
- Lots of cache eviction
- Ete...

31

Generational GC

- Mark/sweep is popular, but modern GCs use a mix of insights
> One insight is that—if an object has been around a while (multiple
GC cycles)—it will likely remain around a while
- Generational GC partitions objects into generations based on
when they are allocated:
- Allocate objects into a minor heap which is GCd frequently
> Once they have been alive a while, move them into major heap
> Minor GC only needs to look at the most-recently-allocated
objects (relatively small compared to the major heap often)
> Run major GC cycle once in a while
- Always possible to delay GC, you may just waste memory
- Lower latency, better throughput, now in Java, OCami, ...

32

Concurrent GC, etc..

> On multi-core machines, “stop the world” collectors really Kill
throughput (Amdahl’s law); in a parallel setting, synchronization
almost always translates into a throughput hit
- Many implementations now use concurrent GC:
> Incremental marking
- Break mark/sweep tasks into small chunks
- E.g., V8 (JavaScript for Chrome, Firefox) incremental GC:
- Stop-the-world for the minor heap, concurrent techniques for the
major heap. Make minor heap collection very fast (even if

sequential); Major heap collected concurrently, higher latency
but better overall throughput

33

Custom-Purpose Allocators

- If you program in a managed language (C#, JavaScript, Java, ...)
you’ll have some kind of GC, and the dynamics of the GC may
matter, especially in situations with high data loads and lots of
concurrent actions occurring
- If you use these languages in an enterprise setting, may want to

read more about the specific GC your runtime engine uses

- If you use a native language (Rust, C++, C, ...) then you need to
manage memory yourself
> Modern C++ / Rust provides some features which provide quasi-

automatic memory management, e.g., auto pointers

> Also, may want to use custom allocators, e.g., slab allocator:

- Big array of chunks of data of a specific size, very fast
- E.g., Chez Scheme uses a slab allocator for cons cells

34

Reference Counting

- Garbage collection is fairly heavyweight —requires a runtime

system (typically seen in “managed” languages)

- Reference counting is even simpler:
- Every heap-allocated object gets an associated reference count
- Every time the pointer is copied, the reference count is bumped
- When pointer goes out of scope, reference count decremented
- When reference count goes to zero, free the associated object

35

x Is initialized, object is allocated on heap, constructor called
(initializes fields, etc...), reference count set to 1

{ Foo's tields, etc...
Foo *xX = new FoO();

// ..
{

Foo *y = X;
// ..
} // y goes out of scope

} // x goes out of scope

36

Pointer to x copied into y, underlying object’s reference count

bumped to 2
{ Foo's tields, etc...
Foo *xX = new FoO();
// ..
{

Foo *y = X;
// ..
} // y goes out of scope

} // x goes out of scope

37

y goes out of scope, pointer is now unreachable,
decrement count back to 1

{ Foo's tields, etc...
Foo *xX = new FoO();

// ..
{

Foo *y = X;
// ..
} // y goes out of scope

} // x goes out of scope

38

Finally, x goes out of scope: reference count goes down to
0 which triggers destruction and deallocation (freeing)

==
{
Foo *x = new Foo();
/] ..
{
Foo *y = Xj
/] ..

} // y goes out of scope
} // x goes out of scope

39

- Reference counting offers many of the benefits of automatic
memory management without the need for a dedicated (stop the
world) garbage collector or runtime system
> Runtime systems may be too expensive (memory / time-intensive)
IN power-constrained settings
- Implementations in many native languages

> C++’s std::auto_ptr, Rusts’s Rc<...>

40

Rust

> Relatively new (2015) systems-focused programming language
- Replaces (mostly) C, C++, etc...
> No runtime system, low-level access to memory layout (mostly)
- Memory safe by design
> Unlike C/C++, no concern over massive memory bugs (segfaults)
- Type system takes inspiration from Haskell/OCaml, etc...
> Includes a borrowing system to ensure that

memory access invariants are maintained THE RUST

PROGRAMMING
LANGUAGE

> Values are immutable by default, defined with 1let
-~ Can make values mutable by using 1let mut

41

orintIn! is a macro, which generates code at compile-time. Rust has a
powerful macro system, similar to Racket’s

// Example 1l: Ownership and Borrowing
fn main() {

let s = String::from("hello");

let len = calculate length(&s);

println! ("The length of '{}' 1s {}.", s, len);
}

fn calculate length(s: &String) -> usize {
s.len()

