

CIS352 — Fall 2023 Kris Micinski

- which we define inference rules (schemas)
- Whole "proofs" are built by chaining together inference rules
- This week, we will build static type systems for PLs

 - No well-typed program will crash due to a runtime type error
- proofs of theorems in constructive logic

- Last week: Intuitionistic Propositional Logic (IPL) and natural deduction, in

- These type systems <u>rule out</u> programs containing possible type errors

- These type systems have a close relationship to constructive logics: - Curry-Howard Isomorphism: well-typed programs correspond to valid

"I take in a positive and produce a positive."

(define/contract (fib x) (-> positive? positive?) (cond $[(= x \ 0) \ 1]$ [(= x 1) 1]

> Welcome to DrRacket, version 7.2 [3m]. Language: racket, with debugging; memory limit: 128 MB. > (fib 2)

Racket's *contract system* tracks runtime type errors—the problem is that contract checking adds lots of overhead

[else (+ (fib (- x 1)) (fib (- x 2))]))

(define/contract (fib x) (-> positive? positive?) (cond $[(= x \ 0) \ 1]$ [(= x 1) 1]> (fib -2)**Solution Solution** expected: positive? given: -2 in: the 1st argument of (-> positive? positive?) contract from: (function fib) blaming: anonymous-module at: unsaved-editor:3.18 >

When I mess up

[else (+ (fib (- x 1)) (fib (- x 2))]))

```
(assuming the contract is correct)
```

(define/contract (fib x) (-> positive? positive?) (cond $[(= x \ 0) \ 1]$ [(= x 1) 1]> (fib -2)**Solution Solution** expected: positive? given: -2 in: the 1st argument of (-> positive? positive?) contract from: (function fib) blaming: anonymous-module at: unsaved-editor:3.18 >

When I mess up

[else (+ (fib (- x 1)) (fib (- x 2))]))

```
Racket blames me
                        (anonymous-module)
(assuming the contract is correct)
```

When **fib** messes up

(define/contract (fib x) (-> positive? positive?) (cond [(= x 0) -200][(= x 1) 1]

Welcome to DrRacket, version 7.2 [3m]. Language: racket, with debugging; memory limit: 128 MB. > (fib 20) So fib: broke its own contract promised: positive? produced: -829435 in: the range of (-> positive? positive?) contract from: (function fib) blaming: (function fib) (assuming the contract is correct) at: unsaved-editor:3.18

[else (+ (fib (- x 1)) (fib (- x 2))]))

Racket blames fib

Note that contracts are checked at **runtime**

(**Not** compile time!)

But sometimes we want to know our program won't break before it runs!

A type system assigns each source fragment with a given type: a specification of how it will behave

Type systems include **rules**, or **judgements** that tells us how we compositionally build types for larger fragments from smaller fragments

The **goal** of a type system is to **rule out** programs that would exhibit run time type errors!

Type Systems

Simply-Typed λ-calculus

- STLC is a restriction of the untyped λ -calculus (It is a restriction in the sense that not all terms are well-typed.)
- Expressions in STLC, assuming t is a type (we'll show this soon):
 - - Χ
 - I (e : '
 - prim ::= + | * | ...

Optionally, any subexpression may be **annotated** with a type

```
;; Expressions are ifarith, with several special builtins
(define (expr? e)
  (match e
    ;; Variables
   [(? symbol? x) #t]
    ;; Literals
   [(? bool-lit? b) #t]
   [(? int-lit? i) #t]
    ;; Applications
    [`(,(? expr? e0) ,(? expr? e1)) #t]
    ;; Annotated expressions
    [`(,(? expr? e) : ,(? type? t)) #t]
    ;; Anotated lambdas
```

[`(lambda (,(? symbol? x) : ,(? type? t)) ,(? expr? e)) #t]))

The *simply typed* lambda calculus is a type system built on top of a small kernel of the lambda calculus

Crucially, STLC is *less expressive* than the lambda calculus (e.g., we cannot type Ω , Y, or U!)

In practice, STLC's restrictions make it unsuitable for serious programming—but it is the basis for many modern type systems in real languages (e.g., OCaml, Rust, Swift, Haskell, ...)

Terms *inhabit* types (via the typing judgement)

Term Syntax

Type Syntax

Term Syntax

Term Syntax

Type Syntax

Examples... bool -> num
num -> (num -> num) num -> num
 (num -> num) -> num
 (bool -> (num -> bool)) -> num

For example, let's say we have this lambda, which we want to type check:

 $(\lambda(x: \text{num}))$

First we see the input type is num. Assuming x is num, we type check the body (an if). We see both sides of the if result in a number, so we know the lambda's output is also a number.

Thus, the type is num -> num

- Type checking happens hierarchically (just as proofs in IPL are tree-shaped) - Literals (0, #f) have their obvious types (these are the "axiom" cases) - More complex forms (lambda, apply) require us to type subexpressions

$$(if (x = 0) x (+ x 1)))$$

Notice that in STLC, all lambdas *must* bind their argument by naming a type explicitly. Thus, the following is **not** an STLC term.

However, the term has an infinite number of possible types:

$$\left(\lambda(x) \text{ (if \#f } (x 5) (x 8))\right)$$

The term may be *monomorphized* by instantiating once for each type T such that T is something like...

$$\left(\lambda(x:T_0 \to T_1) \ \left(\text{if } \# f \ (x \ 5) \ (x \ 8) \right) \right)$$

Question: why $T_0 \rightarrow T_1$ rather than any type T? **Answer**: x is applied (must be function)

Exercise: Write three possible monomorphizations, what is the type of the lambda as a whole?

