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In this lecture, we’ll talk about three final topics, in 
varying levels of detail


Dynamic Dispatch (implementing objects in C++)

Garbage Collection

Rust (borrow checker, etc…)


So far in class, I’ve focused on Racket / lambda calculus
—this time, I’ll mostly use other languages to show how 
some of the ideas from the class apply
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In Racket/lambda calculus/etc…: returning a lambda allocates a 
closure. The closure captures (“closes over”) the free variables 
that would be in scope:

(let ([x 5]) (lambda (y) (+ x y)))


Returns a closure of (lambda (y) (+ x y)) and the 
captured environment,{x ↦ 5}

Need the environment to interpret x


Could use substitution—but that’s slow!

Closures
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A very similar thing happens in OO languages: new allocates an 
object, calling the constructor to store arguments in fields


In FP, the environment is implicitly captured via a lambda, but in 
OOP, the constructor explicitly captures fields


In OOP, the primitive notion of a function is a method, which may 
syntactically reference instance variables and arguments

In FP, the closure allows you to reference any free variables (the 
contents of the environment stored by the closure) and arguments

Objects
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class B

{

    virtual int f() { return 1; }

};

class A : public B

{

    virtual int f() { return 2; }

};

 

B* a = new A(); // Get a pointer to an A obj

std::cout << a->f() << std::endl; 
 

// 2 is printed out, because A is the runtime class
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int add1(int x) { return x+1; }

In stored-program machines, all code sits somewhere in memory. 

 
In C/C++, you can obtain pointers to functions at run-time, 


and invoke them! The pointer for add1 can be obtained with:

&add1

Function pointers
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int add1(int x) { return x+1; }


int main()

{

    int (*f)(int) = &add1;


    // …


    int four = (*f)(3);

}
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int sort(int* x, int len, bool (*cmp)(int,int)) 

{ 

    // … 

        // …

            if ((*cmp)(*x,*y))

            {

                swap(*x,*y); 

                // …

            }  

    // …

}

A function pointer, cmp,  
passed to sort as an argument.

The function pointer, cmp,  
dereferenced and invoked.
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{ 

    // …

    

    sort(buff, length, &lessthan); 

 

    // …

}

A pointer to function lessthan  
is passed into sort.
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template <bool (*cmp)(int,int)>

int sort(int* x, int len) 

{ 

        // …

            if ((*cmp)(*x,*y))

            {

                swap(*x,*y);

                // …


int main()

{

    // …

    sort<&lessthan>(buff, length);


A function pointer, cmp, type int x int -> bool, 
is a template parameter to sort.

Templated function sort is 
invoked with a template 

parameter like so: sort<…>(…)
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class Cmp

{

    virtual bool cmp(int x, int y) = 0;

};

class LessThan : public Cmp

{

    virtual bool cmp(int x, int y) 

    { return x < y; }

};

class GreaterThan : public Cmp

{

    virtual bool cmp(int x, int y) 

    { return x > y; }

};

C++ dynamic dispatch: class polymorphism
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int sort(int* x, int len, const Cmp& cmp) 

{ 

        // …

            if (cmp.cmp(*x,*y))

            {

                swap(*x,*y);

                // …


int main()

{

    // …

    LessThan lessthan;

    sort(buff, length, lessthan);


An instance of type Cmp, cmp, has overloaded method cmp.

Pass in object lessthan  
by reference to polymorphic 

type Cmp supporting the 
Cmp::cmp(int, int) member.



Virtual Tables (vtables)
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Virtual Tables (vtables)
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0xfefd0042

5

vmthd 0

vmthd 1

0

0xd0eff108

Object with virtual methods

A table of virtual methods  
with a function pointer for each

vptr

data  
members

vmthd 2
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class Animal

{

    virtual const char* name() = 0;

    virtual int weight() const = 0;

    virtual void eat(Animal* prey) 

    {

        if (this->weight() 

               < 2 * prey->weight())

            return; 

        delete prey;

        std::cout << prey->name() 

                  << “ was eaten!\n”;

    }

};
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class Mouse : public Animal

{

    int grams;


    Mouse(int grams) 

        : grams(grams) {}


    virtual const char* name()

    {

        return “Mouse”;

    }


    virtual int weight() const 

    {

        return this->grams;

    }

};
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class Cat : public Animal

{

    Cat() {}


    virtual const char* name()

    {

        return “Cat”;

    }


    virtual int weight() const 

    {

        return 4260;

    }

};
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class Giraffe : public Animal

{

    virtual const char* name()

    {

        return “Giraffe”;

    }

    virtual int weight() const 

    {

        return 1570000;

