Lambda Calculus:

Reduction / Substitution
CIS352 — Spring 2023
Kris Micinski

Last lecture: β-reduction, informally

If you watch the history of the lambda calculus discussion by Dana Scott, I will award $+.5 \%$ bonus (min 5-30):
https://www.youtube.com/watch?v=uS91nrmPloc

How can we define beta reduction as a
Racket function...?

```
(define (beta-reduce e)
    (match e
        [`((lambda (,x) ,e-body) ,e-arg) (subst x e-arg e-body)]
        [_ (error "beta-reduction cannot apply...")]))
```

Today: how do we define the subst function?
Variables are challenging

Semantics of the Lambda Calculus

Typical presentations of the lambda calculus define a textual-reduction semantics.

You can envision a "machine" where the machine's state is the text of the program as it evolves
((lambda (x) x) ((lambda (z) z) y))

Semantics of the Lambda Calculus

Typical presentations of the lambda calculus define a textual-reduction semantics.

You can envision a "machine" where the machine's state is the text of the program as it evolves
((lambda (x) x) ((lambda (z) z) y))

Semantics of the Lambda Calculus

Typical presentations of the lambda calculus define a textual-reduction semantics.

You can envision a "machine" where the machine's state is the text of the program as it evolves

Semantics of the Lambda Calculus

Observe! B-Reduction is

 nondeterministicIn general, a term may have multiple β redexes, and thus multiple β reductions
((lambda (x) x) ((lambda (z) z) y))

Semantics of the Lambda Calculus

This term has two beta redexes!

The outer one in red
The inner one in blue

The two challenges for this lecture:

- How do we implement substitution
- How do we deal with nondeterminism in the semantics

Substitution seems conceptually simple, but it is surprisingly tricky. But consider this: substitution is fundamentally where computation happens!
(define (beta-reduce e)
(match e
[`((lambda (, x) ,e-body) ,e-arg) (subst x e-arg e-body)] [_ (error "beta-reduction cannot apply...")]))

If we have subst, we can easily define beta-reduce.

Free Variables

We define the free variables of a lambda expression via the function FV :

$$
\text { FV : Exp } \rightarrow \mathscr{P}(\text { Var })
$$

$\mathbf{F V}(x) \triangleq\{x\}$
$\mathbf{F V}\left(\left(\lambda(x) e_{b}\right)\right) \triangleq \mathbf{F V}\left(e_{b}\right) \backslash\{x\}$
$\left.\mathbf{F V}\left(e_{f} e_{a}\right)\right) \triangleq \mathbf{F V}\left(e_{f}\right) \cup \mathbf{F V}\left(e_{a}\right)$
$\mathbf{F V}((x \quad y))=\{x, y\}$
$\mathbf{F V}(((\lambda(x) x) y))=\{y\}$
$\operatorname{FV}(((\lambda(x) x) x))=\{x\}$
$\operatorname{FV}(((\lambda)(y)((\lambda(x)(z x)) x)))=\{z, x\}$
$\mathbf{F V}((x \quad y))=\{x, y\}$
$\mathbf{F V}(((\lambda(x) x) y))=\{y\}$
$\operatorname{FV}(((\lambda(x) x) x))=\{x\}$
$\operatorname{FV}(((\lambda)(y)((\lambda(x)(z x)) x)))=\{z, x\}$

What are the free variables of each of the following terms?

$$
((\lambda(x) x) y)
$$

$((\lambda(x)(x \quad x))(\lambda(x)(x \quad x)))$

$$
((\lambda(x) \quad(z y)) x)
$$

What are the free variables of each of the following terms?

$$
\begin{gathered}
\left(\begin{array}{c}
(\lambda(x) x) y) \\
\{y\} \\
((\lambda(x)(x \quad x))(\lambda(x)(x \quad x))) \\
\} \\
((\lambda(x)(z y)) x) \\
\{x, y, z\}
\end{array}\right.
\end{gathered}
$$

Closed Terms

A term is closed when it has no free variables:

- ((lambda (x) x) (lambda (y) y))
- (lambda (z) (lambda (x) (z (lambda (z) z)))

Sometimes we call these (closed terms) combinators
Some open terms...

