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- Last week: Intuitionistic Propositional Logic (IPL) and natural deduction, in 
which we define inference rules (schemas)


- Whole “proofs” are built by chaining together inference rules


- This week, we will build static type systems for PLs

- These type systems rule out programs containing possible type errors

- No well-typed program will crash due to a runtime type error


- These type systems have a close relationship to constructive logics:

- Curry-Howard Isomorphism: well-typed programs correspond to valid 

proofs of theorems in constructive logic



(define/contract (fib x)

  (-> positive? positive?)

  (cond

    [(= x 0) 1]

    [(= x 1) 1]

    [else (+ (fib (- x 1)) (fib (- x 2)))]))

“I take in a positive and produce a positive.”

3

Racket’s contract system tracks runtime type errors—the 
problem is that contract checking adds lots of overhead



(define/contract (fib x)

  (-> positive? positive?)

  (cond

    [(= x 0) 1]

    [(= x 1) 1]

    [else (+ (fib (- x 1)) (fib (- x 2)))]))

When I mess up
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(define/contract (fib x)

  (-> positive? positive?)

  (cond

    [(= x 0) 1]

    [(= x 1) 1]

    [else (+ (fib (- x 1)) (fib (- x 2)))]))

When I mess up

Racket blames me 
(anonymous-module)
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(define/contract (fib x)

  (-> positive? positive?)

  (cond

    [(= x 0) -200]

    [(= x 1) 1]

    [else (+ (fib (- x 1)) (fib (- x 2)))]))

When fib messes up

Racket blames fib
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Note that contracts are checked at runtime

(Not compile time!)

Earlier…

But sometimes we want to know our 
program won’t break before it runs!
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Type Systems

A type system assigns each source fragment with a 
given type: a specification of how it will behave

Type systems include rules, or judgements that 
tells us how we compositionally build types for 
larger fragments from smaller fragments

The goal of a type system is to rule out programs 
that would exhibit run time type errors!
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Simply-Typed λ-calculus

e ::= (lambda (x : t) e)

    | (e e)

    | (prim e e)

    | x

    | n

    | (e : t)


prim ::= + | * | …
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STLC is a restriction of the untyped λ-calculus

(It is a restriction in the sense that not all terms are well-typed.)

All lambdas must be 
annotated with their type

Optionally, any subexpression 
may be annotated with a type

Expressions in STLC, assuming t is a type (we’ll show this soon):
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;; Expressions are ifarith, with several special builtins

(define (expr? e)

  (match e

    ;; Variables

    [(? symbol? x) #t]

    ;; Literals

    [(? bool-lit? b) #t]

    [(? int-lit? i) #t]

    ;; Applications

    [`(,(? expr? e0) ,(? expr? e1)) #t]

    ;; Annotated expressions

    [`(,(? expr? e) : ,(? type? t)) #t]

    ;; Anotated lambdas

    [`(lambda (,(? symbol? x) : ,(? type? t)) ,(? expr? e)) #t]))



The simply typed lambda calculus is a type system 
built on top of a small kernel of the lambda calculus

Crucially, STLC is less expressive than the lambda 
calculus (e.g., we cannot type Ω, Y, or U!)

In practice, STLC’s restrictions make it unsuitable 
for serious programming—but it is the basis for 
many modern type systems in real languages (e.g., 
OCaml, Rust, Swift, Haskell, …)
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e ::= (lambda (x : t) e)

    | (e e)

    | (prim e e)

    | x

    | n

    | (e : t)


prim ::= + | * | …

Term Syntax Type Syntax

t ::= num

    | bool

    | t -> t
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Terms inhabit types 
(via the typing judgement)



Term Syntax Type Syntax

t ::= num

    | bool

    | t -> t

Function Types
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e ::= (lambda (x : t) e)

    | (e e)

    | (prim e e)

    | x

    | n

    | (e : t)


prim ::= + | * | …



Term Syntax Type Syntax

num -> num

bool -> num

(bool -> (num -> bool)) -> num

Examples…

t ::= num

    | bool

    | t -> t
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e ::= (lambda (x : t) e)

    | (e e)

    | (prim e e)

    | x

    | n

    | (e : t)


prim ::= + | * | …

num -> (num -> num)

(num -> num) -> num



- Type checking happens hierarchically (just as proofs in IPL are tree-shaped)

- Literals (0, #f) have their obvious types (these are the “axiom” cases)

- More complex forms (lambda, apply) require us to type subexpressions
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For example, let’s say we have this lambda, which we want to type check:

(λ(x : num) (if (x = 0) x (+ x 1)))
First we see the input type is num. Assuming x is num, we type 
check the body (an if). We see both sides of the if result in a 
number, so we know the lambda’s output is also a number.


Thus, the type is num -> num
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Notice that in STLC, all lambdas must bind their argument by naming 
a type explicitly. Thus, the following is not an STLC term.


However, the term has an infinite number of possible types:

Question: why T₀ → T₁ rather than any type T? Answer: x is applied (must be function)


Exercise: Write three possible monomorphizations, what is the type of the lambda as a whole?

