
Mapping over
Lists
CIS352 — Fall 2022

Kris Micinski

2

0 3 4

‘()

In today’s class we will talk about a common pattern: mapping over a list

Mapping over a list transforms each element by applying a function to it

f

0 -3 -4

‘()

f f

When does this happen?
• Input and output must both be lists

• Elements mapped “uniformly” (i.e., same function applies
to each element)

• Structure of list (length) is maintained

3

def invert(l):

 res = []

 for item in l:

 res.append(-item)

 return res

def sum(l):

 res = 0

 for item in l:

 res += item

 return res

Which one of the below functions has these properties?

When does this happen?
• Input and output must both be lists

• Elements mapped “uniformly” (i.e., same function applies
to each element)

• Structure of list (length) is maintained

4

def invert(l):

 res = []

 for item in l:

 res.append(-item)

 return res

def sum(l):

 res = 0

 for item in l:

 res += item

 return res

Which one of the below functions has these properties?

(This one does) (This one doesn’t; return value is a number!)

Writing map

5

;; map the function f over each element of lst

(define (map f lst)

 (if (empty? lst)

 '()

 (cons (f (first lst)) (map f (rest lst)))))

def map(f,l):

 res = []

 for item in l:

 res.append(f(item))

 return res

Calling maps

6

(map - ‘(1 2 3)) ;; ‘(-1 -2 -3)

;; equivalent to (via “η-extenstionality”)

(map (lambda (x) (- x)) ‘(1 2 3))

(define (foo x y l)

 (map (lambda (z) (* x y z)) l))

Why learn map?
• Basic functional idiom: lists are common

• Good motivator for lambda notation

• When can we use it?

• Any time we change each element of a list independently

• We will soon learn a more general pattern—folds—which
allows defining accumulators over lists

7

Quasiquoting and
Pattern Matching
CIS352 — Fall 2022

Kris Micinski

• Racket quasi-quotes build S-expressions nicely

• `(,x y 3) is equivalent to (list x ‘y 3)

• I.e., Racket splices in values that are unquoted via ,

• (quasiquote …), or `…, substitutes any sub-expr ,e with
the return value of e within the quoted s-expression

9

• Works multiple list “levels” deep:

• `(square (point ,x0 ,y0) (point ,x1 ,y1))

• Can unquote arbitrary expressions, not just references:

• `(point ,(+ 1 x0) ,(- 1 y0))

10

Exercise

11

Define mk-point and mk-square using
Quasi-quotation:

(define (mk-point x y)

 (list ‘point x y))
(define (mk-square pt0 pt1)

 (list ‘square pt0 pt1))

Exercise

12

Define mk-point and mk-square using
Quasi-quotation:

(define (mk-point x y)

 (list ‘point x y))
(define (mk-square pt0 pt1)

 (list ‘square pt0 pt1))

(define (mk-point x y)

 `(point ,x ,y))
(define (mk-square pt0 pt1)

 `(square ,pt0 ,pt1))

• Racket also has pattern matching

• (match e [pat0 body0] [pat1 body1]…)

• Evaluates e and then checks each pattern, in order

• Pattern can bind variables, body can use pattern
variables

13

• Many patterns (check docs to learn various useful forms)

• Patterns checked in order, first matching body is executed

• Later bodies won’t be executed, even if they also match!

• Students make frequent mistakes on this!

• E.g., (match ‘(1 2 3) 
 [`(,a ,b) b] 
 [`(,a . ,b) b]) ; returns ‘(2 3)

14

15

(match e

 [‘hello ‘goodbye]

 [(? number? n) (+ n 1)]

 [(? nonnegative-integer? n)

 (+ n 2)]

 [(cons x y) x]

 [`(,a0 ,a1 ,a2) (+ a1 a2)])

Matching a literal

16

(match e

 [‘hello ‘goodbye]

 [(? number? n) (+ n 1)]

 [(? nonnegative-integer? n)

 (+ n 2)]

 [(cons x y) x]

 [`(,a0 ,a1 ,a2) (+ a1 a2)])

Matches when e evaluates
to some number?

(binds n)

17

(match e

 [‘hello ‘goodbye]

 [(? number? n) (+ n 1)]

 [(? nonnegative-integer? n)

 (+ n 2)]

 [(cons x y) x]

 [`(,a0 ,a1 ,a2) (+ a1 a2)])

Never matches!

Subsumed by previous case!

18

(match e

 [‘hello ‘goodbye]

 [(? number? n) (+ n 1)]

 [(? nonnegative-integer? n)

 (+ n 2)]

 [(cons x y) x]

 [`(,a0 ,a1 ,a2) (+ a1 a2)])

Matches a cons cell, binds x and y

19

(match e

 [‘hello ‘goodbye]

 [(? number? n) (+ n 1)]

 [(? nonnegative-integer? n)

 (+ n 2)]

 [(cons x y) x]

 [`(,a0 ,a1 ,a2) (+ a1 a2)])

Matches a list of length three

Binds first element as a0, second as a1, etc…

Called a “quasi-pattern”

Can also test predicates on bound vars:

`(,(? nonnegative-integer? x) ,(? positive? y))

20

(match e

 [‘hello ‘goodbye]

 [(? number? n) (+ n 1)]

 [(? nonnegative-integer? n)

 (+ n 2)]

 [(cons x y) x]

 [`(,a0 ,a1 ,a2) (+ a1 a2)]

 [_ 23])

Can also have a default case written via wildcard _

Exercise

21

Define a function foo that returns:

-twice its argument, if its argument is a number?

