
Interpreting
IfArith
CIS352 — Fall 2023
Kris Micinski

2

Today, we’re going to start building our own languages

We’re going to do this by writing interpreters

3

To build a programming language, we need two things:

A syntax for the language (and the ability to parse it)

A semantics for the language. Typically either an
interpreter or a compiler

4

For this class, all of our programs are going to be
written as Racket datums

This means we can just write programs in our
language just by building data in Racket

We specify syntax via a predicate that uses pattern
matching

5

(define (expr? e)
 (match e
 [(? integer? n) #t]
 [`(plus ,(? expr? e0) ,(? expr? e1)) #t]
 [`(div ,(? expr? e0) ,(? expr? e1)) #t]
 [`(not ,(? expr? e-guard)) #t]
 [`(if ,(? expr? e0) ,(? expr? e1) ,(? expr? e2)) #t]
 [_ #f]))

Here is the first language we will define:

6

(define (expr? e)
 (match e
 [(? integer? n) #t]
 [`(plus ,(? expr? e0) ,(? expr? e1)) #t]
 [`(div ,(? expr? e0) ,(? expr? e1)) #t]
 [`(not ,(? expr? e-guard)) #t]
 [`(if ,(? expr? e0) ,(? expr? e1) ,(? expr? e2)) #t]
 [_ #f]))

“Any integer is a program in our language.”

7

(define (expr? e)
 (match e
 [(? integer? n) #t]
 [`(plus ,(? expr? e0) ,(? expr? e1)) #t]
 [`(div ,(? expr? e0) ,(? expr? e1)) #t]
 [`(not ,(? expr? e-guard)) #t]
 [`(if ,(? expr? e0) ,(? expr? e1) ,(? expr? e2)) #t]
 [_ #f]))

“If e0 is an expression in our language, and e1 is an
expression in our language, `(plus ,e0 ,e1) is, too.”

8

(define (expr? e)
 (match e
 [(? integer? n) #t]
 [`(plus ,(? expr? e0) ,(? expr? e1)) #t]
 [`(div ,(? expr? e0) ,(? expr? e1)) #t]
 [`(not ,(? expr? e-guard)) #t]
 [`(if ,(? expr? e0) ,(? expr? e1) ,(? expr? e2)) #t]
 [_ #f]))

Here are some example expressions:
‘(plus 1 (div 2 3))
'(if 0 (plus 1 2) (div 2 2))
'(if 0 (plus 1 (div 2 3)) (if 1 (plus 2 3) 0))

9

IMPORTANT NOTE

We are defining a new language by using Racket. But
our language is not Racket. In Racket, booleans are #t
and #f. In our language, we will use 0 to represent false
and non-0 to represent true (as in C).

10

Again, because this is confusing

When writing interpreters, always be careful to mentally
separate the language you are defining and the
language you are using to build the interpreter (Racket).

This can become confusing as the languages we build
will “look like” Racket. Try to be mindful.

11

Key idea: write an interp function that takes in
expressions as an argument, and returns Racket values

12

Key idea: write an interp function that takes in
expressions as an argument, and returns Racket values

(define value? integer?)

The “result” of programs will be a Racket integer:

13

Key idea: write an interp function that takes in
expressions as an argument, and returns Racket values

(define value? integer?)

(define/contract (evaluate e)
 (-> expr? value?)
 ‘todo)

The “result” of programs will be a Racket integer:

14

What should the following return…?
Remember, this is our own new language we are
defining, not necessarily Racket

(evaluate '(plus 1 2))
=> 3
(evaluate '(if 0 (plus 1 2) (div 2 2)))
=> ‘todo
(evaluate '(if 1 (div 4 3) (plus 1 -1)))
=> ‘todo

15

What should the following return…?
Remember, this is our own new language we are
defining, not necessarily Racket

(evaluate '(plus 1 2))
=> 3
(evaluate '(if 0 (plus 1 2) (div 2 2)))
=> 1
(evaluate '(if 1 (div 4 3) (plus 1 -1)))
=> 4/3

16

Now, let’s build evaluate ourselves

17

In this lecture, we built a metacircular interpreter

Important Definition
A metacircular interpreter is an interpreter which uses
features of a “host” language to define the semantics of
a “target” language

Which features of Racket did we use to define our
language…?

18

(define (evaluate e)
 (match e
 [(? integer? n) n]
 [`(plus ,(? expr? e0) ,(? expr? e1))
 (+ (evaluate e0) (evaluate e1))]
 …

Important Definition
A metacircular interpreter is an interpreter which uses
features of a “host” language to define the semantics of
a “target” language

Notice how we inherit the definition of + from Racket

19

John Reynolds introduced metacircular interpreters in
1978. One key idea: metacircular interpreters inherit
properties of their host language!

20

Note: our interpreter is direct-style, it is not tail recursive

(define (evaluate e)
 (match e
 [(? integer? n) n]
 [`(plus ,(? expr? e0) ,(? expr? e1))
 (+ (evaluate e0) (evaluate e1))]
 …

This means we are relying on Racket’s stack as well
We will later see how to eliminate the need for this