The term may be monomorphized by instantiating once for each type 
T such that T is something like…

(λ(x : T0 → T1) (if #f (x 5) (x 8)))

(λ(x) (if #f (x 5) (x 8)))
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The fact that lambdas must be annotated with a type makes typing 
easy: parameters are the only true source of non-local control in the 
lambda calculus, and represent the only ambiguity in type checking

(λ(x : num → num) (if #f (x 5) (x 8)))
One possible monomorphization 
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(if #f (x 5) (x 8))
Bad thought experiment

Let’s say x is the Racket lambda:

(λ (x) (if (< x 6) #t 5))

Now, when x is less than 6, we return something of type bool; but 
otherwise, we return something of type num.

( + 3 (if #f (x 5) (x 8)))
In this case, the + operation works as long as (x 8) returns a num, 
but what if (x 8) returns a bool?
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(λ(x : num → num) (if #f (x 5) (x 8))) : (num → num) → num

A few examples…

(λ(x : num → num) (x 5)) : (num → num) → num

(λ(x : num) (λ (y : bool) y)) : num → bool → bool



A type system for STLC

Const

Type rules are written in natural-deduction style

(Like IPL, big-step semantics, etc…)

Assumptions above the line

Conclusions below the line

(No assumptions here.)
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Γ ⊢ n : num
Typing environment


(Irrelevant for now…)



Const
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Γ ⊢ n : num

The rule reads “in any typing environment Γ, we may 
conclude the literal number n has type num”



Variable Lookup

Var
Γ ⊢ x : t

We assume a typing environment which maps 
variables to their types

If x maps to type t in Γ, we may conclude that x has type 
t under the type environment Γ

Γ(x) = t
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{x ↦ (num → num), y ↦ bool} ⊢ x : ???

Exercise: using the Var rule, complete the proof
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Var
Γ ⊢ x : t

Γ(x) = t



{x ↦ (num → num), y ↦ bool} ⊢ x : (num → num)

Solution
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Var
Γ ⊢ x : t

Γ(x) = t

Var
{x ↦ (num → num), y ↦ bool}(x) = num → num



Lam
Γ[x ↦ t] ⊢ e : t′￼

Γ ⊢ (λ (x : t) e) : t → t′￼

If, assuming x has type x, you can conclude 
the body e has type t’, then the whole lambda 
has type t → t’

25

Typing Functions



Lam
Γ[x ↦ t] ⊢ e : t′￼

Γ ⊢ (λ (x : t) e) : t → t′￼

If, assuming x has type x, you can conclude 
the body e has type t’, then the whole lambda 
has type t → t’

26

Notice: if we didn’t have type t here, we would have 
to guess, which could be quite hard. We will have to 
do this when we move to allow type inference



Lam
Γ ⊢ (λ (x : t) e) : t → t′￼

(lambda (x : num) 1)

Γ[x ↦ t] ⊢ e : t′￼
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Example: let’s use the Lam rule 
to ascertain the type of the 
following expression.



Lam

(lambda (x : num) 1) : ? → ?Γ = {} ⊢

Start with the empty environment (since this term is closed)

Γ ⊢ (λ (x : t) e) : t → t′￼

Γ[x ↦ t] ⊢ e : t′￼
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Lam

Γ = {} ⊢ : t → t′￼

We suppose there are two types, t and t’, which 
will make the derivation work.

Γ ⊢ (λ (x : t) e) : t → t′￼

(lambda (x : num) 1)

Γ[x ↦ t] ⊢ e : t′￼
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{x ↦ num} ⊢ 1 : t′￼

We suppose there are two types, t and t’, which 
will make the derivation work.

Γ = {} ⊢ : num → t′￼(lambda (x : num) 1)

Because x is tagged, it must be num
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{x ↦ num} ⊢ 1 : t′￼

The Const rule allows us to conclude 1 : num

Γ = {} ⊢ (lambda (x : num) 1)

We suppose there are two types, t and t’, which 
will make the derivation work.

: num → t′￼
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Lam



So t’ = num

{x ↦ num} ⊢ 1 : num
Γ = {} ⊢ (lambda (x : num) 1) : num → num
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Lam

Const

Notice: Const demands no subgoals



App
Γ ⊢ e : t → t′￼

Γ ⊢ (e e′￼) : t′￼

Function Application

Γ ⊢ e′￼ : t
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App
Γ ⊢ e : t → t′￼

Γ ⊢ (e e′￼) : t′￼

Function Application

Γ ⊢ e′￼ : t

If (under Gamma), e has type t -> t’
And e’ (its argument) has type t

Then the application of e to e’ results in a t’
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App
Γ ⊢ e : t → t′￼

Γ ⊢ (e e′￼) : t′￼

Γ ⊢ e′￼ : t

Our type system so far…

Lam
Γ[x ↦ t] ⊢ e : t′￼

Γ ⊢ (λ (x : t) e) : t → t′￼

Const
Γ ⊢ n : num

Var
Γ ⊢ x : t

Γ(x) = t
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True
Γ ⊢ #t : bool

(Also False)



Almost everything! What about 
builtins?

Γι = { + : (num × num) → num, …}
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e ::= (lambda (x : t) e)

    | (e e)

    | (prim (e, e)) ; pairs

    | ((prim e) e)  ; curry

    | x

    | n

    | (e : t)


prim ::= + | * | …

Almost everything! What about builtins?

A few ways to handle this:

Add pairs to our language

Builtins accept pairs 

Or, we could assume that primitives are 
simply curried—in that case we would 
have, e.g., ((+ 1) 2) and then…

Γι = { + : num → (num → num), …}

Two possibilities (pairs/currying)

Our exercise does this!!