    }

    virtual void eat(Animal* prey) 

    {

        std::cout << this->name() 

                  << “ wont eat that.\n”;

    }

};
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// vtable struct for Animal subclasses

struct AnimalVTable

{

    const char* (*name)(void*);

    int (*weight)(const void*);

    void (*eat)(void*,void*);


    AnimalVTable(const char* (*name)(void*),

                 int (*weight)(const void*),

                 void (*eat)(void*,void*))

      : name(name), weight(weight), eat(eat)

    {}

};


// Allocate a vtable for each concrete Animal

AnimalVTable mouse_vtable(&nameMouse, 
                          &weightMouse,

                          &eatAnimal);
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// Class Mouse compiled to a struct

struct Mouse

{

   AnimalVTable* vptr;

   int grams;

};


// An allocator/constructor for Mouse

Mouse* newMouse(int grams)

{

    Mouse* m = (Mouse*)malloc(sizeof(Mouse));

    m->vptr = &mouse_vtable;

    m->grams = grams;

    return m;

}
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// A name method for Mouse instances

const char* nameMouse(void* _ths)

{

    return “Mouse”; 

}


// A weight method for Mouse instances

int weightMouse(const void* _ths)

{

    const Mouse* ths = (const Mouse*)_ths;

    return ths->grams;

}
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// Looks up the vtable for an object

VTable* vtable(void* obj)

{

    return (VTable*)((void**) obj)[0];

}


{

    // To call a member function f:

    // e.g., obj->f(arg0, arg1, …);


    vtable(obj)->f(obj, arg0, arg1, …);

}
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// Looks up the vtable for an Animal object

AnimalVTable* vtable(void* obj)

{

    return (AnimalVTable*)((void**) obj)[0];

}


// A default eat method for Animals

void eatAnimal(void* ths, void* prey)

{

    if (vtable(ths)->weight(ths) 

           < 2 * vtable(prey)->weight(prey))

        return; 

    delete prey; // vtable(prey)->~Animal…

    std::cout << vtable(prey)->name(prey) 

              << “ was eaten!\n”;

}



Try an example: 

How do you define the constructor


for Giraffe?

24
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// Class Giraffe compiled to a struct

struct Giraffe

{

   AnimalVTable* vptr;

   // No data members

};


AnimalVTable giraffe_vtable(&nameGiraffe, 
                            &weightGiraffe,

                            &eatGiraffe);


// An allocator/constructor for Giraffe

Giraffe* newGiraffe()

{

    Giraffe* g = new Giraffe();

    g->vptr = giraffe_vtable;

    return g;

}



Try an example: 

How do you define the virtual

member functions for Giraffe?
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const char* nameGiraffe(void* _ths)

{

    return “Giraffe”; 

}


int weightGiraffe(const void* _ths)

{

    return 1570000;

}


void eatGiraffe(void* _ths)

{

    Giraffe* ths = (Giraffe*)_ths;

    std::cout << vtable(ths)->name(ths) 

              << “ wont eat that.\n”;

}
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In C/C++, all memory is manually managed. This is a real 
problem, because the reality is that—even for good programmers
—it is very tricky to ensure that memory does not:


Get freed twice (double free)

Get leaked (reference falls out of scope without free)

Get corrupted (pointers go out of bounds, SIGSEGV)


In practice, each of the above can / do lead to potentially-serious 
security vulnerabilities in systems of sufficient complexity.

Manual Memory Management (C/C++/…)
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In contrast to manual memory management, Racket/Java/JS/… 
use automatic memory management (via garbage collection)


No explicit memory allocation, no explicit pointers even (no 
pointer arithmetic!), only references

The garbage collector (GC) runs occasionally, in the background

This allows temporary waste (unreachable/dead objects) until a 
GC pause (“stop the world”), at which point we throw away 
everything which we know must be trash.


GC is very good/fast now, and a hallmark of modern languages!

Java, C#, JS, Python, many other languages you probably use

Garbage Collection
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The most basic kind of collector is a mark/sweep collector

Occasionally, the interpreter is paused

Mark everything as dead

Start with a “root set,” which comprises all definitely reachable / 
alive data (typically pointers on the stack, registers, globals, etc…)


Everything in the root set becomes alive

For every data structure, inspect its pointers—mark all of the 
pointers as reachable / alive

Repeat this process until you’ve found everything reachable

Recall this is the transitive closure algorithm from project 2

Mark/Sweep Collectors
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Stop-the-world nature

Undesirable in a real-time setting (safety-critical software, etc…)


In practice, mark/sweep garbage collection is very slow—it 
examines the whole heap at every GC pause


