
Lambda Calculus:
Reduction / Substitution
CIS352 — Spring 2023
Kris Micinski

Last lecture: β−reduction, informally

→β((λ (x) E0) E1) E0[x ← E1]{
redex

(reducible expression)

replace every x in E0 with E1.

If you watch the history of the lambda calculus
discussion by Dana Scott, I will award +.5% bonus
(min 5-30):

https://www.youtube.com/watch?v=uS9InrmPIoc

How can we define beta reduction as a
Racket function…?

(define (beta-reduce e)
 (match e
 [`((lambda (,x) ,e-body) ,e-arg) (subst x e-arg e-body)]
 [_ (error "beta-reduction cannot apply...")]))

Today: how do we define the subst function?

Variables are challenging

Typical presentations of the lambda calculus define a
textual-reduction semantics.

You can envision a “machine” where the machine’s state
is the text of the program as it evolves

Semantics of the Lambda Calculus

((lambda (x) x) ((lambda (z) z) y))

Typical presentations of the lambda calculus define a
textual-reduction semantics.

You can envision a “machine” where the machine’s state
is the text of the program as it evolves

Semantics of the Lambda Calculus

((lambda (x) x) ((lambda (z) z) y))

((lambda (x) x) y)

β

Typical presentations of the lambda calculus define a
textual-reduction semantics.

You can envision a “machine” where the machine’s state
is the text of the program as it evolves

Semantics of the Lambda Calculus

((lambda (x) x) ((lambda (z) z) y))

((lambda (x) x) y)

y

β

β

Semantics of the Lambda Calculus

((lambda (x) x) ((lambda (z) z) y))

((lambda (x) x) y)

y

β

β

Observe! Β-Reduction is
nondeterministic

In general, a term may have multiple β
redexes, and thus multiple β reductions

This term has two beta redexes!

Semantics of the Lambda Calculus

((lambda (x) x) ((lambda (z) z) y))

((lambda (x) x) y) ((lambda (z) z) y)

y

ββ

ββ

The outer one in red
The inner one in blue

The two challenges for this lecture:
- How do we implement substitution
- How do we deal with nondeterminism in the semantics

Substitution seems conceptually simple, but it is
surprisingly tricky. But consider this: substitution
is fundamentally where computation happens!

(define (beta-reduce e)
 (match e
 [`((lambda (,x) ,e-body) ,e-arg) (subst x e-arg e-body)]
 [_ (error "beta-reduction cannot apply...")]))

If we have subst, we can easily define beta-reduce.

FV : Exp → 𝒫(Var)

FV(x) Δ= {x}

FV((λ (x) eb))
Δ= FV(eb) \ {x}

FV(ef ea))
Δ= FV(ef) ∪ FV(ea)

We define the free variables of a lambda expression
via the function FV:

Free Variables

FV((x y)) = {x, y}

FV(((λ (y) ((λ (x) (z x)) x))) = {z, x}

FV(((λ (x) x) y)) = {y}
FV(((λ (x) x) x)) = {x}

FV((x y)) = {x, y}

FV(((λ (y) ((λ (x) (z x)) x))) = {z, x}

FV(((λ (x) x) y)) = {y}
FV(((λ (x) x) x)) = {x}

((λ (x) x) y)

((λ (x) (x x)) (λ (x) (x x)))

((λ (x) (z y)) x)

What are the free variables of each of the
following terms?

((λ (x) x) y)

((λ (x) (x x)) (λ (x) (x x)))

((λ (x) (z y)) x)

{y}

{}

{x, y, z}

What are the free variables of each of the
following terms?

A term is closed when it has no free variables:
- ((lambda (x) x) (lambda (y) y))
- (lambda (z) (lambda (x) (z (lambda (z) z)))
Sometimes we call these (closed terms) combinators
Some open terms…
- (lambda (x) ((lambda (z) z) z))
- ((lambda (x) x) (lambda (z) x))

Closed Terms

α-renaming allows us to rename variables:

Alpha-Renaming

y ∉ FV(e)
(λ (x) e) α→ (λ (y) e[x ↦ y])

Still need to define substitution…

Important consequence: terms are
unique up to α equivalence

Every term has infinitely-many terms to
which it is α equivalent

e0 e1 e2 e3 e4 e5
α α α α α

(lambda (x) x)(lambda (😋) 😋)

https://getemoji.com/
https://getemoji.com/

What breaks if the antecedent isn’t enforced..?

y ∉ FV(e)
(λ (x) e) α→ (λ (y) e[x ↦ y])

Meaning of term changes! Someone might have an intention
to use that free variable y

(lambda (x) add1) very different from (lambda (x) x)
(((Lambda (x) add1) (lambda (y) y)) 2)
!=
(((Lambda (x) x) (lambda (y) y)) 2)

Can we define lambda calculi without explicit variables? (Yes!)

• De-Bruin Indices (variables are numbers indicating to which
binder they belong)

• Combinatory logic uses bases of fully-closed terms. Always
possible to rewrite any LC term to use only several closed
combinators

We won’t study either of these

We define capture-avoiding substitution, in which we are
careful to avoid places where variables would become
captured by a substitution.