Practice Derivations

Write derivations of the following expressions…
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f

App
Γ ⊢ e : t → t′￼

Γ ⊢ (e e′￼) : t′￼

Γ ⊢ e′￼ : t

Lam
Γ, {x ↦ t} ⊢ e : t′￼

Γ ⊢ (λ (x : t) e) : t → t′￼

Const
Γ ⊢ n : num

Var
Γ ⊢ x : t

x ↦ t ∈ Γ

((λ (x : num) x) 1)
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f

App
{} ⊢ (λ (x : num) x) : num → num

{} ⊢ ((λ (x : num) x) 1) : num

{} ⊢ 1 : num

((λ (x : int) x) 1)
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{x ↦ num} ⊢ x : num
Lam
Var

Const



App
Γ ⊢ e : t → t′￼

Γ ⊢ (e e′￼) : t′￼

Γ ⊢ e′￼ : t

Lam
Γ, {x ↦ t} ⊢ e : t′￼

Γ ⊢ (λ (x : t) e) : t → t′￼

Const
Γ ⊢ n : num

Var
Γ ⊢ x : t

x ↦ t ∈ Γ

((λ (f : num -> num) (f 1)) (λ (x : num) x))f
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Typability in STLC

Not all terms can be given types…

(λ (f : num -> num) (f f))

It is impossible to write a derivation for the above term!

f is num->num but would need to be num!
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Typability

Not all terms can be given types…

((λ (f) (f f))

  (λ (f) (f f)))

It is impossible to write a derivation for Ω!
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Consider what would happen if f were:

- num -> num

- (num -> num) -> num

Always just out of reach…



Type Checking

Type checking asks: given this fully-typed term, is the type 
checking done correctly?

((λ (x:num) x:num) : num -> num)

In practice, as long as we annotate arguments (of λs) 
with specific types, we can elide the types of 

variables, literals, and applications


The “simply typed” nature of STLC means that type 
inference is very simple…
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(λ (f : num -> num -> num) (((f 2) 3) 4))

((λ (f : num -> num) f) (λ (x:num) (λ (x:num) x)))
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Exercise
For each of the following expressions, do they type check? 
I.e., is it possible to construct a typing derivation for them? 
If so, what is the type of the expression?



(λ (f : num -> num -> num) (((f 2) 3) 4))

((λ (f : num -> num) f) (λ (x:num) (λ (x:num) x)))
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Solution

Neither type checks. This subexpression results in 
num, which cannot be applied.



(λ (f : num -> num -> num) (((f 2) 3) 4))

((λ (f : num -> num) f) (λ (x:num) (λ (x:num) x)))
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Solution

Neither type checks.

This binder demands its argument is of type num -> num, 
but its argument is really of type num -> num -> num
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In the case of fully-annotated STLC, we never have to guess a type


In STLC, type inference is no harder than type checking


Our type checker will be syntax-directed


Next lecture, we will look at type inference for un-annotated STLC

 This will require generating, and then solving, constraints
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The basic approach is to 
observe that each of the rules 
applies to a different form 

App
Γ ⊢ e : t → t′￼

Γ ⊢ (e e′￼) : t′￼

Γ ⊢ e′￼ : t

Lam
Γ[x ↦ t] ⊢ e : t′￼

Γ ⊢ (λ (x : t) e) : t → t′￼

Const
Γ ⊢ n : num

Var
Γ ⊢ x : t

Γ(x) = t

For example, if we hit any 
application expression (e e’), 
we know that we have to use 
the App rule

Thus, we write our type 
checker as a structurally-
recursive function over the 
input expression.
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;; Synthesize a type for e in the environment env

;; Returns a type

(define (synthesize-type env e)

  (match e

    ;; Literals

    [(? integer? i) 'int]

    [(? boolean? b) 'bool]


Const
Γ ⊢ n : num

Recognizing literals is easy
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;; Synthesize a type for e in the environment env

;; Returns a type

(define (synthesize-type env e)

  (match e

    ;; Literals

    [(? integer? i) 'int]

    [(? boolean? b) 'bool]

    ;; Look up a type variable in an environment

    [(? symbol? x) (hash-ref env x)]


Var
Γ ⊢ x : t

Γ(x) = t
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;; Synthesize a type for e in the environment env

;; Returns a type

(define (synthesize-type env e)

  (match e

    ;; Literals

    [(? integer? i) 'int]

    [(? boolean? b) 'bool]

    ;; Look up a type variable in an environment

    [(? symbol? x) (hash-ref env x)]

    ;; Lambda w/ annotation

    [`(lambda (,x : ,A) ,e)

     `(,A -> ,(synthesize-type (hash-set env x A) e))]


Lam
Γ[x ↦ t] ⊢ e : t′￼

Γ ⊢ (λ (x : t) e) : t → t′￼
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;; Synthesize a type for e in the environment env

;; Returns a type

(define (synthesize-type env e)

  (match e

    ;; Literals

    [(? integer? i) 'int]

    [(? boolean? b) 'bool]

    ;; Look up a type variable in an environment

    [(? symbol? x) (hash-ref env x)]

    ;; Lambda w/ annotation

    [`(lambda (,x : ,A) ,e)

     `(,A -> ,(synthesize-type (hash-set env x A) e))]

    ;; Arbitrary expression

    [`(,e : ,t) (let ([e-t (synthesize-type env e)])