Overall system throughput goes down, expensive, bad for 
interactive apps


Fragmentation

Can ameliorate this via a copying/compacting collector


Challenging to make concurrent / parallel

Lots of cache eviction

Etc…

Issues with Mark/Sweep



32

Mark/sweep is popular, but modern GCs use a mix of insights

One insight is that—if an object has been around a while (multiple 
GC cycles)—it will likely remain around a while

Generational GC partitions objects into generations based on 
when they are allocated:


Allocate objects into a minor heap which is GCd frequently

Once they have been alive a while, move them into major heap

Minor GC only needs to look at the most-recently-allocated 
objects (relatively small compared to the major heap often)

Run major GC cycle once in a while


Always possible to delay GC, you may just waste memory

Lower latency, better throughput, now in Java, OCaml, …

Generational GC
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On multi-core machines, “stop the world” collectors really kill 
throughput (Amdahl’s law); in a parallel setting, synchronization 
almost always translates into a throughput hit

Many implementations now use concurrent GC:


Incremental marking

Break mark/sweep tasks into small chunks


E.g., V8 (JavaScript for Chrome, Firefox) incremental GC:

Stop-the-world for the minor heap, concurrent techniques for the 
major heap. Make minor heap collection very fast (even if 
sequential); Major heap collected concurrently, higher latency 
but better overall throughput

Concurrent GC, etc..
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If you program in a managed language (C#, JavaScript, Java, …) 
you’ll have some kind of GC, and the dynamics of the GC may 
matter, especially in situations with high data loads and lots of 
concurrent actions occurring


If you use these languages in an enterprise setting, may want to 
read more about the specific GC your runtime engine uses


If you use a native language (Rust, C++, C, …) then you need to 
manage memory yourself


Modern C++ / Rust provides some features which provide quasi-
automatic memory management, e.g., auto pointers


Also, may want to use custom allocators, e.g., slab allocator:

Big array of chunks of data of a specific size, very fast 


E.g., Chez Scheme uses a slab allocator for cons cells

Custom-Purpose Allocators 
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Garbage collection is fairly heavyweight—requires a runtime 
system (typically seen in “managed” languages)

Reference counting is even simpler:


Every heap-allocated object gets an associated reference count

Every time the pointer is copied, the reference count is bumped

When pointer goes out of scope, reference count decremented

When reference count goes to zero, free the associated object

Reference Counting
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{

  Foo *x = new Foo();

  // …

  {

    Foo *y = x;

    // …

  } // y goes out of scope

} // x goes out of scope

1 Foo’s fields, etc…

x is initialized, object is allocated on heap, constructor called 
(initializes fields, etc…), reference count set to 1
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{

  Foo *x = new Foo();

  // …

  {

    Foo *y = x;

    // …

  } // y goes out of scope

} // x goes out of scope

2 Foo’s fields, etc…

Pointer to x copied into y, underlying object’s reference count 
bumped to 2
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{

  Foo *x = new Foo();

  // …

  {

    Foo *y = x;

    // …

  } // y goes out of scope

} // x goes out of scope

1 Foo’s fields, etc…

y goes out of scope, pointer is now unreachable, 
decrement count back to 1
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{

  Foo *x = new Foo();

  // …

  {

    Foo *y = x;

    // …

  } // y goes out of scope

} // x goes out of scope

0 Foo’s fields, etc…

Finally, x goes out of scope: reference count goes down to 
0 which triggers destruction and deallocation (freeing)
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Reference counting offers many of the benefits of automatic 
memory management without the need for a dedicated (stop the 
world) garbage collector or runtime system

Runtime systems may be too expensive (memory / time-intensive) 
in power-constrained settings

Implementations in many native languages


C++’s std::auto_ptr, Rusts’s Rc<…>
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Relatively new (2015) systems-focused programming language

Replaces (mostly) C, C++, etc…

No runtime system, low-level access to memory layout (mostly)

Memory safe by design


Unlike C/C++, no concern over massive memory bugs (segfaults)

Type system takes inspiration from Haskell/OCaml, etc…


Includes a borrowing system to ensure that  
memory access invariants are maintained


Values are immutable by default, defined with let

Can make values mutable by using let mut

Rust
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// Example 1: Ownership and Borrowing

fn main() {

    let s = String::from("hello");

    let len = calculate_length(&s);

    println!("The length of '{}' is {}.", s, len);

}


fn calculate_length(s: &String) -> usize {

    s.len()

