
CIS352 —

Principles of Programming Languages

Fall 2024

Instructor: Kris Micinski

https://kmicinski.com/cis352-f24

Course Website:

https://kmicinski.com/cis352-f24

2

We use writing to help ourselves structure our thoughts—
revising, editing, restarting along the way

 
This class examines the process of writing and understand
programs using a systematic, iterative approach

 
Want to learn “how to think” about programming

Why study programming languages?

3

- Learning a programming “language” is superficial

- We want to learn how to program in a specific paradigm

Why study programming languages?

4

- Learning a programming “language” is superficial

- We want to learn how to program in a specific paradigm

- Learning Python helps you a bit, but doesn’t directly enable ML

- Need PyTorch / … for that!

- Learning C++ can help you write very fast code

- But doesn’t teach you how to write fast, concurrent programs

5

- After you leave the class you will work in Java/Python/…, but
you will almost certainly see overarching themes:

- Mutability

- Scope / Environments / …

- Closures / Objects / …

- Control-Flow / Tail-calls / loops / …

- Exceptions / continuations / effects / monads / …

- These topics are the tricky parts of day-to-day programming

Languages are ~= APIs

6

After this course, you will likely never write a
production programming language

But you will almost certainly build an API for something

And even now you use, learn, and think about APIs

7

Programming languages = APIs + syntax

Parsing interesting; but orthogonal to our interest

Instead, we will teach core principles for building languages:

Functions

Control-flow

Interpreters

Compilers

…

Course Objective

8

The main goal of this course is to teach you to write completely
correct code that you can clearly explain and easily understand

We do this through four coding projects

Two written midterms

Roughly (+/-) 5 programming exercises

Also several homeworks (mostly end of semester)

Course Goal

9

Course goal: help you become an expert programmer

How do we do that? Focused, directed practice at
programming with rapid, repeated feedback will help you build
intuition for patterns.

Course Goal

10

Course goal: help you develop debugging intuition

Via Challenging projects that require you to learn how to
debug them due to their complexity.

Course Goal

11

Course goal: learn to build good APIs

By implementing key building blocks for programming
language features

Logistics

12

In previous semesters I have used the flipped classroom style

This semester I will continue that, though I will recap the material
in class. Think of posted video lectures as “the book.”

We will use Slack this semester

https://kmicinski.com/cis352-f24

https://kmicinski.com/cis352-f24

Instructors

13

Kris Micinski (4th year asst. prof here @ SU)

TA — Neda Abdolrahimi

 Office hours TBA this week

Kris office hours: 30min after class Tu/Th (I leave @ 4:30)

I will have debugging-oriented office hours Wednesdays 1:30-3:30

Please avoid asking debugging-related questions after class

Feel free to write on Slack, but also make your own efforts

Syllabus

14

Most up-to-date syllabus always available at:

https://kmicinski.com/cis352-f24/syllabus

https://kmicinski.com/cis352-f24/syllabus

Grading

15

 40% Projects — 4 projects, each worth 10%

 Projects are the focus of the course

 10% Programming exercises — equally weighted

 2 comprehensive midterms

Can “revise” any incorrect answers (of attempted problems)
for 50% points back on first midterm (not second); must be a
“good effort attempt” (judged by me)

 10% handouts / homework (5 equally weighted)

 The only students who have ever failed turned in <3 projects

Projects

16

This course has projects (with deadlines) that are assigned and
graded via an autograder

https://autograder.org

You are expected to use the Git interface to the autograder;
Autograder credentials will be sent out by the first week

https://autograder.org

Academic Integrity

17

The autograder employs elaborate measures that compare code
(syntactically and semantically) to identify potential collaboration,
then TAs and I check manually

No collaboration on code is allowed for projects—don’t send /
show / … anyone your code. Don’t post any project code > 3 lines

“Hard coding” answers (for projects, i.e., recognizing specific
inputs and providing correct outputs) is also an AI violation

I have reported roughly 25 cases over the last 5 years—all have
been upheld; I will only report if I am sure there was copying

ChatGPT Policy

18

Most of my PhD students use CoPilot to some degree, I do research
on using LLMs for code synthesis, theorem proving, and related
efforts.

In short, you can use ChatGPT to study material if you’d like, and
you can use it for the exercises only, but not projects

In practice, I have tried to use ChatGPT for every project in the class
and it falls down on the harder projects quite badly (we can chat
about why if you’d like to know).

19

We try to make projects sync up with the material presented at
the corresponding time in the course

Biggest indicator of success in the course is whether students
are on-track with projects—try to never get behind; it becomes
hard to catch up.