                  (if (equal? e-t t)

                    t

                    (error (format "types ~a and ~a are different" e-t t))))]


Chk
Γ ⊢ e : t

Γ ⊢ (e : t) : t

We haven’t written this rule yet—but 
notice how the t’s are implicitly unified 
(i.e., asserted to be the same) in the rule
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;; Synthesize a type for e in the environment env

;; Returns a type

(define (synthesize-type env e)

  (match e

    ;; Literals

    [(? integer? i) 'int]

    [(? boolean? b) 'bool]

    ;; Look up a type variable in an environment

    [(? symbol? x) (hash-ref env x)]

    ;; Lambda w/ annotation

    [`(lambda (,x : ,A) ,e)

     `(,A -> ,(synthesize-type (hash-set env x A) e))]

    ;; Arbitrary expression

    [`(,e : ,t) (let ([e-t (synthesize-type env e)])

                  (if (equal? e-t t)

                    t

                    (error (format "types ~a and ~a are different" e-t t))))]

    ;; Application

    [`(,e1 ,e2)

     (match (synthesize-type env e1)

       [`(,A -> ,B)

        (let ([t-2 (synthesize-type env e2)])

          (if (equal? t-2 A)

            B

            (error (format "types ~a and ~a are different" A t-2))))])]))

App
Γ ⊢ e : t → t′￼

Γ ⊢ (e e′￼) : t′￼

Γ ⊢ e′￼ : t
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The Curry-Howard Isomorphism

The Curry-Howard Isomorphism is a name given to the 
idea that every typed lambda calculus expression is a 
computational interpretation of a theorem in a suitable 
constructive logic.


For STLC: every well-typed term in STLC is a theorem 
in intuitionistic propositional logic (STLC ~= IPL).


So far, we have discussed four rules in STLC: Var, 
Const, App, and Lam


These rules exactly mirror corresponding rules in IPL
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VarΓ ⊢ x : t
x ↦ t ∈ Γ

Γ, P ⊢ PAssumption

The Var rule corresponds to the Assumption rule

In IPL, Γ is a set of propositions (assumed true)

In STLC, Γ is a map from type variables to their types

Γ : Var → Type Γ : Set(Proposition)
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App
Γ ⊢ e : A → B

Γ ⊢ (e e′￼) : B
Γ ⊢ e′￼ : A

VarΓ ⊢ x : t
x ↦ t ∈ Γ

⇒E
Γ ⊢ A

Γ ⊢ A ⇒ B Γ ⊢ A

Γ, P ⊢ PAssumption

The App rule corresponds to modus ponens in IPL

Notice how the type is A → B but in IPL it is A ⇒ B
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App

Lam
Γ, {x ↦ t} ⊢ e : A

Γ ⊢ (λ (x : t) e) : A → B

VarΓ ⊢ x : t
x ↦ t ∈ Γ

Γ, A ⊢ B
Γ ⊢ A ⇒ B

⇒I

⇒E
Γ ⊢ A

Γ ⊢ A ⇒ B Γ ⊢ A

Γ, P ⊢ PAssumption

Γ ⊢ e : A → B
Γ ⊢ (e e′￼) : B

Γ ⊢ e′￼ : A

The Lam rule introduces assumptions, just as ⇒I does in IPL
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What this means is that any time you write a proof tree 
in STLC, you could have written it in IPL instead


There is an exact correspondence between proof trees 
in IPL and STLC
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∧I

Γ ⊢ Q

Γ ⊢ P ∧ Q∧E1

Γ ⊢ P ∧ Q

Γ ⊢ P
∧E2


Γ ⊢ P ∧ Q

Γ ⊢ Q

Γ, A ⊢ B
⇒I

Γ ⊢ A ⇒ B

Γ ⊢ B
⇒E

Γ ⊢ A

∨I1

Γ ⊢ P

Γ ⊢ P ∨ Q
∨I2


Γ ⊢ Q
Γ ⊢ P ∨ Q ∨E


Γ ⊢ A ∨ B

Γ ⊢ C

Γ, A ⊢ C

This begs a question: we have covered this (in STLC) so far, 
what about the rest

⊥E ¬P is sugar for P ⇒ ⊥

Γ ⊢ P

Γ, B ⊢ C

Γ ⊢ P

Γ ⊢ ⊥

Assumption

Γ, P ⊢ P

Γ ⊢ A ⇒ B
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∧I

Γ ⊢ Q

Γ ⊢ P ∧ Q∧E1

Γ ⊢ P ∧ Q

Γ ⊢ P
∧E2


Γ ⊢ P ∧ Q

Γ ⊢ Q

Γ, A ⊢ B
⇒I

Γ ⊢ A ⇒ B

Γ ⊢ B
⇒E

Γ ⊢ A

∨I1

Γ ⊢ P

Γ ⊢ P ∨ Q
∨I2


Γ ⊢ Q
Γ ⊢ P ∨ Q ∨E


Γ ⊢ A ∨ B

Γ ⊢ C

Γ, A ⊢ C

This is an exciting question because it asks: what is the 
computational interpretation of ∧, ∨, and ⊥

