Tail Calls and Tail

Recursion

CIS352 - Spring 2023
Kris Micinski

((lambda (x) x) ((lambda (y) y) 5))
 ((lambda (x) x) 5)

5

Calculating factorial in Racket

```
(define (factorial n)
    (if (= n 0)
        1
        (* n (factorial (sub1 n)))))
```

Calculating factorial in Racket

(define (factorial n)
 (if (= n 0) Defines base case
 (* n (factorial (sub1 n)))))

Calculating factorial in Racket

```
(define (factorial n)
    (if (= n 0)
        1
        (* n (factorial (sub1 n)))))
        R
```

 and inductive / recursive case

Calculating factorial in Racket

```
(define (factorial n)
    (if (= n 0)
        1
        (* n (factorial (sub1 n)))))
```

We can think of recursion as "substitution"
> (factorial 2)
(define (factorial n)
(if (= n 0)

1
(* $\mathrm{n}(f a c t o r i a l(s u b 1 n))))$
We can think of recursion as "substitution"
> (factorial 2)
$=$ (if (= 20)
1
(* 2 (factorial (sub1 2))))
Copy defn, substitute for argument n
(define (factorial n)
(if (= n 0)
1
(* n (factorial (sub1 n)))))
We can think of recursion as "substitution"
> (factorial 2)
$=$ (if (= 20)
1
(* 2 (factorial (sub1 2))))
= (if \#f 1 (* 2 (factorial (sub1 2))))
$=(* 2$ (factorial (sub1 2)))
$=(* 2$ (factorial 1))
= (* 2 (if ...))

```
=(* 2 (if (= 2 0)
    1
    (* n (factorial (sub1 2))))
= (* 2 (factorial 1))
= ...
=(*2 (* 1 1))
=(* 2 1)
= 2
Notice we're building a big stack of calls to \(*\)
```


Tail Calls

- Unlike calls in general, tail calls do not affect the stack:
- Tail calls do not grow (or shrink) the stack.
- They are more like a goto/jump than a normal call.

Tail Position

- A subexpression is in tail position if it's:
- The last subexpression to run, whose return value is also the value for its parent expression
- In (let ([x rhs]) body); body is in tail position...
- In (if grd thn els); thn \& els are in tail position...

Tail Recursion

- A function is tail recursive if all recursive calls in tail position
- Tail-recursive functions are analogous to loops in imperative langs

Tail calls / tail recursion

- Unlike calls in general, tail calls do not affect the stack:
- Tail calls do not grow (or shrink) the stack.
- They are more like a goto/jump than a normal call.
- A function is tail recursive if all recursive calls in tail position
- Tail-recursive functions are analogous to loops in imperative langs

Instead, use dynamic programming: design a recursive solution top-down, but implement as a bottom-up algorithm!

Start with first two, then build up

Instead, use dynamic programming:
design a recursive solution top-down, but implement as a bottom-up algorithm!

Key idea: only need to look at two most recent numbers

Accumulate via arguments

$$
\begin{aligned}
& \text { (define (fib-h i n0 n1) } \\
& \quad(\text { if (}=\text { i } 0 \text {) } \\
& \text { n0 } \\
& \quad(f i b-h(-i 1) n 1 \quad(+n 0 n 1)))) \\
& \text { (define (fib n) (fib-h n 0 1)) }
\end{aligned}
$$

Exercise

$$
\begin{aligned}
& \text { (define (fib-h i n0 n1) } \\
& \quad(\text { if (}=\text { i } 0) \\
& \quad \text { n0 } \\
& \quad(f i b-h(-i 1) n 1 \quad(+n 0 n 1)))) \\
& \text { (define (fib n) (fib-h n 0 1)) }
\end{aligned}
$$

Question: what is the runtime complexity of fib?

Exercise

$$
\begin{aligned}
& \text { (define (fib-h i n0 n1) } \\
& \quad(\text { if (}=\text { i } 0 \text {) } \\
& \text { n0 } \\
& \quad(f i b-h(-i 1) n 1 \quad(+n 0 n 1)))) \\
& \text { (define (fib n) (fib-h n 0 1)) }
\end{aligned}
$$

Answer: $\mathrm{O}(\mathrm{n})$, fib-helper runs from n to 0

Consider how fib-h executes

```
(define (fib-h i n0 n1)
    (if (= i 0)
    n0
    (fib-h (- i 1) n1 (+ n0 n1))))
(define (fib n) (fib-h n 0 1))
```

$$
\begin{aligned}
& \text { (fib-helper } 30 \text { 1) } \\
& \text { = (if (= } 3 \text { 0) 0 (fib-h (- } 3 \text { 1) } 1 \text { (+ 0 1))) } \\
& \text { = ... } \\
& \left.=\left(\begin{array}{llll}
\text { fib-h } & 2 & 1 & 1) \\
=(\text { if }(=2 & 0
\end{array}\right) 1(f i b-h(-21) 1(+11))\right) \\
& \text { = ... } \\
& \text { = (fib-h } 112 \text {) }
\end{aligned}
$$

Notice that we don't get the "stacking" behavior: recursive calls don't grow the stack

This is because $\mathrm{fib}-\mathrm{h}$ is tail recursive

$$
\begin{aligned}
& \text { (define (fib-h i n0 n1) } \\
& \text { (if (}=\text { i 0) } \\
& \text { n0 (fib-h (- i 1) n1 (+ n0 n1)))) } \\
& \text { (define (fib n) (fib-h n 0 1)) } \\
& \text { Intuitively: a callsite is in tail-position if it is the } \\
& \text { last thing a function will do before exiting } \\
& \text { (We call these tail calls) }
\end{aligned}
$$

This is because fib-h is tail recursive

Tail calls / tail recursion

- Unlike calls in general, tail calls do not affect the stack:
- Tail calls do not grow (or shrink) the stack.
- They are more like a goto/jump than a normal call.
- A subexpression is in tail position if it's the last subexpression to run, whose return value is also the value for its parent expression:
- In (let ([x rhs]) body); body is in tail position...
- In (if grd thn els); thn \& els are in tail position...
- A function is tail recursive if all recursive calls in tail position
- Tail-recursive functions are analogous to loops in imperative langs

Which of the following is tail recursive?

```
(define (length-0 l)
    (if (null? l)
    0
    (+ 1 (length-0 (cdr l)))))
```

(define (length-1 l n)
(if (null? l)
(length-1 (cdr l) (+ n 1))))

Answer

$$
\begin{aligned}
& \text { (define (length-0 l) Not tail recursive } \\
& \text { (if (null? l) Adds (+ } 1 \text {) operation to stack } \\
& \text { (+ } 1 \text { (length-0 (cdr l))))) } \\
& \text { (define (length-1 ln) Is tail recursive! } \\
& \text { (if (null? l) Call to length- } 1 \text { in tail position } \\
& \text { (length-1 (cdr l) (+ n 1)))) }
\end{aligned}
$$

