
Simply-Typed Lambda
Calculus, &

Programs as Proofs
CIS352 — Spring 2023

Kris Micinski

2

- Types are a static system guaranteed by your program

- Types serve as evidence of a particular property, that relates to the

structure of information

- For the lambda calculus, and base values, the only structure to be

had is lambdas
- Type systems are designed to ensure certain static properties of the

language. These properties can be relatively superficial, or fairly
involved

- The simply-typed lambda calculus is one specific type system for
the lambda calculus that models all of the things that could “go
wrong” at the type level

- Start by type system for IfArith

Higher-order contract systems track program labels alongside
contracts to properly assign blame when failure occurs.

3

“Correct blame for contracts”. Dimoulas. 2011.

(define/contract (fib x)

 (-> positive? positive?)

 (cond

 [(= x 0) 1]

 [(= x 1) 1]

 [else (+ (fib (- x 1)) (fib (- x 2)))]))

“I take in a positive and produce a positive.”

4

(define/contract (fib x)

 (-> positive? positive?)

 (cond

 [(= x 0) 1]

 [(= x 1) 1]

 [else (+ (fib (- x 1)) (fib (- x 2)))]))

When I mess up

5

(define/contract (fib x)

 (-> positive? positive?)

 (cond

 [(= x 0) 1]

 [(= x 1) 1]

 [else (+ (fib (- x 1)) (fib (- x 2)))]))

When I mess up

Racket blames me
(anonymous-module)

6

(define/contract (fib x)

 (-> positive? positive?)

 (cond

 [(= x 0) -200]

 [(= x 1) 1]

 [else (+ (fib (- x 1)) (fib (- x 2)))]))

When fib messes up

Racket blames fib

7

Note that contracts are checked at runtime

(Not compile time!)

Earlier…

But sometimes we want to know our
program won’t break before it runs!

8

Type Systems

A type system assigns each source fragment with a
given type: a specification of how it will behave

Type systems include rules, or judgements that
tells us how we compositionally build types for
larger fragments from smaller fragments

The goal of a type system is to rule out programs
that would exhibit run time type errors!

9

A type system for STLC

e ::= (lambda (x) e)

 | (e e)

 | ((prim e) e)

 | x

 | n

prim ::= + | * | …

10

(Simply-Typed Lambda Calculus)

e ::= (lambda (x) e)

 | (e e)

 | ((prim e) e)

 | x

 | n

prim ::= + | * | …

Term Syntax Type Syntax

t ::= nat

 | bool

 | t -> t

11

e ::= (lambda (x) e)

 | (e e)

 | ((prim e) e)

 | x

 | n

prim ::= + | * | …

Term Syntax Type Syntax

t ::= nat

 | bool

 | t -> t

Function Types

12

e ::= (lambda (x) e)

 | (e e)

 | ((prim e) e)

 | x

 | n

prim ::= + | * | …

Term Syntax Type Syntax

(int -> int) -> int

bool -> int

bool -> (int -> bool)

Examples…

t ::= nat

 | bool

 | t -> t

13

14

;; Expressions are ifarith, with several special builtins

(define (expr? e)

 (match e

 ;; Variables

 [(? symbol? x) #t]

 ;; Literals

 [(? bool-lit? b) #t]

 [(? int-lit? i) #t]

 ;; Applications

 [`(,(? expr? e0) ,(? expr? e1)) #t]

 ;; Annotated expressions

 [`(,(? expr? e) : ,(? type? t)) #t]

 ;; Anotated lambdas

 [`(lambda (,(? symbol? x) : ,(? type? t)) ,(? expr? e)) #t]))

A type system for STLC

e ::= (lambda (x) e)

 | (e e)

 | ((prim e) e)

 | x

 | n

prim ::= + | * | …

Const
n : num

Type rules are written in natural-deduction style

Assumptions above the line

Conclusions below the line

(No assumptions here.)

(Like our big-step operational semantics.)

15

A type system for STLC

Const
n : num

Assumptions above the line

Conclusions below the line

(No assumptions here.)

“We may conclude any number n has type num”

Type rules are written in natural-deduction style
(Like our big-step operational semantics.)

e ::= (lambda (x) e)

 | (e e)

 | ((prim e) e)

 | x

 | n

prim ::= + | * | …
16

Variable Lookup

Var
Γ ⊢ x : t

We assume a typing environment which maps
variables to their types

If x maps to type t in Γ, we may conclude that x has type
t under the type environment Γ

Γ(x) = t

17

Const revisited…

Const
Γ ⊢ n : num

“We may conclude any constant n is of type num under
any typing environment.”