⊥E ¬P is sugar for P ⇒ ⊥

Γ ⊢ P

Γ, B ⊢ C

Γ ⊢ P

Γ ⊢ ⊥

Assumption

Γ, P ⊢ P

Γ ⊢ A ⇒ B
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∧I

Γ ⊢ P ∧ Q∧E1


Γ ⊢ P ∧ Q

Γ ⊢ P
∧E2


Γ ⊢ P ∧ Q

Γ ⊢ Q

Let’s just start with ∧, we need to come up with 
type-theoretic analogues for these rules

Γ ⊢ P

e ::= (lambda (x : t) e)

    | (e e)

    | … 

    | (cons e e) ;; ∧

    | (car e) | (cdr e)

The computational interpretation 
of ∧ is a pair, so we add syntax for 
pairs into our language

t ::= num | bool | …

    | t × t ;; product types

The type of a pair is a product type:

(cons 5 #t) : num × bool

Γ ⊢ Q
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∧I

Γ ⊢ P ∧ Q∧E1


Γ ⊢ P ∧ Q

Γ ⊢ P
∧E2


Γ ⊢ P ∧ Q

Γ ⊢ Q

Now, we define the type rules for product (×) types

CHI tells us the rules should look like the yellow ones

×E1

Γ ⊢ e : A × B

Γ ⊢ (car e) : A
×E2


Γ ⊢ e : A × B

Γ ⊢ (cdr e) : B
×I
 Γ ⊢ e0 : A

Γ ⊢ (cons e0 e1) : A × B

Γ ⊢ P Γ ⊢ Q

Γ ⊢ e1 : B

“If e is a pair, (car/cdr e) is the type 
of its first/second element”

“If e₀ is type A and e₁ is type B, 
(cons e₀ e₁) is type A × B” 
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Next, let’s move to ∨

e ::= … ;; previous forms

    | left e

    | right e

    | case e of  
        (left e0 => e0’)

        (right e1 => e1’)

The computational interpretation 
of ∨ is a discriminated union 

t ::= … | t + t

Now we have sum types

(inj_left 42) : num × bool

∨I1

Γ ⊢ P

Γ ⊢ P ∨ Q ∨I2

Γ ⊢ Q

Γ ⊢ P ∨ Q ∨E

Γ ⊢ A ∨ B

Γ ⊢ C

Γ, A ⊢ C Γ, B ⊢ C

Also many other types
(inj_left 42) : num × num
(inj_left 42) : num × (num -> num)
(inj_left 42) : num × (num × num)

…
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e ::= … ;; previous forms

    | left e

    | right e

    | case e of  
        (left e0 => e0’)

        (right e1 => e1’)

The computational interpretation 
of ∨ is a discriminated union 

A discriminated union A + B says:

“I carry either information of type A, or information of type B; but I 
can’t promise it’s exactly A or exactly B—thus, to interact with the 
information, you must always do case analysis (i.e., matching).

(case (right 5) of

  (left e => e)

  (right e => 7)) ;; 7

;; In OCaml, we would write this:

# type ('a, 'b) t = Left of 'a | Right of 'b;;

type ('a, 'b) t = Left of 'a | Right of 'b

# Left (5);;

-: (int, 'a) t = Left 5

;; OCaml’s type system supports general ADTs
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Now, we define the type rules for product (×) types

CHI tells us the rules should look like the yellow ones

+I1

Γ ⊢ e : A

Γ ⊢ (left e) : A + B
+I2


Γ ⊢ e : B

“Using e, we can witness either the 
left or right choice.”

∨I1

Γ ⊢ P

Γ ⊢ P ∨ Q ∨I2

Γ ⊢ Q

Γ ⊢ P ∨ Q

Γ ⊢ (right e) : A + B
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The elimination rule for ∨ is interesting; we are 
obligated to prove two subgoals: (a) assuming A, 
prove C, and (b) assuming B, prove C

∨E

Γ ⊢ A ∨ B

Γ ⊢ C

Γ, A ⊢ C Γ, B ⊢ C

In our setting, we recognize ∨ as +, and thus A ∨ B is 
a discriminated union, i.e., a value of a type either A 
or B—but we can only know which by matching

The two subgoals are functions (callbacks) which 
observe a value of type A or B
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+E

Γ ⊢ e : A + B

Γ ⊢ (case e of (left e0 ⇒ e′￼0) (right e1 ⇒ e′￼1)) : C

∨E

Γ ⊢ A ∨ B

Γ ⊢ C

Γ, A ⊢ C Γ, B ⊢ C

Γ, e0 : A ⊢ e′￼0 : C

A value of either type A or type B 

A handler that, assuming e₀ is of type A, 
builds an object of type C

Γ, e1 : A ⊢ e′￼1 : C

A handler that, assuming e₁ is of type B, 
builds an object of type C
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+E

Γ ⊢ e : A + B

Γ ⊢ (case e of (left e0 ⇒ e′￼0) (right e1 ⇒ e′￼1)) : C

∨E

Γ ⊢ A ∨ B

Γ ⊢ C

Γ, A ⊢ C Γ, B ⊢ C

Γ, e0 : A ⊢ e′￼0 : C

A value of either type A or type B 

A handler that, assuming e₀ is of type A, 
builds an object of type C

Γ, e1 : A ⊢ e′￼1 : C

A handler that, assuming e₁ is of type B, 
builds an object of type C

Notice that the handlers must produce 
the same type!
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The constructive notion of negation says two things:

 You’re never allowed to construct a proof of false:

 thus,  ⊥ has no introduction rules


 If you can prove ⊥ using what you currently know, 
then you must be in a contradiction, and you can freely 
admit anything.