The fact that lambdas must be annotated with a type makes typing easy: parameters are the only true source of non-local control in the lambda calculus, and represent the only ambiguity in type checking

 $(\lambda(x: \text{num} \rightarrow \text{num}))$ One possible monomorphization

Bad thought experiment

Let's say x is the Racket lambda: $(\lambda (x) (if$

Now, when x is less than 6, we return something of type bool; but otherwise, we return something of type num.

$$(+ 3 (if #f (x 5) (x 8)))$$

In this case, the + operation works as long as (x 8) returns a num, but what if $(x \ 8)$ returns a bool?

(if #f(x 5)(x 8))

A few examples...

 $(\lambda(x: \text{num}) (\lambda(y: \text{bool}) y)): \text{num} \rightarrow \text{bool} \rightarrow \text{bool})$ $(\lambda(x: \text{num} \rightarrow \text{num}) (x 5)): (\text{num} \rightarrow \text{num}) \rightarrow \text{num})$ $(\lambda(x: \operatorname{num} \rightarrow \operatorname{num}))$ (if #f (x

5)
$$(x \ 8)$$
) $)$: (num \rightarrow num) \rightarrow num

A type system for STLC

Assumptions above the line

Typing environment (Irrelevant for now...)

Type rules are written in natural-deduction style (Like IPL, big-step semantics, etc...)

The rule reads "in any typing environment Γ , we may conclude the literal number n has type num"

Const $\Gamma \vdash n$: num

Variable Lookup

We assume a **typing environment** which maps variables to their types

Ι

If x maps to type t in Γ , we may conclude that x has type t under the type environment Γ

$$f(x) = t$$
 Var
$$f(x) = x \cdot t$$

$\{x \mapsto (\mathbf{num} \to \mathbf{num}), y \mapsto \mathbf{bool}\} \vdash x : ???$

Exercise: using the **Var** rule, complete the proof

$$\Gamma(x) = t$$
 Var
$$\Gamma \vdash x : t$$

Solution

${x \mapsto (\mathbf{num} \to \mathbf{num}), y \mapsto \mathbf{bool}}(x) = \mathbf{num} \to \mathbf{num}}$ Var ${x \mapsto (num \rightarrow num), y \mapsto bool} \vdash x : (num \rightarrow num)$

$$\Gamma(x) = t$$
 Var
$$\Gamma \vdash x : t$$

If, assuming x has type x, you can conclude the body e has type t', then the whole lambda has type $t \rightarrow t'$

$$\Gamma[x \mapsto t]$$

 $\Gamma \vdash (\lambda (x : t))$

Typing Functions

$$\vdash e:t'$$

$$e):t \rightarrow t'$$

Lam

has type $t \rightarrow t'$

$$\Gamma[x \mapsto t] \vdash e : t'$$

$$- (\lambda (x : t) e) : t \to t'$$
Lam

 $\Gamma \vdash$

Notice: if we didn't have type t here, we would have to guess, which could be quite hard. We will have to do this when we move to allow *type inference*

If, assuming x has type x, you can conclude the body e has type t', then the whole lambda

$\Gamma[x \mapsto t] \vdash e$ $\Gamma \vdash (\lambda(x:t) e)$

Example: let's use the Lam rule to ascertain the type of the following expression.

(lambda (x : num) 1)

$$\begin{array}{c} -e : t' \\ \hline e : t \to t' \end{array} \quad Lam \end{array}$$

$\Gamma[x \mapsto t] \vdash$

 $\Gamma \vdash (\lambda (x : t))$

Start with the empty environment (since this term is closed) $\Gamma = \{\} \vdash (lambda (x : num) 1) : ? \rightarrow ?$

$$\begin{array}{l} -e:t' \\ \hline e):t \to t' \end{array}$$
 Lam

$\Gamma[x \mapsto t] \vdash$

 $\Gamma \vdash (\lambda (x : t) e)$

$$\begin{array}{c} -e : t' \\ \hline e) : t \to t' \end{array}$$

We suppose there are two types, t and t', which will make the derivation work.

Because x is tagged, it must be **num**

${x \mapsto \mathbf{n}}$ $\Gamma = \{\} \vdash (lambda)$

$$[\mathbf{x} : \mathbf{num}] \vdash 1 : t'$$

We suppose there are two types, t and t', which will make the derivation work.

We suppose there are two types, t and t', which will make the derivation work.

Notice: **Const** demands no subgoals

Function Application

$\Gamma \vdash e : t \to t' \quad \Gamma \vdash e' : t$

 $\Gamma \vdash (e \ e') : t'$

App

Function Application

If (under Gamma), e has type t -> t' $\Gamma \vdash e : t \to t' \quad \Gamma \vdash e' : t$

 $\Gamma \vdash (e \ e') : t'$

- And e' (its argument) has type t

App

Then the application of e to e' results in a t'

Our type system so far...

$$\Gamma(x) = t$$

App

Almost everything! What about builtins?

- Almost everything! What about builtins?
- A few ways to handle this:
- Add *pairs* to our language
- Builtins accept pairs

 $\Gamma_{l} = \{ + : (\mathbf{num} \times \mathbf{num}) \rightarrow \mathbf{num}, \dots \}$

 Or, we could assume that primitives are simply curried—in that case we would have, e.g., ((+ 1) 2) and then...

 $\Gamma_{l} = \{ + : \mathbf{num} \to (\mathbf{num} \to \mathbf{num}), \dots \}$

• Our exercise does this!!

prim ::= + | * | ...

Write derivations of the following expressions...

