
Tail Calls and Tail
Recursion
CIS352 — Spring 2023

Kris Micinski

2

((lambda (x) x) ((lambda (y) y) 5))

((lambda (x) x) 5)

5

3

Calculating factorial in Racket

(define (factorial n)

 (if (= n 0)

 1

 (* n (factorial (sub1 n)))))

4

Calculating factorial in Racket

(define (factorial n)

 (if (= n 0)

 1

 (* n (factorial (sub1 n)))))

Defines base case

(define (factorial n)

 (if (= n 0)

 1

 (* n (factorial (sub1 n)))))

5

Calculating factorial in Racket

and inductive / recursive case

(define (factorial n)

 (if (= n 0)

 1

 (* n (factorial (sub1 n)))))

6

Calculating factorial in Racket

We can think of recursion as “substitution”

> (factorial 2)

> (factorial 2)

= (if (= 2 0)

 1

 (* 2 (factorial (sub1 2))))

(define (factorial n)

 (if (= n 0)

 1

 (* n (factorial (sub1 n)))))

7

We can think of recursion as “substitution”

Copy defn, substitute for argument n

(define (factorial n)

 (if (= n 0)

 1

 (* n (factorial (sub1 n)))))

> (factorial 2)

= (if (= 2 0)

 1

 (* 2 (factorial (sub1 2))))

= (if #f 1 (* 2 (factorial (sub1 2))))

= (* 2 (factorial (sub1 2)))

= (* 2 (factorial 1))

= (* 2 (if …))

8

We can think of recursion as “substitution”

9

…

= (* 2 (if (= 2 0)

 1

 (* n (factorial (sub1 2))))

= (* 2 (factorial 1))

= …

= (* 2 (* 1 1))

= (* 2 1)

= 2

Notice we’re building a big stack of calls to *

10

Tail Calls
• Unlike calls in general, tail calls do not affect the stack:

• Tail calls do not grow (or shrink) the stack.

• They are more like a goto/jump than a normal call.

11

Tail Position

• A subexpression is in tail position if it’s:

• The last subexpression to run, whose return value is also the
value for its parent expression

• In (let ([x rhs]) body); body is in tail position…

• In (if grd thn els); thn & els are in tail position…

12

Tail Recursion

• A function is tail recursive if all recursive calls in tail
position

• Tail-recursive functions are analogous to loops in
imperative langs

Tail calls / tail recursion
• Unlike calls in general, tail calls do not affect the stack:

• Tail calls do not grow (or shrink) the stack.

• They are more like a goto/jump than a normal call.

• A function is tail recursive if all recursive calls in tail position

• Tail-recursive functions are analogous to loops in imperative
langs

13

14

Instead, use dynamic programming: 
design a recursive solution top-down, but implement

as a bottom-up algorithm!

0 1

0 1 2 43

Start with first two, then build up

15

0 1 1 2 3

0 1 2 43

…

…

Instead, use dynamic programming: 
design a recursive solution top-down, but implement as a

bottom-up algorithm!

16

Key idea: only need to look at two most recent numbers

0 1 1 2 3 5

0 1 2 43 5

17

Accumulate via arguments

(define (fib-h i n0 n1)

 (if (= i 0)

 n0

 (fib-h (- i 1) n1 (+ n0 n1))))

(define (fib n) (fib-h n 0 1))

Exercise

18

(define (fib-h i n0 n1)

 (if (= i 0)

 n0

 (fib-h (- i 1) n1 (+ n0 n1))))

(define (fib n) (fib-h n 0 1))

Question: what is the runtime complexity of fib?

Exercise

19

(define (fib-h i n0 n1)

 (if (= i 0)

 n0

 (fib-h (- i 1) n1 (+ n0 n1))))

(define (fib n) (fib-h n 0 1))

Answer: O(n), fib-helper runs from n to 0

20

(define (fib-h i n0 n1)

 (if (= i 0)

 n0

 (fib-h (- i 1) n1 (+ n0 n1))))

(define (fib n) (fib-h n 0 1))

Consider how fib-h executes

21

(fib-helper 3 0 1)

= (if (= 3 0) 0 (fib-h (- 3 1) 1 (+ 0 1)))

= …

= (fib-h 2 1 1)

= (if (= 2 0) 1 (fib-h (- 2 1) 1 (+ 1 1)))

= …

= (fib-h 1 1 2)

Notice that we don’t get the “stacking” behavior:

recursive calls don’t grow the stack

22

(define (fib-h i n0 n1)

 (if (= i 0)

 n0

 (fib-h (- i 1) n1 (+ n0 n1))))

(define (fib n) (fib-h n 0 1))

This is because fib-h is tail recursive

Intuitively: a callsite is in tail-position if it is the
last thing a function will do before exiting

(We call these tail calls)

(define (fib-h i n0 n1)

 (if (= i 0)

 n0

 (fib-h (- i 1) n1 (+ n0 n1))))

(define (fib n) (fib-h n 0 1))

23

This is because fib-h is tail recursive

Intuitively: a callsite is in tail-position if it is the
last thing a function will do before exiting

Both of these are tail calls

(We call these tail calls)

Tail calls / tail recursion
• Unlike calls in general, tail calls do not affect the stack:

• Tail calls do not grow (or shrink) the stack.

• They are more like a goto/jump than a normal call.

• A subexpression is in tail position if it’s the last subexpression to
run, whose return value is also the value for its parent expression:

• In (let ([x rhs]) body); body is in tail position…

• In (if grd thn els); thn & els are in tail position…

• A function is tail recursive if all recursive calls in tail position

• Tail-recursive functions are analogous to loops in imperative langs

24

Exercise

Which of the following is tail recursive?

25

(define (length-0 l)

 (if (null? l)

 0

 (+ 1 (length-0 (cdr l)))))

(define (length-1 l n)

 (if (null? l)

 n

 (length-1 (cdr l) (+ n 1))))

Exercise

26

(define (length-0 l)

 (if (null? l)

 0

 (+ 1 (length-0 (cdr l)))))

(define (length-1 l n)

 (if (null? l)

 n

 (length-1 (cdr l) (+ n 1))))

Answer

Not tail recursive
Adds (+ 1 _) operation to stack

Is tail recursive!

Call to length-1 in tail position