 Like a lucid dream

Now, we need to ask: what’s the computational 
interpretation of ⊥?

⊥E
Γ ⊢ P

Γ ⊢ ⊥
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The constructive notion of negation says two things:

 You’re never allowed to construct a proof of false:

 thus,  ⊥ has no introduction rules


 If you can prove ⊥ using what you currently know, 
then you must be in a contradiction, and you can freely 
admit anything.

 Like a lucid dream

⊥E
Γ ⊢ P

Γ ⊢ ⊥

Now, we need to ask: what’s the computational 
interpretation of ⊥?

⊥EΓ ⊢ (case e of) : t
Γ ⊢ e : ⊥

First: there is no rule to introduce ⊥. Second, if there is 
some expression which we can type which is ⊥, we 
know we are in a contradiction and are allowed to 
materialize a value of any type we please. Empty match statement—

because no value!

Any type we want!
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+I1

Γ ⊢ e : A

Γ ⊢ (left e) : A + B
+I2


Γ ⊢ e : B

Γ ⊢ (right e) : A + B
+E


Γ ⊢ e : A + B

Γ ⊢ (case e of (left e0 ⇒ e′￼0) (right e1 ⇒ e′￼1)) : C

Γ, e0 : A ⊢ e′￼0 : C Γ, e1 : A ⊢ e′￼1 : C

×E1

Γ ⊢ e : A × B

Γ ⊢ (car e) : A
×E2


Γ ⊢ e : A × B

Γ ⊢ (cdr e) : B
×I
 Γ ⊢ e0 : A

Γ ⊢ (cons e0 e1) : A × B

Γ ⊢ e1 : B

AppΓ ⊢ e : t → t′￼

Γ ⊢ (e e′￼) : t′￼

Γ ⊢ e′￼ : t Lam
Γ, {x ↦ t} ⊢ e : t′￼

Γ ⊢ (λ (x : t) e) : t → t′￼

Const
Γ ⊢ n : num VarΓ ⊢ x : t

x ↦ t ∈ Γ

Vanilla STLC

Products (pairs)

Sums (discriminated unions)

Negation

¬A is A → ⊥

Our full type system: STLC, products, 
unions, and negation

This type system corresponds precisely to IPL

Γ ⊢ e : ⊥

Γ ⊢ (case e of) : t
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A family of logics / type systems

Curry-Howard Isomorphism says we can keep adding logic / language features—
adding rules to the logics force corresponding rules in the type system


IPL is boring—it can’t say much. Expressive power is limited to propositional logic


To prove interesting theorems, we want to say things like:

  ∀ (l : list A) : {l’ : sorted l’ ∧ ∀ x. (member l x) ⇒ (member l’ x)}

- For all input lists l

- The output is a list l’, along with a proof that:

- (a) l’ is sorted (specified elsewhere)

- (b) every member of l is also a member of l’


- Any issues?

- (Maybe we also want to assert length is the same?)
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Completeness of STLC

• Incomplete: Reasonable functions we can’t write in STLC

•E.g., any program using recursion

•Several useful extensions to STLC

•Fix operator to allow typing recursive functions

•Algebraic data types to type structures

•Recursive types for full algebraic data types 

• tree = Leaf (int) | Node(int,tree,tree)
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Typing the Y Combinator

Y
Γ ⊢ f : t → t
Γ ⊢ (Y f ) : t

The “real” solution is quite nontrivial—we need recursive types, which may be formalized in a variety of ways

- We will not cover recursive types in this lecture, I am happy to offer pointers


Our hacky solution works in practice, but is not sound in general

 - More precisely, the logic induced by the type system is no longer sound (can prove ⊥ and therefore everything)
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Typing the Y Combinator

Y
Γ ⊢ f : t → t
Γ ⊢ (Y f ) : t

Think of how this would look for fib

(let ([fib

 (Y (λ (f) (λ (x)

             (if (= x 0)

                 1

                 (* x (fib (- x 1)))))))]))

What would t be here?



Error States
A program steps to an error state if its evaluation 

reaches a point where the program has not 
produced a value, and yet cannot make progress

((+ 1) (λ (x) x))

Gets “stuck” because + can’t operate on λ
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Error States
A program steps to an error state if its evaluation 

reaches a point where the program has not 
produced a value, and yet cannot make progress

((+ 1) (λ (x) x))

Gets “stuck” because + can’t operate on λ

(Note that this term is not typable for us!)
77



Soundness

A type system is sound if no typable program 
will ever evaluate to an error state

“Well typed programs cannot go wrong.” 
— Milner

(You can trust the type checker!)
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Proving Type Soundness

Theorem: if e has some type derivation, then it will 
evaluate to a value.

Relies on two lemmas
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Progress Preservation

If e typable, then it is either a 
value or can be further reduced

If e has type t, any reduction will 
result in a term of type t



(In our system) not too hard to prove by induction on the typing derivation.


Combination of progress and preservation says: you can either take a well-
typed step and maintain the invariant, or you are done (at a value).