Practice Derivations

((λ (x

C $\Gamma \vdash n$: num $\Gamma \vdash e : t \to t'$ $\Gamma \vdash (e e)$ $\Gamma, \{x \mapsto$

 $\Gamma \vdash (\lambda (x : t))$

$$: num) \times (1)$$

$$x \mapsto t \in \Gamma$$

$$F \mapsto x : t$$

$$\Gamma \vdash e' : t$$

$$F \vdash e' : t$$

$$f \vdash e : t'$$

$$f \vdash e : t'$$

$$T \mapsto e' \mapsto t'$$

$$Lam$$

$((\lambda (x : int) x) 1)$

{} ⊢ 1 : **num**

Const

$\{\} \vdash ((\lambda (x : \mathbf{num}) x) 1) : \mathbf{num}$

 $\Gamma \vdash n$: num $\Gamma \vdash e : t \rightarrow t' \quad \Gamma \vdash e' : t$ $\Gamma \vdash (e \ e') : t'$ $\Gamma \vdash (\lambda(x:t) \ e): t \to t'$

$((\lambda (f : num -> num) (f 1)) (\lambda (x : num) x))$ $x \mapsto t \in \Gamma$ Var Const $\Gamma \vdash x : t$ App $\Gamma, \{x \mapsto t\} \vdash e : t'$ Lam

Typability in STLC

Not all terms can be given types...

- It is impossible to write a derivation for the above term!
 - f is num->num but would **need** to be num!

Not all terms can be given types...

((λ (f (λ (f

It is **impossible** to write a derivation for Ω !

Consider what would happen if f were:

- num -> num

- (num -> num) -> num

Typability

Always just out of reach...

Type Checking

- Type checking asks: given this fully-typed term, is the type checking done correctly?
 - ((λ (x:num) x:num) : num -> num)
- In practice, as long as we annotate arguments (of λ s) with specific types, we can elide the types of variables, literals, and applications
 - The "simply typed" nature of STLC means that type inference is very simple...

For each of the following expressions, do they type check? I.e., is it possible to construct a typing derivation for them? If so, what is the type of the expression?

- $((\lambda (f : num -> num) f) (\lambda (x:num) (\lambda (x:num) x)))$

Exercise

$(\lambda (f : num -> num -> num) (((f 2) 3) 4))$

Neither type checks.

 $((\lambda (f : num -> num) f) (\lambda (x:num) (\lambda (x:num) x)))$

Solution

This subexpression results in **num**, which cannot be applied. (λ (f : num -> num -> num) (((f 2) 3) 4))

Neither type checks.

 $(\lambda (f : num -> num -> num) (((f 2) 3) 4))$ ((λ (f : num -> num) f) (λ (x:num) (λ (x:num) x)) This binder demands its argument is of type num -> num, but its argument is *really* of type num -> num -> num

Solution

In the case of fully-annotated STLC, we never have to guess a type In STLC, type inference is no harder than type checking Our type checker will be **syntax-directed** Next lecture, we will look at type inference for un-annotated STLC This will require generating, and then solving, constraints

The basic approach is to observe that each of the rules applies to a different *form*

For example, if we hit *any* application expression (e e'), we know that we *have* to use the **App** rule

Thus, we write our type checker as a structurallyrecursive function over the input expression.

$$\frac{\Gamma(x) = t}{\Gamma \vdash n : \mathbf{num}} \qquad \frac{\Gamma(x) = t}{\Gamma \vdash x : t} \qquad \mathbf{v}$$

$$\frac{\Gamma \vdash e : t \rightarrow t' \quad \Gamma \vdash e' : t}{\Gamma \vdash (e \ e') : t'} \qquad \mathbf{App}$$

$$\frac{\Gamma[x \mapsto t] \vdash e : t'}{\Gamma \vdash (\lambda (x : t) \ e) : t \rightarrow t'} \qquad \mathbf{Lam}$$


```
;; Synthesize a type for e in the environment env
;; Returns a type
(define (synthesize-type env e)
  (match e
    ;; Literals
    [(? integer? i) 'int]
    [(? boolean? b) 'bool]
```

Const $\Gamma \vdash n$: num

Recognizing literals is easy

```
;; Synthesize a type for e in the environment env
;; Returns a type
(define (synthesize-type env e)
  (match e
    ;; Literals
    [(? integer? i) 'int]
    [(? boolean? b) 'bool]
    ;; Look up a type variable in an environment
    [(? symbol? x) (hash-ref env x)]
```

 $\Gamma(x) = t$ Var $\Gamma \vdash x : t$

```
;; Synthesize a type for e in the environment env
;; Returns a type
(define (synthesize-type env e)
  (match e
    ;; Literals
   [(? integer? i) 'int]
    [(? boolean? b) 'bool]
    ;; Look up a type variable in an environment
    [(? symbol? x) (hash-ref env x)]
    ;; Lambda w/ annotation
    [`(lambda (,x : ,A) ,e)
    `(,A -> ,(synthesize-type (hash-set env x A) e))]
```

$$\Gamma[x \mapsto t] \vdash e : t'$$

$$\Gamma[\lambda(x:t) e] : t \to t'$$
Lam

```
;; Synthesize a type for e in the environment env
;; Returns a type
(define (synthesize-type env e)
  (match e
    ;; Literals
    [(? integer? i) 'int]
    [(? boolean? b) 'bool]
    ;; Lambda w/ annotation
    [`(lambda (,x : ,A) ,e)
    ;; Arbitrary expression
                    t
```

