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- Types are a static system guaranteed by your program

- Types serve as evidence of a particular property, that relates to the 

structure of information

- For the lambda calculus, and base values, the only structure to be 

had is lambdas 
- Type systems are designed to ensure certain static properties of the 

language.  These properties can be relatively superficial, or fairly 
involved


- The simply-typed lambda calculus is one specific type system for 
the lambda calculus that models all of the things that could “go 
wrong” at the type level


- Start by type system for IfArith



Higher-order contract systems track program labels alongside 
contracts to properly assign blame when failure occurs. 
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“Correct blame for contracts”. Dimoulas. 2011.



(define/contract (fib x)

  (-> positive? positive?)

  (cond

    [(= x 0) 1]

    [(= x 1) 1]

    [else (+ (fib (- x 1)) (fib (- x 2)))]))

“I take in a positive and produce a positive.”
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(define/contract (fib x)

  (-> positive? positive?)

  (cond

    [(= x 0) 1]

    [(= x 1) 1]

    [else (+ (fib (- x 1)) (fib (- x 2)))]))

When I mess up
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(define/contract (fib x)

  (-> positive? positive?)

  (cond

    [(= x 0) 1]

    [(= x 1) 1]

    [else (+ (fib (- x 1)) (fib (- x 2)))]))

When I mess up

Racket blames me 
(anonymous-module)
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(define/contract (fib x)

  (-> positive? positive?)

  (cond

    [(= x 0) -200]

    [(= x 1) 1]

    [else (+ (fib (- x 1)) (fib (- x 2)))]))

When fib messes up

Racket blames fib
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Note that contracts are checked at runtime

(Not compile time!)

Earlier…

But sometimes we want to know our 
program won’t break before it runs!

8



Type Systems

A type system assigns each source fragment with a 
given type: a specification of how it will behave

Type systems include rules, or judgements that 
tells us how we compositionally build types for 
larger fragments from smaller fragments

The goal of a type system is to rule out programs 
that would exhibit run time type errors!
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A type system for STLC

e ::= (lambda (x) e)

    | (e e)

    | ((prim e) e)

    | x

    | n


prim ::= + | * | …
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(Simply-Typed Lambda Calculus)



e ::= (lambda (x) e)

    | (e e)

    | ((prim e) e)

    | x

    | n


prim ::= + | * | …

Term Syntax Type Syntax

t ::= nat

    | bool

    | t -> t
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e ::= (lambda (x) e)

    | (e e)

    | ((prim e) e)

    | x

    | n


prim ::= + | * | …

Term Syntax Type Syntax

t ::= nat

    | bool

    | t -> t

Function Types
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e ::= (lambda (x) e)

    | (e e)

    | ((prim e) e)

    | x

    | n


prim ::= + | * | …

Term Syntax Type Syntax

(int -> int) -> int

bool -> int

bool -> (int -> bool)

Examples…

t ::= nat

    | bool

    | t -> t

13
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;; Expressions are ifarith, with several special builtins

(define (expr? e)

  (match e

    ;; Variables

    [(? symbol? x) #t]

    ;; Literals

    [(? bool-lit? b) #t]

    [(? int-lit? i) #t]

    ;; Applications

    [`(,(? expr? e0) ,(? expr? e1)) #t]

    ;; Annotated expressions

    [`(,(? expr? e) : ,(? type? t)) #t]

    ;; Anotated lambdas

    [`(lambda (,(? symbol? x) : ,(? type? t)) ,(? expr? e)) #t]))



A type system for STLC

e ::= (lambda (x) e)

    | (e e)

    | ((prim e) e)

    | x

    | n


prim ::= + | * | …

Const
n : num

Type rules are written in natural-deduction style

Assumptions above the line

Conclusions below the line

(No assumptions here.)

(Like our big-step operational semantics.)
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A type system for STLC

Const
n : num

Assumptions above the line

Conclusions below the line

(No assumptions here.)

