Lambda Calculus

Reduction Strategies

CIS352 — Spring 2023
Kris Micinski




L ast lecture: reduction rules for the lambda calculus



This lecture: reduction strategies



As a computer scientist, we can view
nondeterminism in the rules as a challenge—it is
easier to implement deterministic machines.



As a computer scientist, we can view
nondeterminism in the rules as a challenge—it is
easier to implement deterministic machines.

((Llambda (x) x) ((Lambda (z) z) y))
3 3

((Lambda (x) x) y) (Clambda (z) z) y)



We will assume a few basic, but important, choices:
- Evaluation of a term will occur top-down



We will assume a few basic, but important, choices:
- Evaluation of a term will occur top-down
- We will never reduce under a lambda



We will assume a few basic, but important, choices:
- Evaluation of a term will occur top-down
- We will never reduce under a lambda

(lambda (x) ((lambda (y) Cy y)) (lambda (Cy) Cy y))))

We say that lambda expressions are in Weak Head
Normal Form (WHNF)

Even though a potential redex exists under the

lambda, we will not evaluate it (until application)



Two popular strategies:
- Call by value, reduce arguments early as possible
- Call by name, reduce arguments late as possible




Two popular strategies:
- Call by value, reduce arguments early as possible

- Applicative order (innermost), but not under lambdas
- Call by name, reduce arguments late as possible

- Normal order, but not under lambdas



Whenever you get to an application of a lambda,
you have a choice:

- Attempt to evaluate argument?
- Pertorm application immediately

((Llambda (x) x) ((Lambda (z) z) y))
3 3

((Lambda (x) x) y) (Clambda (z) z) y)



Church-Rosser Theorem

-Or any expression e,
fe2*e ande 2% e
Then, both e, and e, step to

some common term e’




Church-Rosser Theorem

-Or any expression e,
fe2*e ande 2% e
Then, both e, and e, step to
some common term e’

Corollary: all terminating

paths result in same normal e’
form!



Give the reduction sequences using...
- Call-oy-Name

- Call-by-Value

CClambda (x) x) (Clambda Cy) y) (lambda Cy) y)))



Give the reduction sequences using...
- Call-oy-Name

- Call-by-Value

CClambda (x) x) (Clambda Cy) y) (lambda Cy) y)))

/ con L By

(Clambda (Cy) y) (lambda (Cy) y)) ((Llambda (x) x) (lambda (Cy) y))

/ \

(lambda (y) y) (lambda Cy) y)



Up to alpha equivalence, evaluate this term using:
- Call-oy-Name

- Call-by-Value

((Llambda (x) (lambda (y) y))
((Lambda (x) (x x)) (Lambda (x) (x x)))



Up to alpha equivalence, evaluate this term using:
- Call-oy-Name

- Call-by-Value

((Llambda (x) (lambda (y) y))
((Lambda (x) (x x)) (Lambda (x) (x x)))

/

(lambda Cy) y)

CBN



Up to alpha equivalence, evaluate this term using:
- Call-oy-Name

- Call-by-Value

((Llambda (x) (lambda (y) y))
((Lambda (x) (x x)) (Lambda (x) (x x)))

/ \ o

((Llambda (x) (lambda (y) y))
(Lambda Cy) y) (Clambda (x) (x x)) Clambda (x) (x x)))

CBN ‘\&

((Llambda (x) (lambda (y) y))
((Llambda (x) (x x)) (Lambda (x) (x x)))

\

((Llambda (x) (lambda (y) y))
((Lambda (x) (x x)) (Lambda (x) (x x)))

\



Standardization theorem

f an expression can be evaluated to
WHNF (i.e., it doesn’t loop), then it
has a normal-order reduction
seguence.

In other words: the lazy semantics is
most permissive, in terms of
termination.