;; Look up a type variable in an environment [(? symbol? x) (hash-ref env x)] `(,A -> ,(synthesize-type (hash-set env x A) e))] [`(,e : ,t) (let ([e-t (synthesize-type env e)]) (if (equal? e-t t) (error (format "types ~a and ~a are different" e-t t)))] $\Gamma \vdash e : t$ We haven't written this rule yet—but notice how the t's are implicitly unified Chk $\Gamma \vdash (e:t):t$ (i.e., asserted to be the same) in the rule

```
;; Synthesize a type for e in the environment env
;; Returns a type
(define (synthesize-type env e)
  (match e
    ;; Literals
    [(? integer? i) 'int]
    [(? boolean? b) 'bool]
    ;; Look up a type variable in
    [(? symbol? x) (hash-ref env x
    ;; Lambda w/ annotation
    [`(lambda (,x : ,A) ,e)
    `(,A -> ,(synthesize-type (hash-set env x A) e))]
    ;; Arbitrary expression
    [`(,e : ,t) (let ([e-t (synthesize-type env e)])
                  (if (equal? e-t t)
                    t
                    (error (format "types ~a and ~a are different" e-t t)))]
    ;; Application
    [`(,e1 ,e2)
     (match (synthesize-type env e1)
       [ (, A ->, B)
        (let ([t-2 (synthesize-type env e2)])
          (if (equal? t-2 A)
            B
            (error (format "types \sim a and \sim a are different" A t-2)))))))))
```

$$\begin{array}{c} \Gamma \vdash e : t \rightarrow t' \quad \Gamma \vdash e' : t \\ \hline & & & \\ \Gamma \vdash (e \ e') : t' \end{array} \end{array}$$
 App
 an environment
)]

53

The Curry-Howard Isomorphism

The Curry-Howard Isomorphism is a name given to the idea that every **typed lambda calculus** expression is a computational interpretation of a **theorem** in a suitable constructive logic.

For STLC: every well-typed term in STLC is a **theorem** in intuitionistic propositional logic (STLC ~= IPL).

So far, we have discussed four rules in STLC: Var, Const, App, and Lam

These rules exactly mirror corresponding rules in IPL

The Var rule corresponds to the Assumption rule In IPL, Γ is a set of propositions (assumed true) In STLC, Γ is a map from type variables to their types

$\begin{array}{c} x \mapsto t \in \Gamma \\ \hline \Gamma \vdash x : t \end{array} \quad \text{Var} \end{array}$

 $\Gamma: \mathbf{Var} \to \mathbf{Type}$

Assumption $-\Gamma, P \vdash P$

$\Gamma: \textbf{Set}(\textbf{Proposition})$

$$\frac{x \mapsto t \in \Gamma}{\Gamma \vdash x : t} \quad \text{Var}$$
$$\Gamma \vdash e : A \to B \quad \Gamma \vdash e' : A$$
$$\Gamma \vdash (e \ e') : B$$

The **App** rule corresponds to modus ponens in IPL Notice how the type is $A \rightarrow B$ but in IPL it is $A \Rightarrow B$

Assumption $\[finite]{} \overline{\Gamma, P \vdash P} \$ App $\Rightarrow \mathbf{E} \[finite]{} \frac{\Gamma \vdash A \Rightarrow B \quad \Gamma \vdash A}{\Gamma \vdash A} \]$

The Lam rule introduces assumptions, just as \Rightarrow I does in IPL

$$\frac{x \mapsto t \in \Gamma}{\Gamma \vdash x : t} \quad \text{Var}$$

$$\frac{\Gamma \vdash e : A \to B \quad \Gamma \vdash e' : A}{\Gamma \vdash (e \ e') : B}$$

$$\Gamma, \{x \mapsto t\} \vdash e : A$$

$$\Gamma \vdash (\lambda (x : t) \ e) : A \to B$$

57

in STLC, you could have written it in IPL instead

There is an *exact correspondence* between proof trees in IPL and STLC

What this means is that any time you write a proof tree

Assumption

$$\Gamma, P \vdash P$$

 E1
 $\Gamma \vdash P \land Q$
 $\wedge E2$
 $\Gamma \vdash P \land Q$
 $\wedge I$
 $\Gamma \vdash P \land Q$
 $\vee I1$
 $\Gamma \vdash P$
 $\vee I2$
 $\Gamma \vdash Q$
 $\vee I2$
 $\Gamma \vdash Q$
 $\vee E$
 $\Gamma \vdash A \lor B$
 $\Gamma, A \vdash C$
 $\Gamma, B \vdash C$
 $\Gamma \vdash A \Rightarrow B$
 $\Gamma \vdash A$
 $\Rightarrow E$
 $\Gamma, A \vdash B$
 $\neg, A \vdash C$
 $\Gamma, B \vdash C$
 $\Gamma \vdash A \Rightarrow B$
 $\Gamma \vdash A$
 $\Rightarrow E$
 $\Gamma, A \vdash B$
 $\neg, A \vdash B$
 $\Rightarrow I$

This begs a question: we have covered **this** (in STLC) so far, what about *the rest*

 $\neg P$ is sugar for $P \Rightarrow \bot$

This is an exciting question because it asks: what is the computational interpretation of \land , \lor , and \perp

Assumptio

$$P = \frac{\Gamma, P \vdash P}{\Gamma, P \vdash P}$$

$$Q = \frac{\Gamma \vdash P \Gamma \vdash Q}{\Gamma \vdash P \land Q}$$

$$P \lor Q = \frac{\Gamma \vdash A \lor B \quad \Gamma, A \vdash C \quad \Gamma, B \vdash \Gamma \vdash C}{\Gamma \vdash C}$$

$$E = \frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} \Rightarrow I$$

 $\neg P$ is sugar for $P \Rightarrow \bot$

Let's just start with
$$\wedge$$
,
type-theoretic an
 $\wedge E1 \qquad \frac{\Gamma \vdash P \land Q}{\Gamma \vdash P} \qquad \wedge E2 \qquad \uparrow$

The type of a pair is a product type: (car e) | (cdr e) The type of a pair is a product type: The computational interpretation (cons 5 #t) : num × bool of \land is a pair, so we add syntax for pairs into our language

e) t ::= num | bool | ... | t × t ;; product types Now, we define the type rules for product (×) types CHI tells us the rules should look like the yellow ones

$$\wedge \mathbf{E1} \quad \frac{\Gamma \vdash P \land Q}{\Gamma \vdash P} \qquad \wedge \mathbf{E2} \quad \frac{\Gamma \vdash P \land Q}{\Gamma \vdash Q} \qquad \wedge \mathbf{I} \quad \frac{\Gamma \vdash P \quad \Gamma \vdash Q}{\Gamma \vdash P \land Q}$$

