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L ast lecture: reduction rules for the lambda calculus



This lecture: reduction strategies



As a computer scientist, we can view
nondeterminism in the rules as a challenge—it is
easier to implement deterministic machines.
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((Llambda (x) x) ((Lambda (z) z) y))
3 3

((Lambda (x) x) y) (Clambda (z) z) y)
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(lambda (x) ((lambda (y) Cy y)) (lambda (Cy) Cy y))))

We say that lambda expressions are in Weak Head
Normal Form (WHNF)

Even though a potential redex exists under the

lambda, we will not evaluate it (until application)
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- Call by value, reduce arguments early as possible
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- Applicative order (innermost), but not under lambdas
- Call by name, reduce arguments late as possible

- Normal order, but not under lambdas



Whenever you get to an application of a lambda,
you have a choice:

- Attempt to evaluate argument?
- Pertorm application immediately

((Llambda (x) x) ((Lambda (z) z) y))
3 3

((Lambda (x) x) y) (Clambda (z) z) y)



Church-Rosser Theorem

-Or any expression e,
fe2*e ande 2% e
Then, both e, and e, step to

some common term e’
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-Or any expression e,
fe2*e ande 2% e
Then, both e, and e, step to
some common term e’

Corollary: all terminating

paths result in same normal e’
form!



Give the reduction sequences using...
- Call-oy-Name

- Call-by-Value
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(Clambda (Cy) y) (lambda (Cy) y)) ((Llambda (x) x) (lambda (Cy) y))

/ \

(lambda (y) y) (lambda Cy) y)



Up to alpha equivalence, evaluate this term using:
- Call-oy-Name

- Call-by-Value
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Up to alpha equivalence, evaluate this term using:
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- Call-by-Value
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Standardization theorem

f an expression can be evaluated to
WHNF (i.e., it doesn’t loop), then it
has a normal-order reduction
seguence.

In other words: the lazy semantics is
most permissive, in terms of
termination.