“We may conclude any number n has type num”

Type rules are written in natural-deduction style
(Like our big-step operational semantics.)

e ::= (lambda (x) e)

    | (e e)

    | ((prim e) e)

    | x

    | n


prim ::= + | * | …
16



Variable Lookup

Var
Γ ⊢ x : t

We assume a typing environment which maps 
variables to their types

If x maps to type t in Γ, we may conclude that x has type 
t under the type environment Γ

Γ(x) = t
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Const revisited…

Const
Γ ⊢ n : num

“We may conclude any constant n is of type num under 
any typing environment.”
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Functions…

Lam
Γ[x ↦ t] ⊢ e : t′￼

Γ ⊢ (λ (x : t) e) : t → t′￼

If you conclude that e has type t’ with Gamma 
plus assuming x has type t,…

Then you can conclude that the entire lambda 
has type t -> t’

19



Functions…

Lam
Γ ⊢ (λ (x : t) e) : t → t′￼

If you conclude that e has type t’ with Gamma 
plus assuming x has type t,…

Then you can conclude that the entire lambda 
has type t -> t’

Note
Variables (x) must be tagged with a type

(e.g., by programmer)

Γ[x ↦ t] ⊢ e : t′￼
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Lam
Γ ⊢ (λ (x : t) e) : t → t′￼

(lambda (x : num) 1)

Γ[x ↦ t] ⊢ e : t′￼
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Lam

(lambda (x : num) 1) : ? → ?Γ = {} ⊢

Start with the empty environment (since this term is closed)

Γ ⊢ (λ (x : t) e) : t → t′￼

Γ[x ↦ t] ⊢ e : t′￼
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Lam

Γ = {} ⊢ : t → t′￼

We suppose there are two types, t and t’, which 
will make the derivation work.

Γ ⊢ (λ (x : t) e) : t → t′￼

(lambda (x : num) 1)

Γ[x ↦ t] ⊢ e : t′￼
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{x ↦ num} ⊢ 1 : t′￼

We suppose there are two types, t and t’, which 
will make the derivation work.

Γ = {} ⊢ : num → t′￼(lambda (x : num) 1)

Because x is tagged, it must be num
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{x ↦ num} ⊢ 1 : t′￼

The Const rule allows us to conclude 1 : num

Γ = {} ⊢ (lambda (x : num) 1)

We suppose there are two types, t and t’, which 
will make the derivation work.

: num → t′￼
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So t’ = num

{x ↦ num} ⊢ 1 : num
Γ = {} ⊢ (lambda (x : num) 1) : num → num
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App
Γ ⊢ e : t → t′￼

Γ ⊢ (e e′￼) : t′￼

Function Application

Γ ⊢ e′￼ : t
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App
Γ ⊢ e : t → t′￼

Γ ⊢ (e e′￼) : t′￼

Function Application

Γ ⊢ e′￼ : t

If (under Gamma), e has type t -> t’
And e’ (its argument) has type t

Then the application of e to e’ results in a t’
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App
Γ ⊢ e : t → t′￼

Γ ⊢ (e e′￼) : t′￼

Γ ⊢ e′￼ : t

Our type system so far…

Lam
Γ[x ↦ t] ⊢ e : t′￼

Γ ⊢ (λ (x : t) e) : t → t′￼

Const
Γ ⊢ n : int

Var
Γ ⊢ x : t

Γ(x) = t
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e ::= (lambda (x : t) e)

    | (e e)

    | ((prim e) e)

    | x

    | n


prim ::= + | * | …

Almost everything! Just need builtin functions

Trick! Just assume they’re part of Γ!
Γι = { + : num → num → num, …}
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Practice Derivations

Write derivations of the following expressions…
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f

App
Γ ⊢ e : t → t′￼

Γ ⊢ (e e′￼) : t′￼

Γ ⊢ e′￼ : t

Lam
Γ, {x ↦ t} ⊢ e : t′￼

Γ ⊢ (λ (x : t) e) : t → t′￼

Const
Γ ⊢ n : num

Var
Γ ⊢ x : t

x ↦ t ∈ Γ

((λ (x : int) x) 1)
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App
Γ ⊢ e : t → t′￼

Γ ⊢ (e e′￼) : t′￼

Γ ⊢ e′￼ : t

Lam
Γ, {x ↦ t} ⊢ e : t′￼

Γ ⊢ (λ (x : t) e) : t → t′￼

Const
Γ ⊢ n : num

Var
Γ ⊢ x : t

x ↦ t ∈ Γ

((λ (f : num -> num) (f 1)) (λ (x : num) x))f
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Typability in STLC

Not all terms can be given types…

(λ (f : num -> num) (f f))

It is impossible to write a derivation for the above term!

f is num->num but would need to be num!
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Typability

Not all terms can be given types…

((λ (f) (f f))

  (λ (f) (f f)))

It is impossible to write a derivation for Ω!