"If e is a pair, (car/cdr e) is the type "If e_0 is type A and e_1 is type B, of its first/second element" (cons $e_0 e_1$) is type A × B"

×E1
$$\Gamma \vdash e : A \times B$$

 $\Gamma \vdash (car e) : A$ ×E2

$\Gamma \vdash e : A \times B$	×I	$\Gamma \vdash e_0 : A$	$\Gamma \vdash e_1 : B$
$\Gamma \vdash (\operatorname{cdr} e) : B$			$e_0 e_1$) : $A \times B$

$$\begin{array}{c} \Gamma \vdash P \\ \neg \mathbf{I1} & \overline{\Gamma \vdash P \lor Q} \end{array} \quad \begin{array}{c} \Gamma \vdash Q \\ \neg \mathbf{I2} & \overline{\Gamma \vdash P \lor Q} \end{array} \quad \begin{array}{c} \Gamma \vdash Q \\ \overline{\Gamma \vdash P \lor Q} \end{array} \quad \begin{array}{c} \Gamma \vdash A \lor B & \Gamma, A \vdash C & \Gamma, B \vdash C \end{array} \\ \neg \mathbf{E} & \overline{\Gamma \vdash C} \end{array}$$

The computational interpretation of v is a discriminated union

Next, let's move to v

t ::= ... | t + t

Now we have *sum* types (inj left 42) : num × bool Also many other types (inj_left 42) : num × num (inj left 42) : num × (num -> nι (inj left 42) : num × (num × nur

 $\bullet \bullet \bullet$

A discriminated union A + B says: "I carry either information of type A, or information of type B; but I can't promise it's exactly A or exactly B—thus, to interact with the information, you must always do case analysis (i.e., matching).

The computational interpretation of v is a discriminated union

;; In OCaml, we would write this: # type ('a, 'b) t = Left of 'a | Right of 'b;; type ('a, 'b) t = Left of 'a | Right of 'b # Left (5);; -: (int, 'a) t = Left 5 ;; OCaml's type system supports general ADTs

Now, we define the type rules for product (×) types CHI tells us the rules should look like the yellow ones

$$\vee \mathbf{I1} \qquad \begin{array}{c} \Gamma \vdash P \\ \hline \Gamma \vdash P \lor Q \end{array} \qquad \begin{array}{c} \Gamma \vdash Q \\ \neg \mathbf{I2} \end{array} \qquad \begin{array}{c} \Gamma \vdash P \lor Q \end{array}$$

"Using e, we can witness either the left or right choice."

+I1
$$\Gamma \vdash e : A$$

 $\Gamma \vdash (\text{left } e) : A + B$ +I2 $\Gamma \vdash (\text{right } e) : A + B$

The elimination rule for \vee is interesting; we are obligated to prove two subgoals: (a) assuming A, prove C, and (b) assuming B, prove C

The two subgoals are functions (callbacks) which observe a value of type A or B

$$B \quad \Gamma, A \vdash C \quad \Gamma, B \vdash C$$
$$\Gamma \vdash C$$

In our setting, we recognize \vee as +, and thus A \vee B is a discriminated union, i.e., a value of a type either A or B—but we can only know which by matching

νE

$\Gamma \vdash A \lor B \qquad \Gamma, A \vdash C \qquad \Gamma, B \vdash C$ $\Gamma \vdash C$

νE

$\Gamma \vdash A \lor B \qquad \Gamma, A \vdash C \qquad \Gamma, B \vdash C$ $\Gamma \vdash C$

Notice that the handlers must produce the same type!

The constructive notion of negation says two things:
* You're never allowed to construct a proof of false:
> thus, ⊥ has no introduction rules
* If you can prove ⊥ using what you currently know, then you must be in a contradiction, and you can freely admit anything.

Like a lucid dream

Now, we need to ask: what's the *computational* interpretation of \perp ?

The constructive notion of negation says two things:
* You're never allowed to construct a proof of false:
> thus, ⊥ has no introduction rules
* If you can prove ⊥ using what you currently know, then you must be in a contradiction, and you can freely admit anything.

Like a lucid dream

Now, we need to ask: what's the *computational* interpretation of \perp ?

First: there is no rule to introduce \perp . Second, if there is some expression which we can type which is \perp , we know we are in a contradiction and are allowed to materialize a value of any type we please.

Our full type system: STLC, products, unions, and negation

This type system corresponds precisely to

Vanilla STLC

Const
$$\frac{x \mapsto t \in \Gamma}{\Gamma \vdash x : t}$$
 Var $\frac{\Gamma, \{x \mapsto t\} \vdash e : t'}{\Gamma \vdash (\lambda (x : t) e) : t \to t')}$

Products (pairs)

71

$$\begin{array}{c|c} e:A \times B \\ \hline (\operatorname{cdr} e):B \end{array} \quad \begin{array}{c} \mathsf{XI} & \Gamma \vdash e_0:A & \Gamma \vdash e_1:B \\ \hline \Gamma \vdash (\operatorname{cons} e_0 e_1):A \times B \end{array}$$

Sums (discriminated unions)

$$- \frac{\mathbf{F} \vdash e : A + B \quad \Gamma, e_0 : A \vdash e'_0 : C \quad \Gamma, e_1 : A \vdash e'_1}{\Gamma \vdash (\text{case } e \text{ of (left } e_0 \Rightarrow e'_0) \text{ (right } e_1 \Rightarrow e'_1))}$$

Negation
$$\neg A \text{ is } A \rightarrow \bot$$
 $\Gamma \vdash e : \bot$ $\neg A \text{ is } A \rightarrow \bot$ $\Gamma \vdash (\text{case } e \text{ of}) : t$

L	.an	ז
•		
•	С	

A family of logics / type systems

adding rules to the logics force corresponding rules in the type system

- To prove interesting theorems, we want to say things like: \forall (l : list A) : {l' : sorted l' $\land \forall x$. (member l x) \Rightarrow (member l' x)}
- For all input lists I
- The output is a list I', along with a proof that:
 - (a) I' is sorted (specified elsewhere)
 - (b) every member of I is also a member of I'
- Any issues?
 - (Maybe we also want to assert length is the same?)

