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Last lecture: reduction rules for the lambda calculus



This lecture: reduction strategies



As a computer scientist, we can view 
nondeterminism in the rules as a challenge—it is 
easier to implement deterministic machines.
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((lambda (x) x) ((lambda (z) z) y))

((lambda (x) x) y) ((lambda (z) z) y)

y

ββ

ββ
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We will assume a few basic, but important, choices: 
- Evaluation of a term will occur top-down 
- We will never reduce under a lambda

(lambda (x) ((lambda (y) (y y)) (lambda (y) (y y))))

We say that lambda expressions are in Weak Head 
Normal Form (WHNF)

Even though a potential redex exists under the 
lambda, we will not evaluate it (until application)



Two popular strategies: 
- Call by value, reduce arguments early as possible 
- Call by name, reduce arguments late as possible



Two popular strategies: 
- Call by value, reduce arguments early as possible 

- Applicative order (innermost), but not under lambdas 
- Call by name, reduce arguments late as possible 

- Normal order, but not under lambdas



Whenever you get to an application of a lambda, 
you have a choice: 
- Attempt to evaluate argument? 
- Perform application immediately

((lambda (x) x) ((lambda (z) z) y))

((lambda (x) x) y) ((lambda (z) z) y)

y

ββ

ββ



Church-Rosser Theorem

For any expression e, 
If e →* e₀ and e →* e₁ 
Then, both e₀ and e₁ step to  
some common term e’ 

e
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Church-Rosser Theorem

For any expression e, 
If e →* e₀ and e →* e₁ 
Then, both e₀ and e₁ step to  
some common term e’ 

e

e₀ e₁ 

e’
Corollary: all terminating 
paths result in same normal 
form!
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Give the reduction sequences using… 
- Call-by-Name 
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((lambda (y) y) (lambda (y) y))

(lambda (y) y)

((lambda (x) x) (lambda (y) y))

(lambda (y) y)

CBN CBV
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(lambda (y) y)

CBN



((lambda (x) (lambda (y) y))
 ((lambda (x) (x x)) (lambda (x) (x x)))

Up to alpha equivalence, evaluate this term using: 
- Call-by-Name 
- Call-by-Value
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((lambda (x) (lambda (y) y))
 ((lambda (x) (x x)) (lambda (x) (x x)))

((lambda (x) (lambda (y) y))
 ((lambda (x) (x x)) (lambda (x) (x x)))

CBN

CBV



Standardization theorem
If an expression can be evaluated to 
WHNF (i.e., it doesn’t loop), then it 
has a normal-order reduction 
sequence. 

In other words: the lazy semantics is 
most permissive, in terms of 
termination.


