Lambda Calculus Reduction Strategies

CIS352 — Spring 2023
Kris Micinski

Last lecture: reduction rules for the lambda calculus

This lecture: reduction strategies

As a computer scientist, we can view nondeterminism in the rules as a challenge-it is easier to implement deterministic machines.

As a computer scientist, we can view nondeterminism in the rules as a challenge-it is easier to implement deterministic machines.
((lambda (X) x) ((lambda (z) z) y))

We will assume a few basic, but important, choices:

- Evaluation of a term will occur top-down

We will assume a few basic, but important, choices:

- Evaluation of a term will occur top-down
- We will never reduce under a lambda

We will assume a few basic, but important, choices:

- Evaluation of a term will occur top-down
- We will never reduce under a lambda
(lambda (x) ((lambda (y) (y y)) (lambda (y) (y y))))
We say that lambda expressions are in Weak Head Normal Form (WHNF)

Even though a potential redex exists under the lambda, we will not evaluate it (until application)

Two popular strategies:

- Call by value, reduce arguments early as possible
- Call by name, reduce arguments late as possible

Two popular strategies:

- Call by value, reduce arguments early as possible
- Applicative order (innermost), but not under lambdas
- Call by name, reduce arguments late as possible
- Normal order, but not under lambdas

Whenever you get to an application of a lambda, you have a choice:

- Attempt to evaluate argument?
- Perform application immediately
((lambda (X) x) ((lambda (z) z) y))

Church-Rosser Theorem

For any expression e, If $e \rightarrow^{*} e_{0}$ and $e \rightarrow^{*} e_{1}$ Then, both e_{0} and e_{1} step to some common term e^{\prime}

Church-Rosser Theorem

For any expression e, If $e \rightarrow^{*} e_{0}$ and $e \rightarrow^{*} e_{1}$ Then, both e_{0} and e_{1} step to some common term e^{\prime}

Corollary: all terminating paths result in same normal
 form!

Give the reduction sequences using...

- Call-by-Name
- Call-by-Value
((lambda (x) x) ((lambda (y) y) (lambda (y) y)))

Give the reduction sequences using...

- Call-by-Name
- Call-by-Value
((lambda (x) x) ((lambda (y) y) (lambda (y) y)))
$\downarrow \mathrm{CBN}$
((lambda (y) y) (lambda (y) y))

(lambda (y) y)

CBV
((lambda (x) x) (lambda (y) y))

(lambda (y) y)

Up to alpha equivalence, evaluate this term using:

- Call-by-Name
- Call-by-Value
((lambda (x) (lambda (y) y))
((lambda (x) ($\mathrm{x} x$)) (lambda (x) ($\mathrm{x} x$)))

Up to alpha equivalence, evaluate this term using:

- Call-by-Name
- Call-by-Value

CBN

Up to alpha equivalence, evaluate this term using:

- Call-by-Name
- Call-by-Value
((lambda (x) (lambda (y) y)) ((lambda (X) (x x)) (lambda (x) (x x)))

(lambda (y) y)
CBN
((lambda (x) (lambda (y) y)) ((lambda (x) ($\mathrm{x} x$)) (lambda (x) ($\mathrm{x} x$)))

$$
((\operatorname{lambda}(x)(x \text { x)) (lambda (x) (x x))) }
$$

Standardization theorem

If an expression can be evaluated to WHNF (i.e., it doesn't loop), then it has a normal-order reduction sequence.

In other words: the lazy semantics is most permissive, in terms of termination.