35

Consider what would happen if f were:

- num -> num

- (num -> num) -> num

Always just out of reach…



(λ (f : num -> num -> num) (((f 2) 3) 4))

((λ (f : num -> num) f) (λ (x:num) (λ (x:num) x)))

36



Type Checking

Type checking: verifying the derivation of a fully-typed term

((λ (x:num) x:num) : num -> num)

Notice that each subterm is assigned a “full” type
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((λ (x:num) x:num) : num -> num)

Type checking tells us which rules we must 
apply if there is to be a derivation
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In the case of fully-annotated STLC, there are no parts where we have to guess a type


We can synthesize a type by looking at the annotated parameters for lambdas


This leads us to writing a syntax-directed (i.e., structurally-recursive) type synthesizer / 
checker for fully-annotated STLC


Next lecture, we will look at type inference for un-annotated STLC
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;; Synthesize a type for e in the environment env

;; Returns a type

(define (synthesize-type env e)

  (match e

    ;; Literals

    [(? integer? i) 'int]

    [(? boolean? b) 'bool]

    ;; Look up a type variable in an environment

    [(? symbol? x) (hash-ref env x)]

    ;; Lambda w/ annotation

    [`(lambda (,x : ,A) ,e)

     `(,A -> ,(synthesize-type (hash-set env x A) e))]

    ;; Arbitrary expression

    [`(,e : ,t) (let ([e-t (synthesize-type env e)])

                  (if (equal? e-t t)

                    t

                    (error (format "types ~a and ~a are different" e-t t))))]

    ;; Application

    [`(,e1 ,e2)

     (match (synthesize-type env e1)

       [`(,A -> ,B)

        (let ([t-2 (synthesize-type env e2)])

          (if (equal? t-2 A)

            B

            (error (format "types ~a and ~a are different" A t-2))))])]))



((λ (x:t) x:t’) : num -> num)

Allows us to leave some placeholder variables 
that will be “filled in later”

Type Inference

The num->num type then forces t = num and 
t’ = num
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Type inference can fail, too…

Type Inference

(λ (x) (λ (y:num->num) ((+ (x y)) x)))

No possible type for x! Used as fn and arg to +

42
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Type Inference has been of interest (research and practical) for many years

It allows you to write untyped programs (much less painful!) and automatically 
synthesize a type for you—as long as the type exists (catch your mistakes)

(λ (f) (((f 2) 3) 4))

(λ (f : num -> num -> num -> num) (((f 2) 3) 4))
Type inference

Type inference can be seen as enumerating all possible type assignments to infer a 
valid typing. You can think of it as solving the equation:

∃T. (λ (f : T) (((f 2) 3) 4))
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Type inference can be seen as enumerating all possible type assignments to infer a 
valid typing. You can think of it as solving the equation:

∃T. (λ (f : T) (((f 2) 3) 4))

There are an infinite number of possible T (e.g., int, bool, int->int, bool->bool, …) 
that we could check, in principle

So it is not obvious that this is a terminating process. But: humans almost always write 
“reasonable” types:

  ((a -> ((a -> b) -> ((a -> b) -> (b -> c))) -> …) is possible but uncommon

We will see next lecture that a procedure exists which finds a typing, if a typing exists. 
This relies on unification (a principle from logic programming)

How hard is this problem (tractability)?



Extending STLC…

e ::= (lambda (x) e)

    | (e e)

    | ((prim e) e)

    | x

    | n


prim ::= + | * | …

Let’s add if, and, or
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Extending STLC…

e ::= (lambda (x) e)

    | (e e)

    | ((prim e) e)

    | (if e e e)

    | (and e e)

    | (or e e)

    | x

    | n | #t | #f


prim ::= + | * | …

Now we need typing rules for if!
46



(if guard

    t

    f)

If needs guard to be a boolean…

Shouldn’t be valid for guard to be, e.g., (+ 1 2)

47



(if guard

    t

    f)

If needs guard to be a boolean…

Shouldn’t be valid for guard to be, e.g., (+ 1 2)

If
Γ ⊢ eg : bool

Γ ⊢ (if eg et ef) : t

Γ ⊢ et : t Γ ⊢ ef : t
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(if guard

    t

    f)

If needs guard to be a boolean…

Shouldn’t be valid for guard to be, e.g., (+ 1 2)

If
Γ ⊢ eg : bool

Γ ⊢ (if eg et ef) : t

Γ ⊢ et : t Γ ⊢ ef : t

et/ef must be same type!
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(and e1 e2)

Exercise

Can you come up with the type rules for and/or?