We will skip the proof—it depends on understanding induction over 
derivations, chat with me if interested…

80

Progress Preservation

If e typable, then it is either a 
value or can be further reduced

If e has type t, any reduction will 
result in a term of type t



((λ (x:t) x:t’) : num -> num)

Allows us to leave some placeholder variables 
that will be “filled in later”

Type Inference

The num->num constraint then forces t = num 
and t’ = num
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Type inference can fail, too…

Type Inference

(λ (x) (λ (y:num->num) ((+ (x y)) x)))

No possible type for x! Used as fn and arg to +

82
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Type Inference has been of interest (research and practical) for many years

It allows you to write untyped programs (much less painful!) and automatically 
synthesize a type for you—as long as the type exists (catch your mistakes)

(λ (f) (((f 2) 3) 4))

(λ (f : num -> num -> num -> num) (((f 2) 3) 4))
Type inference

Type inference can be seen as enumerating all possible type assignments to infer a 
valid typing. You can think of it as solving the equation:

∃T. (λ (f : T) (((f 2) 3) 4))
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Type inference can be seen as enumerating all possible type assignments to infer a 
valid typing. You can think of it as solving the equation:

∃T. (λ (f : T) (((f 2) 3) 4))

There are an infinite number of possible T (e.g., int, bool, int->int, bool->bool, …) 
that we could check, in principle

So it is not obvious that this is a terminating process. But: humans almost always write 
“reasonable” types:

  ((a -> ((a -> b) -> ((a -> b) -> (b -> c))) -> …) is possible but uncommon

We will see next lecture that a procedure exists which finds a typing, if a typing exists. 
This relies on unification (a principle from logic programming)

How hard is this problem (tractability)?
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What is the correct type?
(lambda (f) (lambda (x) (if (if-zero? (f x)) 1 0)))

Is it:

(a) f = int->int, x = int

(b) f = bool->int, x = bool

(c) f = (int->int)->int, x = int->int
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What is the correct type?
(lambda (f) (lambda (x) (if (if-zero? (f x)) 1 0)))

Is it:

(a) f = int->int, x = int

(b) f = bool->int, x = bool

(c) f = (int->int)->int, x = int->int

(d) All of the above
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Type Variables
(lambda (f) (lambda (x) (if (if-zero? (f x)) 1 0)))

Lesson:

We can’t pick just one type. Instead, we need to 
be able to instantiate f and x whenever a 
suitable type may be found.

For example, what if we let-bind the lambda 
and use it in two different ways!?

(let ([g (lambda (f) (lambda (x) (if (if-zero? (f x)) 1 0)))])

  (+ ((g (lambda (x) x)) 0) ((g (lambda (x) 1)) #f))

This usage requires f = nat->nat and x = nat This usage requires f = bool->nat and x = bool



88

Generalizations
(lambda (f) (lambda (x) (if (if-zero? (f x)) 1 0)))

Instead, we can keep a generalized type by using a type 
variable, allowing a good type inference system to derive (for 
this example, using type var T):

  Type of f = T -> int

  Type of x = T

 
Notice that this system demands we must be able to compare T 
for equality! This is actually nontrivial when we add 
polymorphism, but is simple in STLC (structural equality)
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Constraint-Based Typing

The crucial trick to implementing type inference is to use a 
constraint-based approach. In this setting, we walk over each 
subterm in the program and generate a constraint

Later, we will solve these constraints by using a process named unification

Unannotated lambdas generate new type variables, which are 
later constrained by their usages
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(define (build-constraints env e)

  (match e

    ;; Literals

    [(? integer? i) (cons `(,i : int) (set))]

    [(? boolean? b) (cons `(,b : bool) (set))]

    ;; Look up a type variable in an environment

    [(? symbol? x) (cons `(,x : ,(hash-ref env x)) (set))]

    ;; Lambda w/o annotation

    [`(lambda (,x) ,e)

     ;; Generate a new type variable using gensym

     ;; gensym creates a unique symbol

     (define T1 (fresh-tyvar))

     (match (build-constraints (hash-set env x T1) e)

       [(cons `(,e+ : ,T2) S)

        (cons `((lambda (,x : ,T1) ,e+) : (,T1 -> ,T2)) S)])]

    ;; Application: constrain input matches, return output

    [`(,e1 ,e2)

     (match (build-constraints env e1)

       [(cons `(,e1+ : ,T1) C1)

        (match (build-constraints env e2)

          [(cons `(,e2+ : ,T2) C2)

           (define X (fresh-tyvar))

           (cons `(((,e1+ : ,T1) (,e2+ : ,T2)) : ,X)

                 (set-union C1 C2 (set `(= ,T1 (,T2 -> ,X)))))])])]

    ;; Type stipulation against t--constrain

    [`(,e : ,t)

     (match (build-constraints env e)

       [(cons `(,e+ : ,T) C)

        (define X (fresh-tyvar))

        (cons `((,e+ : ,T) : ,X) (set-add (set-add C `(= ,X ,T)) `(= ,X ,t)))])]

    ;; If: the guard must evaluate to bool, branches must be

    ;; of equal type.

