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In this lecture, we'll introduce natural deduction

Natural deduction is a mathematical formalism that helps
ground the ideas in metacircular interpreters



Natural deduction first used in mathematical logic, to
specify proofs using inductive data

We will use natural deduction as a framework for

specifying semantics of various languages throughout the
course
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When we specity the semantics of a language using
natural deduction, we give its semantics via a set of
inference rules



Rules read: if the thing on the top is true, then the thing
on the bottom is also true.

This rule says: "if c is an integer

(mathematically: ¢ € @Q), then c evaluates to c.”

Note: the notation e | v is read “e evaluates to v.”



Some rules will have more than one antecedent (thing on
the top).

You read these: “if the first thing, and second thing, and ...
are all true, then the thing on the bottom is true.”
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“lfe ll n,ande L n,andn" =n +nT, then | can say

(plus e, e )l n".”
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The natural deduction rule for div is similar
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We have two rules for not



Natural Deduction Rules for IfArith
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Question: Now that we have the rules, what
can we do with them?

Answer: Use them to formally prove that
some program calculates some result
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Let's say | want to prove that the following
program evaluates to 4

(if (plus 1 -1) 3 4)
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What rule could go here..?

277

(if (plus 1 —=1)34) | 4
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(if (plus 1 —=1)34) | 4
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(if (plus 1 —=1)34) | 4

To apply a natural-deduction rule,
we must perform unification

There can be no variables in the
resulting unification!
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ep 0 e | n
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(plus 1 —1) § 0 4 4

(if (plus 1 —=1)34) U 4

We perform unitication:
e : (plus 1-1), e:3
e:4,n:4
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Not done yet, now we have to prove
these things

(plus1 =10 414
(if (plus 1 —=1)34) 4
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Why can we say 4 || 4? Because of
the Const rule

4 € Q
(plus1 —1) Y0 T

(if (plus 1 —=1)34) y 4
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We're not done yet, because plus
requires an antecedent:

eg ) ng e ng n"=ny+n

Plus :
(plus ey e)) U n’

4 € Q
(plus1 —1) Y0 T

(if (plus 1 —=1)34) | 4
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But we're still not done, because we
need to finish these three

ah

141 —14-11+-1=0 41eQ

plus1-1yo +44
(if (plus 1 —1)34) 4
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Things that are simply true from
algebra require no antecedents, we
take them as ”axioms.”)

1 €
14

Plus1 -1 o 444
(if (plus 1 —=1)34) | 4

Q —-1€0
I —-14-1 1+-1=0 4 € Q)
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This is a complete proof that the
program computes 4

Q 1€
I —-14-1 1+-1=0 4 € Q)

1
14

plus1 -1 o +44

(if (plus 1 —1)34) § 4

22



Question: could you write this
proof..? What would happen it you
tried...?
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(if (plus 1 —1)3 4} 3)
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(if (plus 1 —=1)34) 43

Answer: you can’t write this proof,
because IfT will only let you evaluate
el when e0 is non-0!
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