- (lambda (x) ((lambda (z) z) z))
- ((lambda (x) x) (lambda (z) x))

Alpha-Renaming

a-renaming allows us to rename variables:

$$
\frac{y \notin F V(e)}{(\lambda(x) e) \xrightarrow{\xrightarrow{(\lambda)}(\lambda(y) e[x \mapsto y])}}
$$

Still need to define substitution...

Important consequence: terms are unique up to a equivalence

Every term has infinitely-many terms to which it is a equivalent

What breaks if the antecedent isn't enforced..?

$$
\frac{y \notin F V(e)}{(\lambda(x) e) \xrightarrow{\alpha}(\lambda(y) e[x \mapsto y])}
$$

Meaning of term changes! Someone might have an intention to use that free variable y
(lambda (x) add1) very different from (lambda (x) x) (((Lambda (x) add1) (lambda (y) y)) 2)
! =
(((Lambda (x) x) (lambda (y) y)) 2)

Can we define lambda calculi without explicit variables? (Yes!)

- De-Bruin Indices (variables are numbers indicating to which binder they belong)
- Combinatory logic uses bases of fully-closed terms. Always possible to rewrite any LC term to use only several closed combinators

We wont study either of these

We define capture-avoiding substitution, in which we are careful to avoid places where variables would become captured by a substitution.

The problem with (naive) textual substitution

$$
\begin{gathered}
((\lambda(a)(\lambda(a) a))(\lambda(b) b)) \\
\downarrow \\
\quad \beta \\
(\lambda(a) a)[a \leftarrow(\lambda(b) b)]
\end{gathered}
$$

The problem with (naive) textual substitution

$$
\begin{gathered}
((\lambda(a)(\lambda(a) a))(\lambda(b) b)) \\
\downarrow \\
\downarrow \\
(\lambda(a)(\lambda(b) b))
\end{gathered}
$$

Capture-avoiding substitution

$$
\mathrm{E}_{0}\left[\mathrm{x} \leftarrow \mathrm{E}_{1}\right]
$$

$$
\mathrm{x}[\mathrm{x} \leftarrow \mathrm{E}]=\mathrm{E}
$$

$$
y[x \leftarrow E]=y \text { where } y \neq x
$$

$$
\begin{aligned}
x[x \leftarrow E] & =E \\
y[x \leftarrow E] & =y \text { where } y \neq x \\
\left(E_{0} E_{1}\right)[x \leftarrow E] & =\left(E_{0}[x \leftarrow E] \quad E_{1}[x \leftarrow E]\right)
\end{aligned}
$$

$$
\begin{aligned}
x[x \leftarrow E] & =E \\
y[x \leftarrow E] & =y \text { where } y \neq x \\
\left(E_{0} E_{1}\right)[x \leftarrow E] & =\left(E_{0}[x \leftarrow E] E_{1}[x \leftarrow E]\right) \\
\left(\lambda(x) E_{0}\right)[x \leftarrow E] & =\left(\lambda(x) E_{0}\right)
\end{aligned}
$$

$$
\left.\begin{array}{rl}
x[x \leftarrow E] & =E \\
y[x \leftarrow E] & =y \text { where } y \neq x \\
\left(E_{0} \quad E_{1}\right)[x \leftarrow E] & =\left(E_{0}[x \leftarrow E] \quad E_{1}[x \leftarrow E]\right) \\
\left(\lambda(x) \quad E_{0}\right)[x \leftarrow E] & =\left(\lambda(x) \quad E_{0}\right) \\
\left(\lambda(y) \quad E_{0}\right)[x \leftarrow E] & =\left(\lambda \quad(y) \quad E_{0}[x \leftarrow E]\right) \\
\text { where } y \neq x \text { and } y \notin F V(E) \\
\beta \text {-reduction cannot occur when } y \in F V(E)
\end{array}\right\}
$$

How can you beta-reduce the following
expression using capture-avoiding
substitution?
(λ (y)
$((\lambda(z)(\lambda(y)(z \quad y))) y))$
($\lambda(x) \quad x)$)

How can you beta-reduce the following
expression using capture-avoiding
substitution?