- Curry-Howard Isomorphism says we can keep adding logic / language features –
- IPL is **boring**—it can't say much. Expressive power is *limited* to propositional logic

Completeness of STLC

- E.g., any program using recursion
- Several useful **extensions** to STLC
- Fix operator to allow typing recursive functions
- Algebraic data types to type structures
- Recursive types for full algebraic data types
- •tree = Leaf (int) | Node(int,tree,tree)

• **Incomplete**: Reasonable functions we can't write in STLC

Typing the Y Combinator

The "real" solution is quite nontrivial—we need recursive types, which may be formalized in a variety of ways - We will not cover recursive types in this lecture, I am happy to offer pointers Our hacky solution works in practice, but is not sound in general - More precisely, the logic induced by the type system is no longer sound (can prove \perp and therefore everything)

 $\Gamma \vdash f \colon t \to t \quad \mathbf{Y}$ $\Gamma \vdash (Yf) : t$

Think of how this would look for **fib**

 $\Gamma \vdash f : t \to t \quad \mathbf{Y}$ $\Gamma \vdash (Yf) : t$ What would t be here? (let ([fib (Y (λ (f) (λ (x) (if (= x 0))(* x (fib (- x 1))))))))))))

Typing the Y Combinator

Error States

- A program steps to an **error state** if its evaluation reaches a point where the program has not produced a value, and yet cannot make progress
- Gets "stuck" because + can't operate on λ

$((+ 1) (\lambda (x) x))$

Error States

- A program steps to an error state if its evaluation reaches a point where the program has not produced a value, and yet cannot make progress
- Gets "stuck" because + can't operate on λ

$((+ 1) (\lambda (x) x))$

(Note that this term is **not typable** for us!)

Soundness

- A type system is **sound** if no typable program will ever evaluate to an error state
 - "Well typed programs cannot go wrong." – Milner
 - (You can **trust** the type checker!)

Proving Type Soundness

Progress

If e typable, then it is either a value or can be further reduced

- **Theorem:** if e has some type derivation, then it will evaluate to a value.
 - Relies on two lemmas
- Preservation

If e has type t, any reduction will result in a term of type t

Progress

If e typable, then it is either a value or can be further reduced

(In our system) not too hard to prove by induction on the typing derivation.

Combination of progress and preservation says: you can either take a welltyped step and maintain the invariant, or you are done (at a value).

We will skip the proof—it depends on understanding induction over derivations, chat with me if interested...

Preservation

If e has type t, any reduction will result in a term of type t

Type Inference

- Allows us to leave some **placeholder** variables that will be "filled in later"
 - ((λ (x:t) x:t') : num -> num)
- The num->num constraint then forces t = numand t' = num

Type Inference

$(\lambda (x) (\lambda (y:num->num) ((+ (x y)) x)))$

Type inference can **fail**, too...

No **possible** type for x! Used as fn and arg to +

Type Inference has been of interest (research and practical) for many years

It allows you to write **untyped** programs (much less painful!) and automatically synthesize a type for you—as long as the type exists (catch your mistakes)

Type inference can be seen as enumerating **all possible type assignments** to infer a valid typing. You can think of it as solving the equation:

```
(\lambda (f) ((f 2) 3) 4))
                     Type inference
(\lambda (f : num -> num -> num -> num) (((f 2) 3) 4))
```

HACE STATES AND STATES TEAM OF STATES AND STATES TARGET AND STATES AN

How hard is this problem (tractability)?

Type inference can be seen as enumerating all possible type assignments to infer a valid typing. You can think of it as solving the equation:

that we *could* check, in principle

So it is not obvious that this is a terminating process. But: humans almost always write "reasonable" types:

((a -> ((a -> b) -> ((a -> b) -> (b -> c))) -> ...) is possible but uncommon

We will see next lecture that a procedure exists which finds a typing, if a typing exists. This relies on *unification* (a principle from logic programming)

HACE STATES TEACHER JT. ((f 2) 3) 4)

There are an infinite number of *possible* T (e.g., int, bool, int->int, bool->bool, ...)

What is the correct type?

ls it: (a) f = int ->int, x = int(b) f = bool -> int, x = bool

(lambda (f) (lambda (x) (if (if-zero? (f x)) 1 0)))

- (c) f = (int->int)->int, x = int->int

What is the correct type?

ls it: (a) f = int ->int, x = int(b) f = bool -> int, x = bool(d) All of the above

(lambda (f) (lambda (x) (if (if-zero? (f x)) 1 0)))

- (c) f = (int->int)->int, x = int->int

Type Variables

(lambda (f) (lambda (x) (if (if-zero? (f x)) 1 0)))

Lesson:

We can't pick *just one* type. Instead, we need to be able to instantiate f and x whenever a suitable type may be found. For example, what if we **let-bind** the lambda and use it in two different ways!?