-the first two elements of a list, if its argument is a
list of length three, as a list

-the string “error” if it is anything else

(define (foo x)

 (match x

 [(? …) …]

 …))

Exercise

22

Define a function foo that returns:

-twice its argument, if its argument is a number?

-the first two elements of a list, if its argument is a
list of length three, as a list

-the string “error” if it is anything else

(define (foo x)

 (match x

 [(? number? n) (* n 2)]

 [`(,a ,b ,_) `(,a ,b)]

 [_ "error"]))

Answer (one of many) Observe how quasipatterns and
quasiquotes interact

• Using pattern matching, we can build type predicates

• Predicates that specify data formats

• We will frequently use these in-lieu of static typing

23

(define (tree? t)

 (match t

 ['empty #t]

 [`(leaf ,v) #t]

 [`(binary ,(? tree?) ,(? tree?)) #t]

 ;; don’t forget this!

 [_ #f]))

• We can use define/contract to specify dynamically-
checked contracts on functions

24

(define/contract (tree-min t0)

 (-> tree? any/c)

 (match t

 ['empty (error "no min of empty tree")]

 [`(leaf ,v) v]

 [`(binary ,t0 ,t1) (tree-min t0)]))

> (tree-min '(binary (leaf 2) empty))

2

25

> (tree-min '(binary 2 empty))

. . tree-min: contract violation

 expected: tree?

 given: '(binary 2 empty)

 in: the 1st argument of

 (-> tree? any/c)

 contract from: (function tree-min)

 blaming: anonymous-module

 (assuming the contract is correct)

26

(define (square-list-values lst)

 (if (null? lst)

 ‘()

 (cons (* (car lst) (car lst))

 (square-list-values (cdr lst)))))

Squaring every element of a list

(define (square-list-values lst)

 (if (null? lst)

 ‘()

 (cons (* (car lst) (car lst))

 (square-list-values (cdr lst)))))

Defines base case

27

Squaring every element of a list

(define (square-list-values lst)

 (if (null? lst)

 ‘()

 (cons (* (car lst) (car lst))

 (square-list-values (cdr lst)))))

Recursive case first computes the square of (car lst)

28

Squaring every element of a list

(define (square-list-values lst)

 (if (null? lst)

 ‘()

 (cons (* (car lst) (car lst))

 (square-list-values (cdr lst)))))

Recursive case next recurs on the list’s tail (cdr lst)

29

Squaring every element of a list

(define (square-list-values lst)

 (if (null? lst)

 ‘()

 (cons (* (car lst) (car lst))

 (square-list-values (cdr lst)))))

Recursive case finally extends the new tail list

30

Squaring every element of a list

31

(define (square-list-values lst)

 (map (lambda (x) (* x x)) lst))

Squaring every element of a list
(define (map f lst)

 (if (null? lst)

 ‘()

 (cons (f (car lst))

 (map f (cdr lst)))))

32

(define (square-list-values lst)

 (map (lambda (x) (* x x)) lst))

Squaring every element of a list
(define (map f lst)

 (if (null? lst)

 ‘()

 (cons (f (car lst))

 (map f (cdr lst)))))

map takes a

(unary) function

and list

(define (map f lst)

 (if (null? lst)

 ‘()

 (cons (f (car lst))

 (map f (cdr lst)))))

33

(define (square-list-values lst)

 (map (lambda (x) (* x x)) lst))

(define (square-list-values lst)

 (if (null? lst)

 ‘()

 (cons (* (car lst) (car lst))

 (square-list-values (cdr lst)))))

(define (map f lst)

 (if (null? lst)

 ‘()

 (cons (f (car lst))

 (map f (cdr lst)))))

34

(define (square-list-values lst)

 (map (lambda (x) (* x x)) lst))

We can write the def of map in just one line!

35

Write an implementation of andmap, such that:

> (andmap list? ‘((1 2) () (3)))

#t

> (andmap list? ‘((1 . 2) ()))

#f

> (andmap list? ‘(1 2 3))

#f

Exercise

36

Double-check: does your implementation short-
circuit? What does your implementation give for:

> (andmap list? ‘())

Exercise

37

Double-check: does your implementation short-
circuit? What does your implementation give for:

> (andmap list? ‘())

Exercise

(define andmap

 (lambda (p? lst)

 (if (null? lst)

 #t

 (and (p? (car lst))

 (andmap p? (cdr lst))))))