18

Functions…

Lam
Γ[x ↦ t] ⊢ e : t′￼

Γ ⊢ (λ (x : t) e) : t → t′￼

If you conclude that e has type t’ with Gamma
plus assuming x has type t,…

Then you can conclude that the entire lambda
has type t -> t’

19

Functions…

Lam
Γ ⊢ (λ (x : t) e) : t → t′￼

If you conclude that e has type t’ with Gamma
plus assuming x has type t,…

Then you can conclude that the entire lambda
has type t -> t’

Note
Variables (x) must be tagged with a type

(e.g., by programmer)

Γ[x ↦ t] ⊢ e : t′￼

20

Lam
Γ ⊢ (λ (x : t) e) : t → t′￼

(lambda (x : num) 1)

Γ[x ↦ t] ⊢ e : t′￼

21

Lam

(lambda (x : num) 1) : ? → ?Γ = {} ⊢

Start with the empty environment (since this term is closed)

Γ ⊢ (λ (x : t) e) : t → t′￼

Γ[x ↦ t] ⊢ e : t′￼

22

Lam

Γ = {} ⊢ : t → t′￼

We suppose there are two types, t and t’, which
will make the derivation work.

Γ ⊢ (λ (x : t) e) : t → t′￼

(lambda (x : num) 1)

Γ[x ↦ t] ⊢ e : t′￼

23

{x ↦ num} ⊢ 1 : t′￼

We suppose there are two types, t and t’, which
will make the derivation work.

Γ = {} ⊢ : num → t′￼(lambda (x : num) 1)

Because x is tagged, it must be num

24

{x ↦ num} ⊢ 1 : t′￼

The Const rule allows us to conclude 1 : num

Γ = {} ⊢ (lambda (x : num) 1)

We suppose there are two types, t and t’, which
will make the derivation work.

: num → t′￼

25

So t’ = num

{x ↦ num} ⊢ 1 : num
Γ = {} ⊢ (lambda (x : num) 1) : num → num

26

App
Γ ⊢ e : t → t′￼

Γ ⊢ (e e′￼) : t′￼

Function Application

Γ ⊢ e′￼ : t

27

App
Γ ⊢ e : t → t′￼

Γ ⊢ (e e′￼) : t′￼

Function Application

Γ ⊢ e′￼ : t

If (under Gamma), e has type t -> t’
And e’ (its argument) has type t

Then the application of e to e’ results in a t’

28

App
Γ ⊢ e : t → t′￼

Γ ⊢ (e e′￼) : t′￼

Γ ⊢ e′￼ : t

Our type system so far…

Lam
Γ[x ↦ t] ⊢ e : t′￼

Γ ⊢ (λ (x : t) e) : t → t′￼

Const
Γ ⊢ n : int

Var
Γ ⊢ x : t

Γ(x) = t

29

e ::= (lambda (x : t) e)

 | (e e)

 | ((prim e) e)

 | x

 | n

prim ::= + | * | …

Almost everything! Just need builtin functions

Trick! Just assume they’re part of Γ!
Γι = { + : num → num → num, …}

30

Practice Derivations

Write derivations of the following expressions…

31

f

App
Γ ⊢ e : t → t′￼

Γ ⊢ (e e′￼) : t′￼

Γ ⊢ e′￼ : t

Lam
Γ, {x ↦ t} ⊢ e : t′￼

Γ ⊢ (λ (x : t) e) : t → t′￼

Const
Γ ⊢ n : num

Var
Γ ⊢ x : t

x ↦ t ∈ Γ

((λ (x : int) x) 1)

32

App
Γ ⊢ e : t → t′￼

Γ ⊢ (e e′￼) : t′￼

Γ ⊢ e′￼ : t

Lam
Γ, {x ↦ t} ⊢ e : t′￼

Γ ⊢ (λ (x : t) e) : t → t′￼

Const
Γ ⊢ n : num

Var
Γ ⊢ x : t

x ↦ t ∈ Γ

((λ (f : num -> num) (f 1)) (λ (x : num) x))f

33

Typability in STLC

Not all terms can be given types…

(λ (f : num -> num) (f f))

It is impossible to write a derivation for the above term!

f is num->num but would need to be num!

34

Typability

Not all terms can be given types…

((λ (f) (f f))

 (λ (f) (f f)))

It is impossible to write a derivation for Ω!

