
Lambda Calculus
Reduction Strategies
CIS352 — Spring 2023
Kris Micinski

Last lecture: reduction rules for the lambda calculus

This lecture: reduction strategies

As a computer scientist, we can view
nondeterminism in the rules as a challenge—it is
easier to implement deterministic machines.

As a computer scientist, we can view
nondeterminism in the rules as a challenge—it is
easier to implement deterministic machines.

((lambda (x) x) ((lambda (z) z) y))

((lambda (x) x) y) ((lambda (z) z) y)

y

ββ

ββ

We will assume a few basic, but important, choices:
- Evaluation of a term will occur top-down

We will assume a few basic, but important, choices:
- Evaluation of a term will occur top-down
- We will never reduce under a lambda

We will assume a few basic, but important, choices:
- Evaluation of a term will occur top-down
- We will never reduce under a lambda

(lambda (x) ((lambda (y) (y y)) (lambda (y) (y y))))

We say that lambda expressions are in Weak Head
Normal Form (WHNF)

Even though a potential redex exists under the
lambda, we will not evaluate it (until application)

Two popular strategies:
- Call by value, reduce arguments early as possible
- Call by name, reduce arguments late as possible

Two popular strategies:
- Call by value, reduce arguments early as possible

- Applicative order (innermost), but not under lambdas
- Call by name, reduce arguments late as possible

- Normal order, but not under lambdas

Whenever you get to an application of a lambda,
you have a choice:
- Attempt to evaluate argument?
- Perform application immediately

((lambda (x) x) ((lambda (z) z) y))

((lambda (x) x) y) ((lambda (z) z) y)

y

ββ

ββ

Church-Rosser Theorem

For any expression e,
If e →* e₀ and e →* e₁
Then, both e₀ and e₁ step to
some common term e’

e

e₀ e₁

e’

Church-Rosser Theorem

For any expression e,
If e →* e₀ and e →* e₁
Then, both e₀ and e₁ step to
some common term e’

e

e₀ e₁

e’
Corollary: all terminating
paths result in same normal
form!

((lambda (x) x) ((lambda (y) y) (lambda (y) y)))

Give the reduction sequences using…
- Call-by-Name
- Call-by-Value

((lambda (x) x) ((lambda (y) y) (lambda (y) y)))

Give the reduction sequences using…
- Call-by-Name
- Call-by-Value

((lambda (y) y) (lambda (y) y))

(lambda (y) y)

((lambda (x) x) (lambda (y) y))

(lambda (y) y)

CBN CBV

((lambda (x) (lambda (y) y))
 ((lambda (x) (x x)) (lambda (x) (x x)))

Up to alpha equivalence, evaluate this term using:
- Call-by-Name
- Call-by-Value

((lambda (x) (lambda (y) y))
 ((lambda (x) (x x)) (lambda (x) (x x)))

Up to alpha equivalence, evaluate this term using:
- Call-by-Name
- Call-by-Value

(lambda (y) y)

CBN

((lambda (x) (lambda (y) y))
 ((lambda (x) (x x)) (lambda (x) (x x)))

Up to alpha equivalence, evaluate this term using:
- Call-by-Name
- Call-by-Value

(lambda (y) y) ((lambda (x) (lambda (y) y))
 ((lambda (x) (x x)) (lambda (x) (x x)))

((lambda (x) (lambda (y) y))
 ((lambda (x) (x x)) (lambda (x) (x x)))

((lambda (x) (lambda (y) y))
 ((lambda (x) (x x)) (lambda (x) (x x)))

CBN

CBV

Standardization theorem
If an expression can be evaluated to
WHNF (i.e., it doesn’t loop), then it
has a normal-order reduction
sequence.

In other words: the lazy semantics is
most permissive, in terms of
termination.