(λ (y)

$((\lambda(z)(\lambda(y)(z y))) y))$
($\lambda(x) x)$)

How can you beta-reduce the following
expression using capture-avoiding substitution?
$(\lambda(y)((\lambda(z)(\lambda(y) z))(\lambda(x) y)))$

How can you beta-reduce the following expression using capture-avoiding substitution?
$(\lambda(y)((\lambda(z)(\lambda(y) z))(\lambda(x) y)))$
You cannot! This redex would require:
$(\lambda(y) \quad z)[z \leftarrow(\lambda(x) y)]$
(y is free here, so it would be captured)

How can you beta-reduce the following expression using capture-avoiding substitution?

```
    (\lambda (y) ((\lambda (z) (\lambda (y) z)) (\lambda (x) y)))
->a(\lambda (y) ((\lambda (z) (\lambda (w) z)) (\lambda (x) y)))
->\beta
```

Instead we alpha-convert first.

To formally define the semantics of the lambda calculus via reduction, we also need rules that will let us apply reductions inside of rules:

$$
\begin{gathered}
\alpha \frac{y \notin F V(e)}{(\lambda(x) e) \xrightarrow{\alpha}(\lambda(y) e[x \mapsto y])} \beta \frac{e^{\prime}=e_{b}\left[x \mapsto e_{1}\right]}{\left(\left(\lambda(x) e_{b}\right) e_{1}\right) \xrightarrow{\beta} e^{\prime}} \\
\beta_{0} \frac{e_{0} \xrightarrow{\beta \alpha} e^{\prime}}{\left(e_{0} e_{1}\right) \rightarrow\left(e^{\prime} e_{1}\right)} \quad \beta_{1} \frac{e_{1} \xrightarrow{\beta \alpha} e^{\prime}}{\left(e_{0} e_{1}\right) \rightarrow\left(e_{0} e^{\prime}\right)}
\end{gathered}
$$

$$
\alpha \frac{y \notin F V(e)}{(\lambda(x) e) \xrightarrow{\alpha}(\lambda(y) e[x \mapsto y])} \beta \frac{e^{\prime}=e_{b}\left[x \mapsto e_{1}\right]}{\left(\left(\lambda(x) e_{b}\right) e_{1}\right) \xrightarrow{\beta} e^{\prime}}
$$

$$
\beta_{0} \frac{e_{0} \xrightarrow{\beta \alpha} e^{\prime}}{\left(e_{0} e_{1}\right) \rightarrow\left(e^{\prime} e_{1}\right)} \quad \beta_{1} \frac{e_{1} \xrightarrow{\beta \alpha} e^{\prime}}{\left(e_{0} e_{1}\right) \rightarrow\left(e_{0} e^{\prime}\right)}
$$

Recall: a term may have multiple redexes!

Because β and a reduction are inherently nondeterministic, we use a reduction strategy, which is system that tells us which reduction to apply:

- Normal Order - Leftmost (outermost) application
- Applicative Order - Innermost application

We'll talk more about these next time. They relate to the computational notions of call-by-name (normal) and call-by-value (applicative)
η-reduction / expansion capture a property akin to extensionality
$\left(\lambda(x) \quad\left(E_{0} x\right)\right) \quad \rightarrow_{\eta} \quad E_{0}$ where $x \notin F V\left(E_{0}\right)$
$E_{0} \quad \rightarrow_{\eta} \quad\left(\lambda(x) \quad\left(E_{0} x\right)\right)$ where $x \notin F V\left(E_{0}\right)$
We do not use η-reduction/expansion in computation (unlike β), but it helps us establish certain equalities in lambda theories

When unambiguous, we refer to reduction in the lambda calculus as the application of a beta, alpha, or eta reduction:

$$
\begin{gathered}
(\rightarrow)=\left(\rightarrow_{\beta}\right) \cup\left(\rightarrow_{\alpha}\right) \cup\left(\rightarrow_{\eta}\right) \\
\left(\rightarrow^{*}\right)
\end{gathered}
$$

(When necessary for exams, we will clarify...)

It is often helpful to think of applying a sequence of reductions to arrive at some final "result."

In the lambda calculus, we call these results / values "normal forms."

A normal form is a form that has no more possible applications of some kind of reduction...

E_{0}
*
$(\lambda(x) \ldots(\lambda(z)((a \quad .) \quad ..))$.

In beta normal form, no function position can be a lambda;
this is to say: there are no unreduced redexes left!

We covered a lot of material!

- Free variables
- Alpha renaming
- Beta reduction
- Eta reduction / expansion
- Capture-avoiding substitution
- Applicative / normal order

Next time: reduction strategies and more normal
forms...