35

Consider what would happen if f were:

- num -> num

- (num -> num) -> num

Always just out of reach…

(λ (f : num -> num -> num) (((f 2) 3) 4))

((λ (f : num -> num) f) (λ (x:num) (λ (x:num) x)))

36

Type Checking

Type checking: verifying the derivation of a fully-typed term

((λ (x:num) x:num) : num -> num)

Notice that each subterm is assigned a “full” type

37

((λ (x:num) x:num) : num -> num)

Type checking tells us which rules we must
apply if there is to be a derivation

38

39

In the case of fully-annotated STLC, there are no parts where we have to guess a type

We can synthesize a type by looking at the annotated parameters for lambdas

This leads us to writing a syntax-directed (i.e., structurally-recursive) type synthesizer /
checker for fully-annotated STLC

Next lecture, we will look at type inference for un-annotated STLC

40

;; Synthesize a type for e in the environment env

;; Returns a type

(define (synthesize-type env e)

 (match e

 ;; Literals

 [(? integer? i) 'int]

 [(? boolean? b) 'bool]

 ;; Look up a type variable in an environment

 [(? symbol? x) (hash-ref env x)]

 ;; Lambda w/ annotation

 [`(lambda (,x : ,A) ,e)

 `(,A -> ,(synthesize-type (hash-set env x A) e))]

 ;; Arbitrary expression

 [`(,e : ,t) (let ([e-t (synthesize-type env e)])

 (if (equal? e-t t)

 t

 (error (format "types ~a and ~a are different" e-t t))))]

 ;; Application

 [`(,e1 ,e2)

 (match (synthesize-type env e1)

 [`(,A -> ,B)

 (let ([t-2 (synthesize-type env e2)])

 (if (equal? t-2 A)

 B

 (error (format "types ~a and ~a are different" A t-2))))])]))

((λ (x:t) x:t’) : num -> num)

Allows us to leave some placeholder variables
that will be “filled in later”

Type Inference

The num->num type then forces t = num and
t’ = num

41

Type inference can fail, too…

Type Inference

(λ (x) (λ (y:num->num) ((+ (x y)) x)))

No possible type for x! Used as fn and arg to +

42

43

Type Inference has been of interest (research and practical) for many years

It allows you to write untyped programs (much less painful!) and automatically
synthesize a type for you—as long as the type exists (catch your mistakes)

(λ (f) (((f 2) 3) 4))

(λ (f : num -> num -> num -> num) (((f 2) 3) 4))
Type inference

Type inference can be seen as enumerating all possible type assignments to infer a
valid typing. You can think of it as solving the equation:

∃T. (λ (f : T) (((f 2) 3) 4))

44

Type inference can be seen as enumerating all possible type assignments to infer a
valid typing. You can think of it as solving the equation:

∃T. (λ (f : T) (((f 2) 3) 4))

There are an infinite number of possible T (e.g., int, bool, int->int, bool->bool, …)
that we could check, in principle

So it is not obvious that this is a terminating process. But: humans almost always write
“reasonable” types:

 ((a -> ((a -> b) -> ((a -> b) -> (b -> c))) -> …) is possible but uncommon

We will see next lecture that a procedure exists which finds a typing, if a typing exists.
This relies on unification (a principle from logic programming)

How hard is this problem (tractability)?

Extending STLC…

e ::= (lambda (x) e)

 | (e e)

 | ((prim e) e)

 | x

 | n

prim ::= + | * | …

Let’s add if, and, or

45

Extending STLC…

e ::= (lambda (x) e)

 | (e e)

 | ((prim e) e)

 | (if e e e)

 | (and e e)

 | (or e e)

 | x

 | n | #t | #f

prim ::= + | * | …

Now we need typing rules for if!
46

(if guard

 t

 f)

If needs guard to be a boolean…

Shouldn’t be valid for guard to be, e.g., (+ 1 2)

47

(if guard

 t

 f)

If needs guard to be a boolean…

Shouldn’t be valid for guard to be, e.g., (+ 1 2)

If
Γ ⊢ eg : bool

Γ ⊢ (if eg et ef) : t

Γ ⊢ et : t Γ ⊢ ef : t

48

(if guard

 t

 f)

If needs guard to be a boolean…

Shouldn’t be valid for guard to be, e.g., (+ 1 2)

If
Γ ⊢ eg : bool

Γ ⊢ (if eg et ef) : t

Γ ⊢ et : t Γ ⊢ ef : t

et/ef must be same type!

49

(and e1 e2)

Exercise

Can you come up with the type rules for and/or?

