
Development
Experience
CIS352 — Fall 2022
Kris Micinski

2

Development Environment

• I keep two windows open:

• (a) an editor (Dr. Racket, emacs, VSCode, …)

• (b) a command-line application (iTerm2)

3

Starting my development

• Every day when I begin my work I:

• (a) open a new tab in the command line

• (b) navigate to the project folder I want

• Everything kept in git, so this is a git repo

4

Useful commands
• When I open up the command line, I’m in my home directory

• Use cd to change into the directory I want

• Use tab completion always when I use the shell

• You should too!

5

Globs
• You can use search patterns (“globs”) with most commands

• Regular-expression-like language (not standard)

• Lets me search *p1* to say “find anything with p1 in it”

6

Git status
• After getting into the work directory, I use “git status” to see

what’s new

• Shows any uncommitted work

7

clear
• I hate seeing too text on the screen

8

Running the tests
• Once in a while, I’ll run the tests

• Always use python3

• Old python is python 2, it is now dead

• Run it from the command line

• Same project folder that holds our git
repo

• I encourage you to go read tester.py

• But it uses several helper scripts

9

Editing the code
• Several choices:

• Emacs / vi in the terminal

• Probably want side-by-side terms

10

Editing the code
• Most students will simply use Dr. Racket and a terminal

• This is fine—keep them both side-by-side

• (Switch between with command-tab on MacOS, …)

11

Test Always
• Whenever you do something, test it as fast as possible

• Otherwise you will lose context, context is crucial for bug finding!

• Get in the habit of pressing “run” a bunch

• Even if you run no tests, it does “rough
check” of syntactic correctness

• Type tests in the REPL “manually” for small
things, use the terminal to run larger tests

12

Other Editors

VSCode is worth trying

Cons Diagrams
and Boxes
CIS352 — Fall 2022
Kris Micinski

14

Derived Types
• S-expressions (symbolic expression)

• Untyped lists that generalize neatly to trees:

• Computer represents these as linked structures

• Cons cells of head & tail (cons 1 2)

(this (is an) s expression)

15

Derived Types
• Racket also has structural types

• Defined via struct; aids robustness

• We will usually prefer agility of “tagged” S-expressions

• Also an elaborate object-orientation system (we won’t cover)

16

(cons 0 1)

0

1

The function cons builds a cons cell

17

(cons 0 1)

0

1

The function car gets the left element

(car) is 0

18

(cons 0 1)

0

1

The function cdr gets the left element

(cdr) is 1

19

(cons 0 1)

0

1

(cdr) is 1
At runtime, each cons cell sits at an address in memory

0x700000032acd1200

20

0

1
0x700000032acd1200

0

In fact, numbers are also stored in memory locations.
They are thus said to be a “boxed” type

0x700000012ace1564

21

(define x 23)
(displayln x)
(set! x 24)
(displayln x)

Actually, every Racket variable stores a value
in some “box” (i.e., memory location)

23x
0x700000033dea2280

22

(define x 23)
(displayln x)
(set! x 24)
(displayln x)

Actually, every Racket variable stores a value
in some “box” (i.e., memory location)

23x
0x700000033dea2280

Console output…
> 23

23

(define x 23)
(displayln x)
(set! x 24)
(displayln x)

Actually, every Racket variable stores a value
in some “box” (i.e., memory location)

24x
0x700000033dea2280

x’s value changes to 24

24

(define x (vector 1 2 3))
(vector-set! x 1 0)
x
;; ‘#(1 0 3)

Vectors (similar to arrays) are mutable, and
give O(1) indexing and updating

25

Unless we say otherwise, you should avoid
using set!, any use will be at your own risk

Similarly, avoid vector-set!, hash-set!, …

Using set! will, in CIS352, lead to hard-to-
debug code that will make it much harder
for instructors to understand your code

26

(cons 1 (cons 0 ‘()))

‘()

1 0
Empty list

This is how Racket represents lists in memory

Pairs enable us to build linked lists of data

27

(cons 2 (cons 1 (cons 0 ‘())))

Note that in Racket, the following are equivalent

‘(2 1 0)
But the following is called an improper list

(cons 2 (cons 1 0))
‘(2 1 . 0)

Dot indicates a cons cell of a left and right element

28

‘(this (is an) s expression)

Also can build compound expressions

29

‘(this (is an) s expression)

Also can build compound expressions

‘()

‘this ‘expression‘s

‘is ‘an

‘()

30

‘()

‘this ‘expression‘s

‘is ‘an

‘()

31

Draw the cons diagram for…
• (cons 0 (cons 3 4))
• Is this a list? If not, what is it?
• (cons 0 (cons 3 (cons 4 ‘())))
• Is this a list? If not, what is it?

32

 (cons 0 (cons 3 4))

0 3

4

This is not a list (an improper list)

33

 (cons 0 (cons 3 (cons 4 ‘()))

0 3 4

‘()

