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Development Environment

• I keep two windows open: 

• (a) an editor (Dr. Racket, emacs, VSCode, …) 

• (b) a command-line application (iTerm2)
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Starting my development

• Every day when I begin my work I: 

• (a) open a new tab in the command line 

• (b) navigate to the project folder I want 

• Everything kept in git, so this is a git repo
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Useful commands
• When I open up the command line, I’m in my home directory 

• Use cd to change into the directory I want 

• Use tab completion always when I use the shell 

• You should too!
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Globs
• You can use search patterns (“globs”) with most commands 

• Regular-expression-like language (not standard) 

• Lets me search *p1* to say “find anything with p1 in it”
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Git status
• After getting into the work directory, I use “git status” to see 

what’s new 

• Shows any uncommitted work
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clear
• I hate seeing too text on the screen
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Running the tests
• Once in a while, I’ll run the tests 

• Always use python3 

• Old python is python 2, it is now dead 

• Run it from the command line 

• Same project folder that holds our git 
repo 

• I encourage you to go read tester.py 

• But it uses several helper scripts
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Editing the code
• Several choices: 

• Emacs / vi in the terminal 

• Probably want side-by-side terms
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Editing the code
• Most students will simply use Dr. Racket and a terminal 

• This is fine—keep them both side-by-side 

• (Switch between with command-tab on MacOS, …)
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Test Always
• Whenever you do something, test it as fast as possible 

• Otherwise you will lose context, context is crucial for bug finding! 

• Get in the habit of pressing “run” a bunch 

• Even if you run no tests, it does “rough 
check” of syntactic correctness 

• Type tests in the REPL “manually” for small  
things, use the terminal to run larger tests
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Other Editors

VSCode is worth trying
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Derived Types
• S-expressions (symbolic expression) 

• Untyped lists that generalize neatly to trees: 

• Computer represents these as linked structures 

• Cons cells of head & tail (cons 1 2)

(this (is an) s expression)
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Derived Types
• Racket also has structural types 

• Defined via struct; aids robustness 

• We will usually prefer agility of “tagged” S-expressions 

• Also an elaborate object-orientation system (we won’t cover)
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(cons 0 1)

0

1

The function cons builds a cons cell



17

(cons 0 1)

0

1

The function car gets the left element

(car ) is 0
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(cons 0 1)

0

1

The function cdr gets the left element

(cdr ) is 1
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(cons 0 1)

0

1

(cdr ) is 1
At runtime, each cons cell sits at an address in memory

0x700000032acd1200
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0

1
0x700000032acd1200

0

In fact, numbers are also stored in memory locations. 
They are thus said to be a “boxed” type

0x700000012ace1564
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(define x 23) 
(displayln x) 
(set! x 24) 
(displayln x)

Actually, every Racket variable stores a value 
in some “box” (i.e., memory location)

23x
0x700000033dea2280
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(define x 23) 
(displayln x) 
(set! x 24) 
(displayln x)

Actually, every Racket variable stores a value 
in some “box” (i.e., memory location)

23x
0x700000033dea2280

Console output… 
> 23
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(define x 23) 
(displayln x) 
(set! x 24) 
(displayln x)

Actually, every Racket variable stores a value 
in some “box” (i.e., memory location)

24x
0x700000033dea2280

x’s value changes to 24
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(define x (vector 1 2 3)) 
(vector-set! x 1 0) 
x 
;; ‘#(1 0 3)

Vectors (similar to arrays) are mutable, and 
give O(1) indexing and updating
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Unless we say otherwise, you should avoid 
using set!, any use will be at your own risk

Similarly, avoid vector-set!, hash-set!, …

Using set! will, in CIS352, lead to hard-to-
debug code that will make it much harder 
for instructors to understand your code
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(cons 1 (cons 0 ‘()))

‘()

1 0
Empty list

This is how Racket represents lists in memory

Pairs enable us to build linked lists of data
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(cons 2 (cons 1 (cons 0 ‘())))

Note that in Racket, the following are equivalent

‘(2 1 0)
But the following is called an improper list

(cons 2 (cons 1 0))
‘(2 1 . 0)

Dot indicates a cons cell of a left and right element
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‘(this (is an) s expression)

Also can build compound expressions
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‘(this (is an) s expression)

Also can build compound expressions

‘()

‘this ‘expression‘s

‘is ‘an

‘()
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‘()

‘this ‘expression‘s

‘is ‘an

‘()
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Draw the cons diagram for… 
• (cons 0 (cons 3 4)) 
• Is this a list? If not, what is it? 
• (cons 0 (cons 3 (cons 4 ‘()))) 
• Is this a list? If not, what is it?
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 (cons 0 (cons 3 4)) 

0 3

4

This is not a list (an improper list)
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 (cons 0 (cons 3 (cons 4 ‘())) 

0 3 4

‘()


