Interpreting
IfArith

CIS352 — Fall 2023
Kris Micinski

Today, we're going to start building our own languages

We're going to do this by writing interpreters

o build a programming language, we need two things:

A syntax for the language (and the ability to parse it)

A semantics for the language. Typically either an
interpreter or a compiler

For this class, all of our programs are going to be
written as Racket datums

We specity syntax via a predicate that uses pattern
matching

This means we can just write programs in our
language just by building data in Racket

Here is the first language we will define:

(define (expr? e)
(match e
(? 1nteger? n) #t]
“(plus ,(? expr? e@) ,(?7 expr? el)) #t]
“(div ,(7 expr? ed) ,(? expr? el)) #t]
"(not ,(? expr? e-qguard)) #t]
“(if L, (7 expr? ed) ,(? expr? el) ,(? expr? e2)) #t]
_ #t1))

(define (expr? e)
(match e
(? 1nteger? n) #t]
"(plusp,(? expr? ed) ,(?7 expr? el)) #t]
“(div [, (7?7 expr? e@) ,(? expr? el)) #t]
"(notf,(? expr? e-qguard)) #t]
“(if [, (7 expr? ed) ,(? expr? el) ,(? expr? e2)) #t]
_ #fD))

"Any integer is a program in our language.”

(define (expr? e)
(match e
(? 1nteger? n) #t]
(plus ,(? expr? ed) ,(? expr? el)) #t]
“(div J(? expr? ed) ,(? expr? el)) #t]
(not ,(? expr? e-guard)) #t]
Lf [, (7 expr? e@) ,(?7 expr? el) ,(?7 expr? e2)) #t]
_ #7]))

“If e0 is an expression in our language, and e is an

expression in our language, (plus ,e0 ,e1) is, too.”

(define (expr? e)
(match e
(? 1nteger? n) #t]
“(plus ,(? expr? ed) ,(? expr? el)) #t]
(div ,(? expr? ed) ,(?7 expr? el)) #t]
(not ,(? expr? e-guard)) #t]
T (if ,(?7 expr? ed) ,(? expr? el) ,(? expr? e2)) #t]
_ #]1))

Here are some example expressions:

‘“(plus 1 (div 2 3))
"(1f 0 (plus 1 2) (div 2 2))
"(1f @0 (plus 1 (div 2 3)) (1f 1 (plus 2 3) 0))

IMPORTANT NOTE

We are defining a new language by using Racket. But
our language is not Racket. In Racket, booleans are #t

and #f. In our language, we will use O to represent false
and non-0 to represent true (as in C).

Again, because this is confusing

When writing interpreters, always be careful to mentally
separate the language you are defining and the
language you are using to build the interpreter (Racket).

This can become confusing as the languages we build
will “look like” Racket. Try to be mindftul.

10

Key idea: write an interp function that takes in
expressions as an argument, and returns Racket values

11

Key idea: write an interp function that takes in
expressions as an argument, and returns Racket values

The "result” of programs will be a Racket integer:

(define value? 1integer?)

12

Key idea: write an interp function that takes in
expressions as an argument, and returns Racket values

The "result” of programs will be a Racket integer:

(define value? 1integer?)
(define/contract (evaluate e)

(-> expr? value?)
‘todo)

13

What should the tollowing return...?
Remember, this is our own new language we are
defining, not necessarily Racket

(evaluate "(plus 1 2))

=> 3

(evaluate '(1f 0 (plus 1 2) (div 2 2)))
=> ‘todo

(evaluate "(1f 1 (div 4 3) (plus 1 -1)))
=> ‘todo

14

What should the tollowing return...?
Remember, this is our own new language we are
defining, not necessarily Racket

(evaluate "(plus 1 2))

=> 3

(evaluate '(1f 0 (plus 1 2) (div 2 2)))
=> 1

(evaluate "(1f 1 (div 4 3) (plus 1 -1)))
=> 4/3

15

Now, let's build evaluate ourselves

16

In this lecture, we built a metacircular interpreter

Important Definition

A metacircular interpreter is an interpreter which uses
features of a "host” language to define the semantics of
a "target” language

Which features of Racket did we use to define our
language...?

17

Important Definition

A metacircular interpreter is an interpreter which uses
features of a "host” language to define the semantics of
a "target” language

(define (evaluate e)
(match e
[(? 1nteger? n) nj
[(plus ,(?7 expr? e@) ,(? expr? el))
(+ (evaluate e@) (evaluate el))]

Notice how we inherit the definition of + from Racket

18

John Reynolds introduced metacircular interpreters in
1978. One key idea: metacircular interpreters inherit
properties of their host language!

Laaumuonsl fiorpreters for Higher-Ovder Programnung Languages

-71L-lh-‘q

dahqn Co Reyeouls, Syrecuse University

@Mmm / Do finctiom ok 1

Higher-order programming languages (i.e., INTRODUCTTON

languages in which procedures or labels
can oczur as values) are usually daefined
by interpreters which are themselves
written in a programring language based
on the lambda calculus (i.e., an
applicative language such as pure LISP).
Examples include lMcCarthy's definition
of LISP, Landin's SECD machine, the
Vienna definition of PL/I, Reynolds'
definitions of GEDANKENl, and recent
unpublished work by L. Morris and

C. wadsworth. Such definitions can be
classified according to whether the
interpretexr contains higher-order
functions, and whether the order of
application (i.e., call-by-value versus
call-by--nane) in the defined language

An important and frequently uscd
method of defining a programming language
is to give an interpreter for the language
which is written in a second, hoprefully
better undcrstood language. (Ve will
call thesc two languages the defined
and defining languages, respectively.)

In this paper, we will describe and
classify several varieties of such
interpreters, and show how they may be
derived from one another by informal but
constructive methods. Although our
approach to "constructive classif{ication"
is original, thec paper is basically an
attempt to review and systematize
previous work in the field, and we have

Note: our interpreter is direct-style, it is not tail recursive

(define (evalugte e)
(match e
[(?7 1ntegkr? n) n]
["(plus ,(? expr? e®) ,(? expr? el))
(+ (evaluate e®) (evaluate el))]

This means we are relying on Racket’s stack as well
We will later see how to eliminate the need for this

20

