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Last lecture: β−reduction, informally

→β((λ (x) E0) E1) E0[x ← E1]{
redex

(reducible expression)

replace every x in E0 with E1.



If you watch the history of the lambda calculus 
discussion by Dana Scott, I will award +.5% bonus 
(min 5-30):  

https://www.youtube.com/watch?v=uS9InrmPIoc



How can we define beta reduction as a 
Racket function…?

(define (beta-reduce e)
  (match e
    [`((lambda (,x) ,e-body) ,e-arg) (subst x e-arg e-body)]
    [_ (error "beta-reduction cannot apply...")]))

Today: how do we define the subst function?

Variables are challenging



Typical presentations of the lambda calculus define a  
textual-reduction semantics. 

You can envision a “machine” where the machine’s state 
is the text of the program as it evolves

Semantics of the Lambda Calculus

((lambda (x) x) ((lambda (z) z) y))
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Semantics of the Lambda Calculus

((lambda (x) x) ((lambda (z) z) y))

((lambda (x) x) y)

y

β

β

Observe! Β-Reduction is 
nondeterministic 

In general, a term may have multiple β 
redexes, and thus multiple β reductions



This term has two beta redexes!

Semantics of the Lambda Calculus

((lambda (x) x) ((lambda (z) z) y))

((lambda (x) x) y) ((lambda (z) z) y)

y

ββ

ββ

The outer one in red 
The inner one in blue



The two challenges for this lecture: 
- How do we implement substitution 
- How do we deal with nondeterminism in the semantics



Substitution seems conceptually simple, but it is 
surprisingly tricky. But consider this: substitution 
is fundamentally where computation happens!



(define (beta-reduce e)
  (match e
    [`((lambda (,x) ,e-body) ,e-arg) (subst x e-arg e-body)]
    [_ (error "beta-reduction cannot apply...")]))

If we have subst, we can easily define beta-reduce.



FV : Exp → 𝒫(Var)

FV(x) Δ= {x}

FV((λ (x) eb))
Δ= FV(eb) \ {x}

FV(ef ea))
Δ= FV(ef) ∪ FV(ea)

We define the free variables of a lambda expression 
via the function FV:

Free Variables



FV((x y)) = {x, y}

FV(((λ (y) ((λ (x) (z x)) x))) = {z, x}

FV(((λ (x) x) y)) = {y}
FV(((λ (x) x) x)) = {x}



FV((x y)) = {x, y}

FV(((λ (y) ((λ (x) (z x)) x))) = {z, x}

FV(((λ (x) x) y)) = {y}
FV(((λ (x) x) x)) = {x}



((λ (x) x) y)

((λ (x) (x x)) (λ (x) (x x)))

((λ (x) (z y)) x)

What are the free variables of each of the 
following terms?



((λ (x) x) y)

((λ (x) (x x)) (λ (x) (x x)))

((λ (x) (z y)) x)

{y}

{}

{x, y, z}

What are the free variables of each of the 
following terms?



A term is closed when it has no free variables: 
- ((lambda (x) x) (lambda (y) y)) 
- (lambda (z) (lambda (x) (z (lambda (z) z))) 
Sometimes we call these (closed terms) combinators 
Some open terms… 
- (lambda (x) ((lambda (z) z) z)) 
- ((lambda (x) x) (lambda (z) x))

Closed Terms



α-renaming allows us to rename variables:

Alpha-Renaming

y ∉ FV(e)
(λ (x) e) α→ (λ (y) e[x ↦ y])

Still need to define substitution…



Important consequence: terms are 
unique up to α equivalence

Every term has infinitely-many terms to 
which it is α equivalent

e0 e1 e2 e3 e4 e5
α α α α α

(lambda (x) x)(lambda (😋) 😋)

https://getemoji.com/
https://getemoji.com/


What breaks if the antecedent isn’t enforced..?

y ∉ FV(e)
(λ (x) e) α→ (λ (y) e[x ↦ y])

Meaning of term changes! Someone might have an intention 
to use that free variable y 

(lambda (x) add1) very different from (lambda (x) x)
(((Lambda (x) add1) (lambda (y) y)) 2)
!= 
(((Lambda (x) x) (lambda (y) y)) 2)



Can we define lambda calculi without explicit variables? (Yes!) 

• De-Bruin Indices (variables are numbers indicating to which 
binder they belong) 

• Combinatory logic uses bases of fully-closed terms. Always 
possible to rewrite any LC term to use only several closed 
combinators 

We won’t study either of these



We define capture-avoiding substitution, in which we are 
careful to avoid places where variables would become 
captured by a substitution.