(let ([g (lambda (f) (lambda (x) (if (if-zero? (f x)) 1 0)))])
 (+ ((g (lambda (x) x)) 0) ((g (lambda (x) 1)) #f))
This usage requires f = nat->nat and x = nat
This usage requires f = bool->nat and x = bool

Generalizations

Instead, we can keep a generalized type by using a **type** this example, using type var T): Type of f = T -> int Type of x = T

for equality! This is actually nontrivial when we add polymorphism, but is simple in STLC (structural equality)

- (lambda (f) (lambda (x) (if (if-zero? (f x)) 1 0)))
- variable, allowing a good type inference system to derive (for

Notice that this system *demands* we must be able to compare T

Constraint-Based Typing

subterm in the program and generate a constraint

later constrained by their usages

- The crucial trick to implementing type inference is to use a constraint-based approach. In this setting, we walk over each
- Unannotated lambdas generate new type variables, which are
- Later, we will **solve** these constraints by using a process named **unification**

```
(define (build-constraints env e)
 (match e
   ;; Literals
   [(? integer? i) (cons `(,i : int) (set))]
   [(? boolean? b) (cons `(,b : bool) (set))]
   ;; Look up a type variable in an environment
   [(? symbol? x) (cons `(,x : ,(hash-ref env x)) (set))]
   ;; Lambda w/o annotation
   [`(lambda (,x) ,e)
    ;; Generate a new type variable using gensym
    ;; gensym creates a unique symbol
    (define T1 (fresh-tyvar))
    (match (build-constraints (hash-set env x T1) e)
      [(cons `(,e+ : ,T2) S)
       (cons `((lambda (,x : ,T1) ,e+) : (,T1 -> ,T2)) S)])]
   ;; Application: constrain input matches, return output
   [`(,e1 ,e2)
    (match (build-constraints env e1)
      [(cons `(,e1+ : ,T1) C1)
       (match (build-constraints env e2)
         [(cons `(,e2+ : ,T2) C2)
          (define X (fresh-tyvar))
          (cons `(((,e1+:,T1) (,e2+:,T2)) :,X)
                (set-union C1 C2 (set `(= ,T1 (,T2 -> ,X))))])])]
   ;; Type stipulation against t--constrain
   [`(,e : ,t)
    (match (build-constraints env e)
      [(cons `(,e+ : ,T) C)
       (define X (fresh-tyvar))
       (cons `((,e+:,T):,X) (set-add (set-add C `(=,X,T)) `(=,X,t)))])]
   ;; If: the guard must evaluate to bool, branches must be
   ;; of equal type.
   [`(if ,e1 ,e2 ,e3)
    (match-define (cons `(,e1+ : ,T1) C1) (build-constraints env e1))
    (match-define (cons `(,e2+ : ,T2) C2) (build-constraints env e2))
    (match-define (cons `(,e3+ : ,T3) C3) (build-constraints env e3))
    (cons `((if (,e1+:,T1) (,e2+:,T2) (,e3+:,T3)) :,T2)
          (set-union C1 C2 C3 (set `(= ,T1 bool) `(= ,T2 ,T3))))]))
```

Building Constraints

90

Unification

At the end of constraint-building, we have a ton of equality constraints between base types and type variables

tv0		int		
ty1	=	tv0	->	tv2
tv2	=	tv3		
tv3		tv4		

In this example, what is ty1? Answer: think about constraints and equalities: ty1 must be int->int

(lambda (x : ty1) ...)

```
;; within the constraint constr, substitute S for T
(define (ty-subst ty X T)
 (match ty
   [(? ty-var? Y) #:when (equal? X Y) T]
   [(? ty-var? Y) Y]
   ['bool 'bool]
   ['int 'int]
   [`(,T0 -> ,T1) `(,(ty-subst T0 X T) -> ,(ty-subst T1 X T))]))
(define (unify constraints)
 ;; Substitute into a constraint
  (define (constr-subst constr S T)
    (match constr
      [`(=,C0,C1)`(=,(ty-subst C0 S T),(ty-subst C1 S T))]))
 ;; Is t an arrow type?
  (define (arrow? t)
    (match t [`(, -> , ) #t] [ #f]))
  ;; Walk over constraints one at a time
  (define (for-each constraints)
    (match constraints
      ['() (hash)]
      [`((= ,S ,T) . ,rest)
       (cond [(equal? S T)
              (for-each rest)]
             [(and (ty-var? S) (not (set-member? (free-type-vars T) S)))
              (hash-set (unify (map (lambda (constr) (constr-subst constr S T)) rest)) S T)]
             [(and (ty-var? T) (not (set-member? (free-type-vars S) T)))
              (hash-set (unify (map (lambda (constr) (constr-subst constr T S)) rest)) T S)]
             [(and (arrow? S) (arrow? T))
              (match-define `(,S1 -> ,S2) S)
              (match-define `(,T1 -> ,T2) T)
              (unify (cons `(= ,S1 ,T1) (cons `(= ,S2 ,T2) rest)))]
             [else (error "type failure")])))
```

Unification

Why Type Theory?

Why is type synthesis / checking useful?

- Can write **fully-verified** programs.
 - Cons: type systems are esoteric, complicated, academic, etc... - Popular languages (Swift, Rust, etc...) are tending towards more
- elaborate type systems as they evolve
- Type synthesis offers me "proofs for free:" - "If my program type checks it works" — **not** true in C/C++/...
- Less mental burden, like CoPilot (etc... tools), type systems can integrate into IDEs to use synthesis information in guiding programming
 - In some ways, this reflects the logical statements underlying the type system's design (Curry Howard)

"Proofs as Programs"

A significant amount of interest has been given to programming languages which use **powerful type systems** to write programs alongside a proof of the program's correctness

Imagine how nice it would be to write a **completely-formallyverified** program—no bugs ever again!

