
Lambdas
CIS352 — Fall 2022
Kris Micinski

• In Racket, functions are first-class values

• Can be bound to vars, returned from fns, etc..

• Languages w/ functions as values are functional

First-Class Functions

2

• (lambda (x0 x1 …) body)

• Anonymous function: bind x0, … in body

• Can appear at any callsite (just like an identifier)

Lambdas (in Racket)

3

(define f (lambda (x) x))
(define (double g)
 (lambda (x) (g (g x))))

Exercise

(define f (lambda (x) x))
(define (double g)
 (lambda (x) (g (g x))))

Evaluate the following expressions:
• (f 1)
• ((double f) 42)
• ((double (lambda (x) (* x 2))) 2)

4

Exercise

Write a function, (foo f), that:
• Accepts a function f, maps ints to ints
• ((foo f) x) = (f |x|), |x| is abs. value of x

5

(define (f x) x)
;; equiv
(define f (lambda (x) x))

• Previously, we assumed environment of definitions

• Instead, can think of lambdas as primitive

• Environment maps identifiers to lambdas

Textual Reduction of Lambdas

Textual Reduction of Lambdas

• After reducing all args to values, substitute (into the body)
the actual arguments in place of the formal arguments.

7

((lambda (x y) x) (+ 1 1) 3)
=> ((lambda (x y) x) 2 3)
=> 2

Exercise

Use textual reduction to reduce the following:

((((lambda (x) x) (lambda (x) x))
 ((lambda (x) x) (lambda (x) x)))
 (+ 1 2))

8

Hint: remember, in applicative order we
always evaluate the leftmost, innermost
application. In other words, we process (e0
e1 …) by reducing e0 … to values in order,
then applying.

Exercise

Use textual reduction to reduce the following:

((((lambda (x) x) (lambda (x) x))
 ((lambda (x) x) (lambda (x) x)))
 (+ 1 2))

9

If this sounds complicated, you would be
right to just think about it as “left to right”

Languages w/o First-Class Functions
• In modern times, somewhat hard to imagine

• C is a good example: procedural but not functional

• C callsites: quasi-functional behavior via fn pointers

• But not really: C doesn’t have closures

10

// The C library QuickSort function
void qsort(void *base, // array to sort
 int items, // really size_t
 int elem_size,
 // pointer to compare fn
 int (*compare)(void*, void*))