The problem with (naive) textual substitution

((λ (a) (λ (a) a)) (λ (b) b))

β

(λ (a) a)[a ← (λ (b) b)]



The problem with (naive) textual substitution

((λ (a) (λ (a) a)) (λ (b) b))

β

(λ (a) (λ (b) b))



Capture-avoiding substitution

E0[x ← E1]



x[x ← E] = E
y[x ← E] = y  where  y ≠ x



x[x ← E] = E
y[x ← E] = y  where  y ≠ x

(E0 E1)[x ← E] = (E0[x ← E] E1[x ← E])



x[x ← E] = E
y[x ← E] = y  where  y ≠ x

(E0 E1)[x ← E] = (E0[x ← E] E1[x ← E])
(λ (x) E0)[x ← E] = (λ (x) E0)



x[x ← E] = E
y[x ← E] = y  where  y ≠ x

(E0 E1)[x ← E] = (E0[x ← E] E1[x ← E])
(λ (x) E0)[x ← E] = (λ (x) E0)
(λ (y) E0)[x ← E] = (λ (y) E0[x ← E])

where  y ≠ x  and  y ∉ FV(E)

β-reduction cannot occur when y ∈ FV(E)



((λ (y)  
    ((λ (z) (λ (y) (z y))) y))  
 (λ (x) x))

How can you beta-reduce the following 
expression using capture-avoiding 

substitution?



((λ (y)  
    ((λ (z) (λ (y) (z y))) y))  
 (λ (x) x))

How can you beta-reduce the following 
expression using capture-avoiding 

substitution?

((λ (z) (λ (y) (z y))) (λ (x) x))

β



(λ (y) ((λ (z) (λ (y) z)) (λ (x) y)))

How can you beta-reduce the following 
expression using capture-avoiding 

substitution?



How can you beta-reduce the following 
expression using capture-avoiding 

substitution?

(λ (y) ((λ (z) (λ (y) z)) (λ (x) y)))

You cannot! This redex would require:

(λ (y) z)[z ← (λ (x) y)]
(y is free here, so it would be captured)



          (λ (y) ((λ (z) (λ (y) z)) (λ (x) y)))

(λ (y) ((λ (z) (λ (w) z)) (λ (x) y)))→α

(λ (y) (λ (w) (λ (x) y)))→β

Instead we alpha-convert first.

How can you beta-reduce the following 
expression using capture-avoiding 

substitution?



To formally define the semantics of the lambda calculus via 
reduction, we also need rules that will let us apply reductions 
inside of rules:

α
y ∉ FV(e)

(λ (x) e) α→ (λ (y) e[x ↦ y])

β1
e1

βα
→ e′ 

(e0 e1) → (e0 e′ )
β0

e0
βα
→ e′ 

(e0 e1) → (e′ e1)

β
e′ = eb [x ↦ e1]

((λ (x) eb) e1) β
→ e′ 



((lambda (x) x) ((lambda (z) z) y))

((lambda (x) x) y) ((lambda (z) z) y)

y

ββ

ββ

Recall: a term may have 
multiple redexes!

α
y ∉ FV(e)

(λ (x) e) α→ (λ (y) e[x ↦ y])

β1
e1

βα
→ e′ 

(e0 e1) → (e0 e′ )
β0

e0
βα
→ e′ 

(e0 e1) → (e′ e1)

β
e′ = eb [x ↦ e1]

((λ (x) eb) e1) β
→ e′ 



((lambda (x) x) ((lambda (z) z) y))

((lambda (x) x) y) ((lambda (z) z) y)

y

ββ

ββ

Because β and α reduction are inherently nondeterministic, we 
use a reduction strategy, which is system that tells us which 
reduction to apply: 
- Normal Order — Leftmost (outermost) application 
- Applicative Order — Innermost application



We’ll talk more about these next time. They relate to 
the computational notions of call-by-name (normal) 
and call-by-value (applicative) 



(λ (x) (E0 x)) E0 where  x ∉ FV(E0) →η

η-reduction / expansion capture a property akin 
to extensionality

E0 (λ (x) (E0 x)) where  x ∉ FV(E0) →η

We do not use η-reduction/expansion in 
computation (unlike β), but it helps us establish 

certain equalities in lambda theories



When unambiguous, we refer to reduction in the lambda 
calculus as the application of a beta, alpha, or eta reduction:

(→)  =  (→β) ∪ (→α) ∪ (→η) 

(→*)
(When necessary for exams, we will clarify…)



E0

*

E8

*

?

It is often helpful to think of applying a sequence of reductions 
to arrive at some final “result.” 

In the lambda calculus, we call these results / values “normal 
forms.”

A normal form is a form that has 
no more possible applications of 
some kind of reduction…



E0

*

(λ (x) … (λ (z) ((a …) …)))

In beta normal form, no function position can be a lambda; 
this is to say: there are no unreduced redexes left!



We covered a lot of material! 
• Free variables 
• Alpha renaming 
• Beta reduction 
• Eta reduction / expansion 
• Capture-avoiding substitution 
• Applicative / normal order 
Next time: reduction strategies and more normal 
forms…