    [`(if ,e1 ,e2 ,e3)

     (match-define (cons `(,e1+ : ,T1) C1) (build-constraints env e1))

     (match-define (cons `(,e2+ : ,T2) C2) (build-constraints env e2))

     (match-define (cons `(,e3+ : ,T3) C3) (build-constraints env e3))

     (cons `((if (,e1+ : ,T1) (,e2+ : ,T2) (,e3+ : ,T3)) : ,T2)

           (set-union C1 C2 C3 (set `(= ,T1 bool) `(= ,T2 ,T3))))]))


Building Constraints
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Unification

At the end of constraint-building, we have a ton of equality 
constraints between base types and type variables

In this example, what is ty1?

tv0 = int

ty1 = tv0 -> tv2

tv2 = tv3

tv3 = tv4

(lambda (x : ty1) …)

Answer: think about constraints and equalities: ty1 must be int->int
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;; within the constraint constr, substitute S for T

(define (ty-subst ty X T)

  (match ty

    [(? ty-var? Y) #:when (equal? X Y) T]

    [(? ty-var? Y) Y]

    ['bool 'bool]

    ['int 'int]

    [`(,T0 -> ,T1) `(,(ty-subst T0 X T) -> ,(ty-subst T1 X T))]))


(define (unify constraints)

  ;; Substitute into a constraint

  (define (constr-subst constr S T)

    (match constr

      [`(= ,C0 ,C1) `(= ,(ty-subst C0 S T) ,(ty-subst C1 S T))]))

  ;; Is t an arrow type?

  (define (arrow? t)

    (match t [`(,_ -> ,_) #t] [_ #f]))

  ;; Walk over constraints one at a time

  (define (for-each constraints)

    (match constraints

      ['() (hash)]

      [`((= ,S ,T) . ,rest)

       (cond [(equal? S T)

              (for-each rest)]

             [(and (ty-var? S) (not (set-member? (free-type-vars T) S)))

              (hash-set (unify (map (lambda (constr) (constr-subst constr S T)) rest)) S T)]

             [(and (ty-var? T) (not (set-member? (free-type-vars S) T)))

              (hash-set (unify (map (lambda (constr) (constr-subst constr T S)) rest)) T S)]

             [(and (arrow? S) (arrow? T))

              (match-define `(,S1 -> ,S2) S)

              (match-define `(,T1 -> ,T2) T)

              (unify (cons `(= ,S1 ,T1) (cons `(= ,S2 ,T2) rest)))]

             [else (error "type failure")])]))

Unification



93

Why Type Theory?
Why is type synthesis / checking useful?


- Can write fully-verified programs.

- Cons: type systems are esoteric, complicated, academic, etc…

- Popular languages (Swift, Rust, etc…) are tending towards more 

elaborate type systems as they evolve 

- Type synthesis offers me “proofs for free:”

- “If my program type checks it works” — not true in C/C++/… 

- Less mental burden, like CoPilot (etc… tools), type systems can 
integrate into IDEs to use synthesis information in guiding 
programming

- In some ways, this reflects the logical statements underlying the 

type system’s design (Curry Howard)
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“Proofs as Programs”
A significant amount of interest has been given to programming 
languages which use powerful type systems to write programs 
alongside a proof of the program’s correctness

Imagine how nice it would be to write a completely-formally-
verified program—no bugs ever again!
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Dependent Type Systems

We can construct type systems / programming languages where terms can be of 
type (something like)


  ∀ (l : list A) : {l’ : sorted l’ ∧ ∀ (x : A). (member l x) ⇒ (member l’ x)}


These are called dependent types, because types can depend on values

 - This allows expressing that l’ is sorted 
 - Unfortunately, these type systems are way more complicated

 - Worse, even type checking may be undecidable (in general)


Precise formalization of these systems is beyond the scope of this class
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A huge family of languages have popped up to implement dependent type systems 
and subsequently enable “fully-verified” programming


They hit a variety of expressivity points. The fundamental trade off is: (a) 
expressivity vs. (b) automation.


Highly-expressive systems require you to write all the proofs yourself, and a lot of 
manual annotation (potentially).
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Here I give an Agda definition for products

Explicit Theorem Proving / Hole-Based Synth

waterloo.ca/~plragde/747/notes/index.html
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Explicit Theorem Proving / Hole-Based Synth

Agda will tell me what I need to fill in, 

allows me to use “holes” and then helps

me hunt for a working proof.
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Some systems provide logic-programming (i.e., proof search) to help assist users

- CHI tells us that proof search is tantamount to program synthesis

- Here I use Coq’s “intuition” tactic to automatically construct a proof for me

Tactic-Based Theorem Proving

(Using Coq to prove P ⇒ Q ⇒ P; left: using the “intuition” tactic, 
right: printing the proof term)
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The more expressive the type theory, the more work is required to build proofs. 

Automating proof via constraint solving

Some systems translate proof obligations 
into formulas which are then sent to SMT 
solvers (solves goals in first-order logic, 
such as Z3)

This can partially automate many 
otherwise-tricky proofs—in certain 
situations


F* based on this idea, but other proof 
search approaches exist (Idris, etc…)
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How does this work?
These systems interpret programs as theorems in higher-order 
logics (calculus of constructions, etc…)


Unfortunately, no free lunch: this makes the type system way 
more complicated in practical settings


We will see a taste of the inspiration for these systems, by 
reflecting on STLC’s expressivity
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- Know how to read the typing rules we presented throughout this lecture.

- Know how to check that a typing derivation presented is correct, or be 

able to point out where it is broken.

- Know how to build a typing derivation (i.e., proof tree, the things with the 

lines and stacked formulas) for small programs using the rules

- Understand the definition of the term “soundness” as it applies to type 

systems

- If a PL’s type system is sound, are any dynamic errors possible?

What to Know for Midterm 2 on Types