50

And
Γ ⊢ e1 : bool

Γ ⊢ (and e1 e2) : bool

Γ ⊢ e2 : bool

51

52

Completeness of STLC

• Incomplete: Reasonable functions we can’t write in STLC

•E.g., any program using recursion

•Several useful extensions to STLC

•Fix operator to allow typing recursive functions

•Algebraic data types to type structures

•Recursive types to allow typing recursive structures

• tree = Leaf (int) | Node(int,tree,tree)

53

Typing the Y Combinator

Y
Γ ⊢ f : t → t
Γ ⊢ (Y f) : t

The “real” solution is quite nontrivial—we need recursive types, which may be formalized in a variety of ways

- We will not cover recursive types in this lecture, I am happy to offer pointers

Our hacky solution works in practice, but is not sound in general

 - More precisely, the logic induced by the type system is no longer sound

54

Typing the Y Combinator

Y
Γ ⊢ f : t → t
Γ ⊢ (Y f) : t

Think of how this would look for fib

(let ([fib

 (Y (λ (f) (λ (x)

 (if (= x 0)

 1

 (* x (fib (- x 1)))))))]))

What would t be here?

Error States
A program steps to an error state if its evaluation

reaches a point where the program has not
produced a value, and yet cannot make progress

((+ 1) (λ (x) x))

Gets “stuck” because + can’t operate on λ

55

Error States
A program steps to an error state if its evaluation

reaches a point where the program has not
produced a value, and yet cannot make progress

((+ 1) (λ (x) x))

Gets “stuck” because + can’t operate on λ

(Note that this term is not typable for us!)
56

Soundness

A type system is sound if no typable program
will ever evaluate to an error state

“Well typed programs cannot go wrong.” —
Milner

(You can trust the type checker!)

57

Proving Type Soundness

Theorem: if e has some type derivation, then it will
evaluate to a value.

Relies on two lemmas

58

Progress Preservation

If e typable, then it is either a
value or can be further reduced

If e has type t, any reduction will
result in a term of type t

59

“Proofs as Programs”
A significant amount of interest has been given to programming
languages which use powerful type systems to write programs
alongside a proof of the program’s correctness

Imagine how nice it would be to write a completely-formally-
verified program—no bugs ever again!

60

How does this work?
These systems interpret programs as theorems in higher-order
logics (calculus of constructions, etc…)

Unfortunately, no free lunch: this makes the type system way
more complicated in practical settings

We will see a taste of the inspiration for these systems, by
reflecting on STLC’s expressivity

61

Intuitionistic Propositional Logic

Constructive logic variant of traditional propositional (boolean) logic

Proofs in (intuitionistic) propositional logic are built from
natural-deduction rules, including introduction and
elimination rules

Γ, P ⊢ P
Assumption Γ ⊢ ϕ ∧ ψ

Conjunction

Introduction

Γ ⊢ ϕ Γ ⊢ ψ

Γ ⊢ ϕ ∧ ψConjunction

Left-Elimination Γ ⊢ ϕ

Γ ⊢ ϕ ∧ ψConjunction

Right-Elimination Γ ⊢ ϕ

More reading:

https://www.classes.cs.uchicago.edu/archive/2003/spring/15300-1/intuitionism.pdf

Sometimes called the deduction theorem

Sometimes called modus ponens

“If you have a proof of ϕ⇒ ψ, and a proof of ϕ, 
then you can have a proof of ψ”

62

Implication in IPL

Implication is performed by introducing-then-discharging

Γ, ϕ ⊢ ψ
Implication

Introduction Γ ⊢ ϕ ⇒ ψ

“If you can prove ψ by assuming ϕ, then you

can prove ϕ⇒ ψ”

Γ ⊢ ψ
Implication

Elimination

Γ ⊢ ϕ ⇒ ψ Γ ⊢ ϕ

63

Proving P ⇒ (Q ⇒ P)

⊢ (P ⇒ (Q ⇒ P))
Start with a goal and then grow a proof according to the rules

P ⊢ Q ⇒ P
Q, P ⊢ P

⇒ Intros

⇒ Intros

Assumption

64

Small Point: Proving P ⇒ (Q ⇒ Q)

⊢ (P ⇒ (Q ⇒ P))

Should be a simple fix

P ⊢ Q ⇒ P
Q, P ⊢ P

⇒ Intros

⇒ Intros

Assumption

⊢ (P ⇒ (Q ⇒ P))
P ⊢ Q ⇒ P

Q, P ⊢ Q

⇒ Intros

⇒ Intros

Assumption

Unfortunately, our assumption rule forbids this:

Γ, P ⊢ P
Assumption

To fix this, we typically add structural rules to allow
identifying contexts under reorderings. Some “sub-
structural” logics (linear, affine) explicitly restrict this
for particular uses (tracking resources, etc…)