Dependent Type Systems

type (something like)

- These are called *dependent types*, because types can depend on *values* - This allows expressing that I' is sorted
- Unfortunately, these type systems are way more complicated - Worse, even type *checking* may be **undecidable** (in general)

Precise formalization of these systems is beyond the scope of this class

- We can construct type systems / programming languages where terms can be of
 - \forall (l : list A) : {l' : sorted l' $\land \forall$ (x : A). (member l x) \Rightarrow (member l' x)}

and subsequently enable "fully-verified" programming

They hit a variety of expressivity points. The fundamental trade off is: (a) expressivity vs. (b) automation.

manual annotation (potentially).


```
"prove(M,I) :- append(Q,[C|R],M), \+member(-_,C),
 append(Q,R,S), prove([!],[[-!|C]|S],[],I).
prove([],_,_,_).
prove([L|C],M,P,I) := (-N=L; -L=N) \rightarrow (member(N,P);
 append(Q,[D|R],M), copy_term(D,E), append(A,[N|B],E),
 append(A,B,F), (D==E -> append(R,Q,S); length(P,K), K<I,
 append(R,[D|Q],S)), prove(F,S,[L|P],I)), prove(C,M,P,I)."
```

- A huge family of languages have popped up to implement dependent type systems
- Highly-expressive systems require you to write all the proofs yourself, and a lot of

Explicit Theorem Proving / Hole-Based Synth

Here I give an Agda definition for products

{- In Agda: for all P / Q, P -> Q -> P -} g_q_p : (P Q : Set) -> P -> Q -> P $p_q_p P Q pf_P pf_Q = pf_P$ data _x_ (A : Set) (B : Set) : Set where (_,_) : А → B - - - - $\rightarrow A \times B$ proj1 : ∀ {A B : Set} $\rightarrow A \times B$ - - - - -→ A projl (x, xl) = xproj2 : ∀ {A B : Set} $\rightarrow A \times B$ → B $proj2 \langle x, x1 \rangle = x1$ **∏U:---** hello.agda 48% L36 <E> (Aada:Checked) U:%*- *All Done* All L1 <M> (AgdaInfo)

waterloo.ca/~plragde/747/notes/index.html

Explicit Theorem Proving / Hole-Based Synth

```
p : (PQ : Set) -> P × (Q × P) -> Q
 p P Q pf =
 {- proj1 (proj2 pf) -}
                                     (Agda)
]U:--- hello.agda
                      Bot L57
                                <E>
 13 : Q [ at /home/guest/hello.agda:59,12-13 ]
U:%*- *All Goals* All L1
                                    (AgdaInfo)
                             <M>
```

Agda will tell me what I need to fill in, allows me to use "holes" and then helps me hunt for a working proof.

```
proj1 : ∀ {A B : Set}
  \rightarrow A \times B
  → A
projl (x, xl) = x
proj2 : ∀ {A B : Set}
  \rightarrow A \times B
  → B
proj2 (x, x1) = x1
```

```
p : (P Q : Set) -> P \times (Q \times P) -> Q
p P Q pf = (proj1 (proj2 pf))
```


Tactic-Based Theorem Proving

Some systems provide logic-programming (i.e., *proof search*) to help assist users - CHI tells us that proof search is tantamount to program synthesis - Here I use Coq's "intuition" tactic to automatically construct a proof for me

right: printing the proof term)

CoqIde				
Warning: query commands should not	be inse	rted in scri	pts	<u>^</u>
p_q_p = fun (P Q : Prop) (H : P) (_ : Q) => H : forall P Q : Prop, P -> Q -> P				
Argument scopes are [type_scope type	_scope	;]		
		Char 10	One la state	
	Line:	5 Char: 13	Coqlde started	

(Using Coq to prove $P \Rightarrow Q \Rightarrow P$; left: using the "intuition" tactic,

Automating proof via constraint solving

Some systems translate proof obligations into formulas which are then sent to SMT solvers (solves goals in first-order logic, such as Z3)

This can partially automate many otherwise-tricky proofs—in certain situations

F* based on this idea, but other proof search approaches exist (Idris, etc...)

The more expressive the type theory, the more work is required to build proofs.

How does this work?

These systems interpret **programs** as **theorems** in higher-order logics (calculus of constructions, etc...)

Unfortunately, no free lunch: this makes the type system way more complicated in practical settings

We will see a *taste* of the inspiration for these systems, by reflecting on STLC's expressivity

Valid Contexts.

$$Dash * rac{\GammaDash \Delta}{\Gamma[x{:}\Delta]Dash *} rac{\GammaDash P : *}{\Gamma[x{:}P]Dash *}$$

Product Formation.

$$rac{\Gamma[x:P]Dash\Delta}{\Gammadash[x:P]\Delta} ~~ rac{\Gamma[x:P]Dash N:*}{\Gammadash[x:P]N:*}$$

Variables, Abstraction, and Application.

$$\frac{\Gamma \vdash \ast}{\Gamma \vdash x:P} \begin{bmatrix} x:P \end{bmatrix} \text{ in } \Gamma \qquad \frac{\Gamma[x:P] \vdash N:Q}{\Gamma \vdash (\lambda x:P) \, N: [x:P] \, Q} \frac{\Gamma \vdash M: [x:P] \, Q}{\Gamma \vdash (M \, N): [N/x] Q}$$

s, t, A, B ::= xvariable $(x : A) \rightarrow B$ dependent function type lambda abstraction function application dependent pair type $(x : A) \times B$ dependent pairs $\langle s, t \rangle$ projection $\pi_2 t$ $\pi_1 t \mid$ universes $(i \in \{0..\})$ Set_i the unit type 1 $\langle \rangle$ the element of the unit type Γ, Δ $::= \varepsilon$ $| (x : A)\Gamma$ telescopes

What to Know for Midterm 2 on Types

- able to point out where it is broken.
- lines and stacked formulas) for small programs using the rules
- Understand the definition of the term "soundness" as it applies to type systems
 - If a PL's type system is sound, are any dynamic errors possible?

- Know how to read the typing rules we presented throughout this lecture. - Know how to check that a typing derivation presented is correct, or be

- Know how to build a typing derivation (i.e., proof tree, the things with the