The problem with (naive) textual substitution

((λ (a) (λ (a) a)) (λ (b) b))

β

(λ (a) a)[a ← (λ (b) b)]

The problem with (naive) textual substitution

((λ (a) (λ (a) a)) (λ (b) b))

β

(λ (a) (λ (b) b))

Capture-avoiding substitution

E0[x ← E1]

x[x ← E] = E
y[x ← E] = y where y ≠ x

x[x ← E] = E
y[x ← E] = y where y ≠ x

(E0 E1)[x ← E] = (E0[x ← E] E1[x ← E])

x[x ← E] = E
y[x ← E] = y where y ≠ x

(E0 E1)[x ← E] = (E0[x ← E] E1[x ← E])
(λ (x) E0)[x ← E] = (λ (x) E0)

x[x ← E] = E
y[x ← E] = y where y ≠ x

(E0 E1)[x ← E] = (E0[x ← E] E1[x ← E])
(λ (x) E0)[x ← E] = (λ (x) E0)
(λ (y) E0)[x ← E] = (λ (y) E0[x ← E])

where y ≠ x and y ∉ FV(E)

β-reduction cannot occur when y ∈ FV(E)

((λ (y)
 ((λ (z) (λ (y) (z y))) y))
 (λ (x) x))

How can you beta-reduce the following
expression using capture-avoiding

substitution?

((λ (y)
 ((λ (z) (λ (y) (z y))) y))
 (λ (x) x))

How can you beta-reduce the following
expression using capture-avoiding

substitution?

((λ (z) (λ (y) (z y))) (λ (x) x))

β

(λ (y) ((λ (z) (λ (y) z)) (λ (x) y)))

How can you beta-reduce the following
expression using capture-avoiding

substitution?

How can you beta-reduce the following
expression using capture-avoiding

substitution?

(λ (y) ((λ (z) (λ (y) z)) (λ (x) y)))

You cannot! This redex would require:

(λ (y) z)[z ← (λ (x) y)]
(y is free here, so it would be captured)

 (λ (y) ((λ (z) (λ (y) z)) (λ (x) y)))

(λ (y) ((λ (z) (λ (w) z)) (λ (x) y)))→α

(λ (y) (λ (w) (λ (x) y)))→β

Instead we alpha-convert first.

How can you beta-reduce the following
expression using capture-avoiding

substitution?

To formally define the semantics of the lambda calculus via
reduction, we also need rules that will let us apply reductions
inside of rules:

α
y ∉ FV(e)

(λ (x) e) α→ (λ (y) e[x ↦ y])

β1
e1

βα
→ e′

(e0 e1) → (e0 e′)
β0

e0
βα
→ e′

(e0 e1) → (e′ e1)

β
e′ = eb [x ↦ e1]

((λ (x) eb) e1) β
→ e′

((lambda (x) x) ((lambda (z) z) y))

((lambda (x) x) y) ((lambda (z) z) y)

y

ββ

ββ

Recall: a term may have
multiple redexes!

α
y ∉ FV(e)

(λ (x) e) α→ (λ (y) e[x ↦ y])

β1
e1

βα
→ e′

(e0 e1) → (e0 e′)
β0

e0
βα
→ e′

(e0 e1) → (e′ e1)

β
e′ = eb [x ↦ e1]

((λ (x) eb) e1) β
→ e′

((lambda (x) x) ((lambda (z) z) y))

((lambda (x) x) y) ((lambda (z) z) y)

y

ββ

ββ

Because β and α reduction are inherently nondeterministic, we
use a reduction strategy, which is system that tells us which
reduction to apply:
- Normal Order — Leftmost (outermost) application
- Applicative Order — Innermost application

We’ll talk more about these next time. They relate to
the computational notions of call-by-name (normal)
and call-by-value (applicative)

(λ (x) (E0 x)) E0 where x ∉ FV(E0) →η

η-reduction / expansion capture a property akin
to extensionality

E0 (λ (x) (E0 x)) where x ∉ FV(E0) →η

We do not use η-reduction/expansion in
computation (unlike β), but it helps us establish

certain equalities in lambda theories

When unambiguous, we refer to reduction in the lambda
calculus as the application of a beta, alpha, or eta reduction:

(→) = (→β) ∪ (→α) ∪ (→η)

(→*)
(When necessary for exams, we will clarify…)

E0

*

E8

*

?

It is often helpful to think of applying a sequence of reductions
to arrive at some final “result.”

In the lambda calculus, we call these results / values “normal
forms.”

A normal form is a form that has
no more possible applications of
some kind of reduction…

E0

*

(λ (x) … (λ (z) ((a …) …)))

In beta normal form, no function position can be a lambda;
this is to say: there are no unreduced redexes left!

We covered a lot of material!
• Free variables
• Alpha renaming
• Beta reduction
• Eta reduction / expansion
• Capture-avoiding substitution
• Applicative / normal order
Next time: reduction strategies and more normal
forms…