65

Curry-Howard-Isomorphism

(lambda (x : int) x) : int -> int

Can be interpreted as “P implies P” (P ⇒ P, more properly int ⇒ int)

(lambda (x : int) (lambda (y : bool) x)) : (int -> (bool -> int))

Can be interpreted “P ⇒ (Q ⇒ P)”

Every well-typed STLC term is a proof of a theorem in
intuitionistic propositional logic

66

CHI vs. IPL
The key idea is to realize that the typing derivation for
STLC precisely mirrors the deductive rules of IPL

App
Γ ⊢ e : t → t′￼

Γ ⊢ (e e′￼) : t′￼

Γ ⊢ e′￼ : t

Lam
Γ, {x ↦ t} ⊢ e : t′￼

Γ ⊢ (λ (x : t) e) : t → t′￼

VarΓ ⊢ x : t
x ↦ t ∈ Γ

Γ, ϕ ⊢ ψ
Γ ⊢ ϕ ⇒ ψ

⇒I

⇒E
Γ ⊢ ψ

Γ ⊢ ϕ ⇒ ψ Γ ⊢ ϕ

Γ, P ⊢ PAssumption

67

This means that every proof tree for STLC can be trivially-mapped to a
proof tree in IPL. I.e., if (e : t) is typeable in STLC, the theorem t
holds in IPL by construction of the proof built using this mapping

App
Γ ⊢ e : t → t′￼

Γ ⊢ (e e′￼) : t′￼

Γ ⊢ e′￼ : t

Lam
Γ, {x ↦ t} ⊢ e : t′￼

Γ ⊢ (λ (x : t) e) : t → t′￼

VarΓ ⊢ x : t
x ↦ t ∈ Γ

Γ, ϕ ⊢ ψ
Γ ⊢ ϕ ⇒ ψ

⇒E

⇒I
Γ ⊢ ψ

Γ ⊢ ϕ ⇒ ψ Γ ⊢ ϕ

Γ, P ⊢ PAssumption

68

A family of logics / type systems
The Curry-Howard Isomorphism is a principle we can use to interpret either type
systems or constructive logics

- (Always constructive logics because structural type systems are fully-

materialized, structured proofs)

IPL is a boring logic—it can’t say much. Expressive power is limited to propositional
logic

To prove interesting theorems, we want to say things like:

 ∀ (l : list A) : {l’ : sorted l’ ∧ ∀ x. (member l x) ⇒ (member l’ x)}

- For all input lists l

- The output is a list l’, along with a proof that:

- (a) l’ is sorted (specified elsewhere)

- (b) every member of l is also a member of l’

- Any issues?

- (Maybe we also want to assert length is the same?)

69

Dependent Type Systems

We can construct type systems / programming languages where terms can be of
type (something like)

 ∀ (l : list A) : {l’ : sorted l’ ∧ ∀ (x : A). (member l x) ⇒ (member l’ x)}

These are called dependent types, because types can depend on values

 - This allows expressing that l’ is sorted 
 - Unfortunately, these type systems are way more complicated

 - Worse, even type checking may be undecidable (in general)

Precise formalization of these systems is beyond the scope of this class

70

A huge family of languages have popped up to implement dependent type systems
and subsequently enable “fully-verified” programming

They hit a variety of expressivity points. The fundamental trade off is: (a)
expressivity vs. (b) automation.

Highly-expressive systems require you to write all the proofs yourself, and a lot of
manual annotation (potentially).

71

Here I give an Agda definition for products

Explicit Theorem Proving / Hole-Based Synth

waterloo.ca/~plragde/747/notes/index.html

72

Explicit Theorem Proving / Hole-Based Synth

Agda will tell me what I need to fill in,

allows me to use “holes” and then helps

me hunt for a working proof.

73

Some systems provide logic-programming (i.e., proof search) to help assist users

- CHI tells us that proof search is tantamount to program synthesis

- Here I use Coq’s “intuition” tactic to automatically construct a proof for me

Tactic-Based Theorem Proving

(Using Coq to prove P ⇒ Q ⇒ P; left: using the “intuition” tactic,
right: printing the proof term)

74

The more expressive the type theory, the more work is required to build proofs.

Other systems for dependent type syntehsis

Some systems translate proof obligations
into formulas which are then sent to SMT
solvers (solves goals in first-order logic,
such as Z3)

This can partially automate many
otherwise-tricky proofs—in certain
situations

F* based on this idea, but other proof
search approaches exist (Idris, etc…)