Project Grading

20

 Each project is graded on a percent scale; your grade is the %
of tests that pass (18/20 tests passing = 90%)

 Projects always due at 11:59PM Syracuse time

 Projects up to 72 hours after deadline—15% penalty (max 85%)

 Projects up to end of course—25% penalty

 I.e., you can, in principle, always get a 75%

Exams

21

There will be a two midterms (second is a “final”)

 Both will be in-class and written

 Allowed one letter-sized (single sided) note sheet

You may perform corrections for 1/2 marks back (first midterm)

More detail about these after first midterm

I will release a practice midterm with the same question titles
several days before both midterms; we will work it in class

Course FAQs

22

Q: Why teach Racket and not C++ / Java / JS / Rust / …

Everyone will have their own opinion on what language to use
for a CS course—I realize that, and chose Racket for this course.

Racket is the language that allows you to write the most direct
implementation of the projects we do in this course. If we used
Haskell, Python, … the implementations would be doable—but
would require much more time.

A goal of the course will be to teach you to use what we learn in
whatever language you use (JS, C++, …)—we will teach
features from other languages where possible.

Course FAQs

23

Q: Why emphasize functional programming / disallow set!

A: Functional programming is simpler (i.e., more restrictive),
and thus easier to reason about. We will discuss how to
implement state later on in the course, but we start by forcing
students to program in a restricted purely-functional model
because there are fewer opportunities for mistakes

Course FAQs

24

Q: Why projects? Why not small homeworks?
A: The bulk of the course, in practice, is doing the projects. This
is reflected in the grade: exams are only 30%. Compared to
courses that have homework requiring 5-20 line programs, our
goal is to force you to program at a level where you can write
~100 lines of well-thought-out code doing something useful.

Syntax

25

A language’s physical form, its identifiers and grammatical
structure, is called its syntax

When we talk about programs, we often represent them as an
abstract representation (e.g., an “abstract-syntax tree”)

Tokenization and parsing is the task of turning raw syntax
(stream of tokens) into an abstract representation

We will not cover parsing much

“1 + 2 * 3”

+

1 *

2 3

Parse

Print

Semantics

26

PLs are unlike natural language—we need them to have a
precise, unambiguous meaning

PLs have some systematically-defined meaning (semantics)

This can take several forms:

Reference interpreter / compiler

Written specification

Machine-checked formal proof

Semantics

27

In this class we will mainly learn about semantics by building
interpreters, though we will also speak of other kinds of
semantics (e.g., the static semantics of type theory)

28

That’s enough course overview—let’s get into writing some
Racket code.

Racket Basics
CIS352

Kris Micinski

Racket

• Dynamically-Typed: variables are untyped, values typed

• Functional: Racket emphasizes functional style

• Compositional—emphasizes black-box components

• Immutability—requires automatic memory management

• Imperative: allows data to be modified, in carefully-
considered cases, but doesn’t emphasize “impure” code

30

Racket
• Object-oriented: Racket has a powerful object system

• Language-oriented: Racket is really a language toolkit

• Homoiconic: the same structure used to represent data (lists)
is also used to represent code

31

Example
((λ(x) (x x))

(λ(x) (x x)))

(define (calculuate-slope x0 y0 x1 y1)

 (/ (- y1 y0) (- x1 x0)))

32

Calculating the slope of a line in Racket

Example
((λ(x) (x x))

(λ(x) (x x)))

(define (calculuate-slope x0 y0 x1 y1)

 (/ (- y1 y0) (- x1 x0)))

33

Prefix notation

Example
((λ(x) (x x))

(λ(x) (x x)))

(define (calculuate-slope x0 y0 x1 y1)

 (/ (- y1 y0) (- x1 x0)))

34

Functions defined via prefix notation, too

Example
((λ(x) (x x))

(λ(x) (x x)))

(define (calculuate-slope x0 y0 x1 y1)

 (/ (- y1 y0) (- x1 x0)))

// C - calculate-slope(0,0,3,2);

(calculate-slope 0 0 3 2)

35

Calls to user-defined functions also in prefix notation

Example
((λ(x) (x x))

(λ(x) (x x)))

(define (calculuate-slope x0 y0 x1 y1)

 (/ (- y1 y0) (- x1 x0)))

(calculate-slope 0 0 3 2)

36

Note: preferred style puts closing parens at end of blocks

• Numeric tower. Numeric types gracefully degrade

• E.g., (* (/ 8 3) 2+1i) is 16/3+8/3i

• Note that 2+1i is a literal value, as is 2.3

• Strings and characters (“foo” and #\a)

• Booleans (#t and #f) including logical operator (e.g., or)

• Note that operators “short circuit”

Basic Types

37

Basic Types contd.
• Symbols are interned strings ‘foo

• Implicitly only one copy of each, unlike (say) strings

• Impact on space / memory usage

• The #<void> value (produced by (void))

38

Exercise

Compute the sum of the following:

• 2/3 and 1.5

• 3+8i and 3i

• 0 and positive infinity (+inf.0)

39

Exercise

Compute the sum of the following:

• (+ 2/3 1.5) 
2.1666666666666665 (N.B., result is inexact)

• (+ 3+8i 0+3i) 
3+11i

• (+ 0 +inf.0) 
+inf.0

40