50



And
Γ ⊢ e1 : bool

Γ ⊢ (and e1 e2) : bool

Γ ⊢ e2 : bool

51
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Completeness of STLC

• Incomplete: Reasonable functions we can’t write in STLC

•E.g., any program using recursion

•Several useful extensions to STLC

•Fix operator to allow typing recursive functions

•Algebraic data types to type structures

•Recursive types to allow typing recursive structures

• tree = Leaf (int) | Node(int,tree,tree)
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Typing the Y Combinator

Y
Γ ⊢ f : t → t
Γ ⊢ (Y f ) : t

The “real” solution is quite nontrivial—we need recursive types, which may be formalized in a variety of ways

- We will not cover recursive types in this lecture, I am happy to offer pointers


Our hacky solution works in practice, but is not sound in general

 - More precisely, the logic induced by the type system is no longer sound
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Typing the Y Combinator

Y
Γ ⊢ f : t → t
Γ ⊢ (Y f ) : t

Think of how this would look for fib

(let ([fib

 (Y (λ (f) (λ (x)

             (if (= x 0)

                 1

                 (* x (fib (- x 1)))))))]))

What would t be here?



Error States
A program steps to an error state if its evaluation 

reaches a point where the program has not 
produced a value, and yet cannot make progress

((+ 1) (λ (x) x))

Gets “stuck” because + can’t operate on λ
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Error States
A program steps to an error state if its evaluation 

reaches a point where the program has not 
produced a value, and yet cannot make progress

((+ 1) (λ (x) x))

Gets “stuck” because + can’t operate on λ

(Note that this term is not typable for us!)
56



Soundness

A type system is sound if no typable program 
will ever evaluate to an error state

“Well typed programs cannot go wrong.” — 
Milner

(You can trust the type checker!)
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Proving Type Soundness

Theorem: if e has some type derivation, then it will 
evaluate to a value.

Relies on two lemmas
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Progress Preservation

If e typable, then it is either a 
value or can be further reduced

If e has type t, any reduction will 
result in a term of type t
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“Proofs as Programs”
A significant amount of interest has been given to programming 
languages which use powerful type systems to write programs 
alongside a proof of the program’s correctness

Imagine how nice it would be to write a completely-formally-
verified program—no bugs ever again!



60

How does this work?
These systems interpret programs as theorems in higher-order 
logics (calculus of constructions, etc…)


Unfortunately, no free lunch: this makes the type system way 
more complicated in practical settings


We will see a taste of the inspiration for these systems, by 
reflecting on STLC’s expressivity
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Intuitionistic Propositional Logic

Constructive logic variant of traditional propositional (boolean) logic

Proofs in (intuitionistic) propositional logic are built from 
natural-deduction rules, including introduction and 
elimination rules

Γ, P ⊢ P
Assumption Γ ⊢ ϕ ∧ ψ

Conjunction

Introduction

Γ ⊢ ϕ Γ ⊢ ψ

Γ ⊢ ϕ ∧ ψConjunction

Left-Elimination Γ ⊢ ϕ

Γ ⊢ ϕ ∧ ψConjunction

Right-Elimination Γ ⊢ ϕ

More reading:

https://www.classes.cs.uchicago.edu/archive/2003/spring/15300-1/intuitionism.pdf



Sometimes called the deduction theorem

Sometimes called modus ponens

“If you have a proof of ϕ⇒ ψ, and a proof of ϕ, 
then you can have a proof of ψ”
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Implication in IPL

Implication is performed by introducing-then-discharging

Γ, ϕ ⊢ ψ
Implication


Introduction Γ ⊢ ϕ ⇒ ψ

“If you can prove ψ by assuming ϕ, then you 

can prove ϕ⇒ ψ”

Γ ⊢ ψ
Implication

Elimination

Γ ⊢ ϕ ⇒ ψ Γ ⊢ ϕ
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Proving P ⇒ (Q ⇒ P)

⊢ (P ⇒ (Q ⇒ P))
Start with a goal and then grow a proof according to the rules

P ⊢ Q ⇒ P
Q, P ⊢ P

⇒ Intros

⇒ Intros

Assumption
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Small Point: Proving P ⇒ (Q ⇒ Q)

⊢ (P ⇒ (Q ⇒ P))

Should be a simple fix

P ⊢ Q ⇒ P
Q, P ⊢ P

⇒ Intros

⇒ Intros

Assumption

⊢ (P ⇒ (Q ⇒ P))
P ⊢ Q ⇒ P

Q, P ⊢ Q

⇒ Intros

⇒ Intros

Assumption

Unfortunately, our assumption rule forbids this:

Γ, P ⊢ P
Assumption

To fix this, we typically add structural rules to allow 
identifying contexts under reorderings. Some “sub-
structural” logics (linear, affine) explicitly restrict this 
for particular uses (tracking resources, etc…)
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Curry-Howard-Isomorphism