}

calculate_length borrows a reference to a String

This avoids copying, which is (in general) costly

println! is a macro, which generates code at compile-time. Rust has a 
powerful macro system, similar to Racket’s
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// Example 2: Pattern Matching with Enums

enum Coin {

    Penny,

    Nickel,

    Dime,

    Quarter,

}


fn value_in_cents(coin: Coin) -> u8 {

    match coin {

        Coin::Penny => 1,

        Coin::Nickel => 5,

        Coin::Dime => 10,

        Coin::Quarter => 25,

    }

}


fn main() {

    let coin = Coin::Quarter;

    println!("The value of the coin is {} cents.", value_in_cents(coin));

}

Rust has pattern matching, enums are enumerated types 
given by a specific list of constructors
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// Example 3: Error Handling with Result

use std::fs::File;

use std::io::Read;


fn read_file_content(filename: &str) -> Result<String, std::io::Error> {

    let mut file = File::open(filename)?;

    let mut content = String::new();

    file.read_to_string(&mut content)?;

    Ok(content)

}


fn main() {

    match read_file_content("example.txt") {

        Ok(content) => println!("File content:\n{}", content),

        Err(e) => println!("Error reading file: {}", e),

    }

}

Here we use Result to signal that the return type is 
either a string or an error. The ? says roughly “if this 

operation fails, return an error”

If we get to the end, we return Ok(…), which coerces 
the string into a Result<…> type
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// Example 4: Iterators and Closures

fn main() {

    let numbers = vec![1, 2, 3, 4, 5];


    let doubled: Vec<i32> = numbers.iter().map(|x| x * 2).collect();

    println!("Original: {:?}, Doubled: {:?}", numbers, doubled);


    let sum: i32 = numbers.iter().sum();

    println!("Sum of numbers: {}", sum);

}

Just like Racket, Rust has closures (|x| … is a lambda) which 
work with iterators


vec! is a macro which builds an (immutable) vector
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// Example 5: Structs and Traits

struct Rectangle {

    width: u32,

    height: u32,

}


impl Rectangle {

    fn area(&self) -> u32 {

        self.width * self.height

    }

}


fn main() {

    let rect = Rectangle { width: 10, height: 20 };

    println!("The area of the rectangle is {} square units.", rect.area());

}

Rust has structs, which are objects with fields and methods

The impl block defines methods callable on Rectangles
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use std::collections::HashMap;


#[derive(Debug, Clone)]

enum Expr {

    Number(i64),

    Add(Box<Expr>, Box<Expr>),

    Var(String),

    Lambda(String, Box<Expr>),

    App(Box<Expr>, Box<Expr>),

}


#[derive(Debug, Clone)]

enum Value {

    Number(i64),

    Closure(String, Box<Expr>, Environment),

}


type Environment = HashMap<String, Value>;


Now let’s walk through an extended 
example: translating exercise 3 into Rust

We use a Box<…>, which is a smart 
pointer (with ownership) to an Expr 

Environments use HashMap<String,Value>
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fn interp(expr: Expr, env: &Environment) -> Value {

    println!("At expression: {:?}, env: {:?}", expr, env);

    match expr {

        Expr::Number(n) => Value::Number(n),

        Expr::Add(e0, e1) => {

            if let Value::Number(v0) = interp(*e0, env) {

                if let Value::Number(v1) = interp(*e1, env) {

                    Value::Number(v0 + v1)

                } else {

                    panic!("Expected a number in addition");

                }

            } else {

                panic!("Expected a number in addition");

            }

        }

        Expr::Var(x) => env.get(&x).cloned().unwrap_or_else(|| {

            panic!("Unknown variable: {}", x);

        }),

        Expr::Lambda(param, body) => Value::Closure(param, body, env.clone()),

        Expr::App(e0, e1) => {

            let v0 = interp(*e0, env);

            let v1 = interp(*e1, env);


            match v0 {

                Value::Closure(param, body, mut closure_env) => {

                    closure_env.insert(param, v1);

                    interp(*body, &closure_env)

                }

                _ => panic!("Tried to apply {:?}, but it is not a closure", v0),

            }  }  }  }

We use *e0/e1 to get the 
box’s underlying value
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Objects and closures offer similar mechanisms for bundling code + 
data together, objects with fields, closures w/ captured variables

Managed languages typically employ automatic memory 
management in the form of garbage collection


GC runs in the background, cleans up unreachable memory

Rust is a new systems-focused language


Not managed, but still memory safe

Type system, borrow checker, designed to ensure memory access 
is safe without necessitating a runtime system (GC, etc…)

Modern replacement for C/C++, which are often riddled by tons of 
tricky memory errors that lead to vulnerable / hard-to-debug code

Summary