}

calculate_length borrows a reference to a String

This avoids copying, which is (in general) costly

42

// Example 2: Pattern Matching with Enums
enum Coin {

Penny, |

Nickel Rust has pattern matching, enums are enumerated types
4

Dime, given by a specific list of constructors

Quarter,

fn value in cents(coin: Coin) -> u8 {
match coin {
Coin: :Penny => 1,
Coin: :Nickel => 5,
Coin::Dime => 10,
Coln: :Quarter => 25,

fn main() {
let coin = Coin::Quarter:;
println! ("The value of the coin i1s {} cents.”", value 1n cents(coin));

43

Here we use Result to signal that the return type is

either a string or an error. The ? says roughly "if this
operation fails, return an error”
// Example 3: Error Handling with Result
use std::fs::File;
use std::10::Read;

fn read file content(filename: &str) -> Result<String, std::10::Error> {
let mut file = File::open(filename)?;
let mut content = String::new();
file.read to string(&mut content)?;

Ok (content) ,
\ It we get to the end, we return Ok(...), which coerces

the string into a Result<...> type

fn main() {
match read file content("example.txt") {
Ok (content) => println!("File content:\n{}", content),
Err(e) => println! ("Error reading file: {}", e),

44

Just like Racket, Rust has closures (| x| .. is a lambda) which
work with iterators

vec! is a macro which builds an (immutable) vector

// Example 4: Iterators and Closures
fn main() {
let numbers = vec![1l, 2, 3, 4, 5];

let doubled: Vec<i32> = numbers.iter().map(|x| x * 2).collect();
println! ("Original: {:?}, Doubled: {:?}", numbers, doubled);

let sum: 132 = numbers.iter().sum();
println! ("Sum of numbers: {}", sum);

45

// Example 5: Structs and Traits
struct Rectangle {
width: u32,
height: u32, Rust has structs, which are objects with fields and methods

} The impl block defines methods callable on Rectangles

1impl Rectangle {
fn area(&self) -> u32 {
self.width * self.height

}
}

fn main() {

let rect = Rectangle { width: 10, height: 20 };
println! ("The area of the rectangle i1s {} square units.", rect.area());

46

Now let's wa
example: trans

k through an extended
ating exercise 3 into Rust

We use a Box<...>, which is a smart

pointer (with ownership) to an Expr

Environments use HashMap<String,Value>

use std::collections: :HashMap;

#[derive (Debug, Clone)]

enum Expr {
Number (164),
Add (Box<Expr>, BOX<ExXpr>),
Var(String),
Lambda(String, BOX<Expr>),
App (Box<Expr>, Box<Expr>),

}

#[derive(Debug, Clone)]
enum Value {
Number (164),
Closure(String, Box<Expr>, Environment),

}

type Environment = HashMap<String, Value>;

47

fn interp(expr: Expr, env: &Environment) -> Value {
println! ("At expression: {:?}, env: {:?}", expr, env);
match expr {
Expr: :Number(n) => Value: :Number(n),
Expr::Add(e0, el) => {

if let Value: :Number(v0) = interp(*el0, env) {
1f let Value::Number(vl) = interp(*el, env) {
Value: :Number (v0 + vl)
} else {
panic! ("Expected a number 1in addition");
}
} else {
panic! ("Expected a number 1n addition');
We use *e0/e1 to get the } }
box’s under\ying value Expr::Var(x) => env.get(&x).cloned().unwrap or else(|| {
panic! ("Unknown variable: {}", x);
1)y

Expr: :Lambda(param, body) => Value::Closure(param, body, env.clone()),
Expr: :App(el, el) => {

let vO = interp(*e0, env);
let vl = interp(*el, env);
match v0 {

Value: :Closure(param, body, mut closure env) => {
closure env.insert(param, vl);
interp(*body, &closure env)

}

_ => panic! ("Tried to apply {:?}, but it is not a closure", v0),

D T
48

Summary

Objects and closures offer similar mechanisms for bundling code +
data together, objects with fields, closures w/ captured variables

Managed languages typically employ automatic memory
management in the form of garbage collection

» GC runs in the background, cleans up unreachable memory

Rust is a hew systems-focused language

» Not managed, but still memory safe

 Type system, borrow checker, designed to ensure memory access
Is safe without necessitating a runtime system (GC, etc...)

- Modern replacement for C/C++, which are often riddled by tons of
tricky memory errors that lead to vulnerable / hard-to-debug code

49