(lambda (x : int) x) : int -> int

Can be interpreted as “P implies P” (P ⇒ P, more properly int ⇒ int)

(lambda (x : int) (lambda (y : bool) x)) : (int -> (bool -> int))

Can be interpreted “P ⇒ (Q ⇒ P)”

Every well-typed STLC term is a proof of a theorem in 
intuitionistic propositional logic
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CHI vs. IPL
The key idea is to realize that the typing derivation for 
STLC precisely mirrors the deductive rules of IPL

App
Γ ⊢ e : t → t′￼

Γ ⊢ (e e′￼) : t′￼

Γ ⊢ e′￼ : t

Lam
Γ, {x ↦ t} ⊢ e : t′￼

Γ ⊢ (λ (x : t) e) : t → t′￼

VarΓ ⊢ x : t
x ↦ t ∈ Γ

Γ, ϕ ⊢ ψ
Γ ⊢ ϕ ⇒ ψ

⇒I

⇒E
Γ ⊢ ψ

Γ ⊢ ϕ ⇒ ψ Γ ⊢ ϕ

Γ, P ⊢ PAssumption
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This means that every proof tree for STLC can be trivially-mapped to a 
proof tree in IPL. I.e., if (e : t) is typeable in STLC, the theorem t 
holds in IPL by construction of the proof built using this mapping

App
Γ ⊢ e : t → t′￼

Γ ⊢ (e e′￼) : t′￼

Γ ⊢ e′￼ : t

Lam
Γ, {x ↦ t} ⊢ e : t′￼

Γ ⊢ (λ (x : t) e) : t → t′￼

VarΓ ⊢ x : t
x ↦ t ∈ Γ

Γ, ϕ ⊢ ψ
Γ ⊢ ϕ ⇒ ψ

⇒E

⇒I
Γ ⊢ ψ

Γ ⊢ ϕ ⇒ ψ Γ ⊢ ϕ

Γ, P ⊢ PAssumption
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A family of logics / type systems
The Curry-Howard Isomorphism is a principle we can use to interpret either type 
systems or constructive logics

- (Always constructive logics because structural type systems are fully-

materialized, structured proofs)


IPL is a boring logic—it can’t say much. Expressive power is limited to propositional 
logic


To prove interesting theorems, we want to say things like:

  ∀ (l : list A) : {l’ : sorted l’ ∧ ∀ x. (member l x) ⇒ (member l’ x)}

- For all input lists l

- The output is a list l’, along with a proof that:

- (a) l’ is sorted (specified elsewhere)

- (b) every member of l is also a member of l’


- Any issues?

- (Maybe we also want to assert length is the same?)
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Dependent Type Systems

We can construct type systems / programming languages where terms can be of 
type (something like)


  ∀ (l : list A) : {l’ : sorted l’ ∧ ∀ (x : A). (member l x) ⇒ (member l’ x)}


These are called dependent types, because types can depend on values

 - This allows expressing that l’ is sorted 
 - Unfortunately, these type systems are way more complicated

 - Worse, even type checking may be undecidable (in general)


Precise formalization of these systems is beyond the scope of this class
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A huge family of languages have popped up to implement dependent type systems 
and subsequently enable “fully-verified” programming


They hit a variety of expressivity points. The fundamental trade off is: (a) 
expressivity vs. (b) automation.


Highly-expressive systems require you to write all the proofs yourself, and a lot of 
manual annotation (potentially).
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Here I give an Agda definition for products

Explicit Theorem Proving / Hole-Based Synth

waterloo.ca/~plragde/747/notes/index.html
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Explicit Theorem Proving / Hole-Based Synth

Agda will tell me what I need to fill in, 

allows me to use “holes” and then helps

me hunt for a working proof.
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Some systems provide logic-programming (i.e., proof search) to help assist users

- CHI tells us that proof search is tantamount to program synthesis

- Here I use Coq’s “intuition” tactic to automatically construct a proof for me

Tactic-Based Theorem Proving

(Using Coq to prove P ⇒ Q ⇒ P; left: using the “intuition” tactic, 
right: printing the proof term)
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The more expressive the type theory, the more work is required to build proofs. 

Other systems for dependent type syntehsis

Some systems translate proof obligations 
into formulas which are then sent to SMT 
solvers (solves goals in first-order logic, 
such as Z3)

This can partially automate many 
otherwise-tricky proofs—in certain 
situations


F* based on this idea, but other proof 
search approaches exist (Idris, etc…)


