
Textual Reduction
CIS352 — Fall 2022
Kris Micinski

2

(* (+ 2 (* 4 6))  
 (+ 3 5 7))

How does the computer evaluate this expression?

3

int x =
 (2 + 4*6)
 * (3 + 5 + 7);

A C-like language would compile the expression

4

5

Computer executes instructions on a clock

6

High-level observation:

every computation, in any language (running on your
processor) is broken down—somehow—into sequences
of atomic steps reified as instructions by your processor

7

A key idea in the course is that evaluation of
programs is often broken down into a sequence of
small atomic steps

8

A key idea in the course is that evaluation of
programs is often broken down into a sequence of
small atomic steps

Assembly languages (from your systems course) are
a special case where the processor’s execution
makes each instruction atomic

9

A key idea in the course is that evaluation of
programs is often broken down into a sequence of
small atomic steps

Assembly languages (from your systems course) are
a special case where the processor’s execution
makes each instruction atomic

Modern microprocessors involve lots of places
where atomicity breaks down (cache coherence,
etc..) but this is a key abstraction layer in computing

10

;; Some number of steps
(* (+ 2 (* 4 6))  
 (+ 3 5 7))

In high-level languages, computations/expressions do not
have one-to-one correspondence with the processor’s
execution.

In fact, it is impossible (in general) to look at an expression
and say how many steps the processor will take to execute an
expression

11

Textual reduction is a way of defining the semantics (i.e.,
meaning) of a program as a series of progressing steps,
where each step consists of a program (represented textually),
and a program to which it is “rewritten” (textually reduced)

Textual reduction semantics may be defined formally, but in
this lecture we will be illustrating them informally

12

 (+ (* 3 2) 1)

-> (+ 5 1)

This subexpression is reduced to…

This expression, which is a value

13

Values

We often refer to the values of a programming
language. Intuitively, a value is something that
does not require any additional computation
to manifest

(+ 3 (* (foo 5) 6)) ;; not a value
‘hello ;; value
15.0 ;; value

14

In terms of the computation, values are places where
computation stops

(* 3 (+ 4 5))

In terms of our intuitive semantics: a builtin function
may be applied when each of its arguments is a value

15

As an aside…
Later, we will see that this construction is inefficient: it
means we are doing at least O(n) work to (a) identify
the redex and (b) then perform a transformation to
obtain our result.
Later in the course we will see several improvements to
this strategy, e.g., context-and-redex semantics or
continuations

At each point in time, we follow a two-step process:
identify what can be reduced, and then perform the
appropriate reduction

16

Example reduction sequence

(* (* 3 1) (+ 4 5))
-> (* 3 (+ 4 5))
-> (* 3 9)
-> 27 ;; Resulting value

17

Question: in the last slide, why not do this?

(* (* 3 1) (+ 4 5))
-> (* (* 3 1) 9)
-> (* 3 9)
-> 27 ;; Resulting value

Answer: we could have! But typically we additionally
constrain the reductions so that they occur in some
predictable order

In most PLs, we process arguments left-to-right, then
apply builtins when their arguments are values

18

So far, we have described three rules for reducing arithmetic
expressions in a sequence of steps:
- Any number requires no additional work and is a value
- A builtin may be applied when its arguments have been

reduced to values
- When we reach a builtin application, we should reduce its

arguments from left-to-right

19

A sequence of reductions (i.e., steps) that follow these rules
is called a reduction sequence

Exercise

20

Write a reduction sequence for…
(+ (* 3 1) (/ 2 2))

Exercise

21

Write a reduction sequence for…
(+ (* 3 1) (/ 2 2))

 (+ (* 3 1) (/ 2 2))
-> (+ 3 (/ 2 2))
-> (+ 3 1)
-> 4 ;; this is a value, computation stops.

22

So far, we have only handled arithmetic. Let’s also add if and
booleans to our language. It may also be useful to add
builtin comparison operators

23

IfArith, is a language consisting of numbers, booleans, and
arithmetic expressions (plus equality testing), along with if

Number ::= 0 | 1 | …
Bool ::= #t | #f
Value ::= Number | Bool
Expr ::= Value  
 | (+ expr expr)
 | (* expr expr)
 | (/ expr expr)  
 | (= expr expr)
 | (if expr expr expr)

We have already covered the highlighted subset

24

This grammar is in EBNF (Extended Backus-Naur form)

Number ::= 0 | 1 | …
Bool ::= #t | #f
Value ::= Number | Bool
Expr ::= Value  
 | (+ expr expr)
 | (* expr expr)
 | (/ expr expr)  
 | (= expr expr)
 | (if expr expr expr)

25

Textual reduction for = happens similarly to + and etc…,
except it produces a boolean rather than a number

 (= 1 (+ 2 3))
-> (= 1 5)
-> #f

 (if (= (* 1 (+ 2 3)) 5) 0 1)
-> (if (= (* 1 5) 5) 0 1)
-> (if (= 5 5) 0 1)
-> (if #f 0 1) ;; what next?

26

Q: What happens when you mess up the types?
A: This is one way in which this lecture is inspecific—we have
several choices.

For now, we will say that terms that are “ill typed” get stuck,
i.e., have no successor states. Later on, we will build type
theory to show that well-typed terms do not get stuck

 (+ (* 1 2) (= 3 4))
-> (+ 2 (= 3 4))
-> (+ 2 #f) <— ☠☠☠; can’t make any progress

27

Last, to evaluate an if: first evaluate its guard, then evaluate
either the true or false branch based on the guard’s value

 (if (= 1 (+ 0 1)) (* 2 3) (* 3 1))
-> (if (= 1 1) (* 2 3) (* 3 1))
-> (if #t (* 2 3) (* 3 1))
-> (* 2 3) ;; replace with true branch
-> 6

 (if (= 1 (+ 1 1)) (* 2 3) (* 3 1))
-> (if (= 1 2) (* 2 3) (* 3 1))
-> (if #f (* 2 3) (* 3 1))
-> (* 3 1) ;; false
-> 6

28

(Informal) Textual Reduction for IfArith:
- Any number/bool requires no additional work and is a

value
- A builtin (including =) may be applied when its arguments

have been reduced to values and are of the right type
- When we reach a builtin application, we should reduce its

arguments from left-to-right
- To reduce if, first reduce the guard, then reduce the

appropriate branch

29

A note on state…

In the textual reduction style, we transform a whole
program to another whole program. Thus, the state of the
computation is kept in the current string representing the
program

30

Looking Forward…

This lecture was an introduction to term-rewriting-style
formalisms we will learn later on. IfArith is a tiny sub-Turing-
complete language we will see again. With the addition of
just a single construct, lambdas (i.e., functions), we will
achieve a Turing-complete language!

The textual reduction style can capture arbitrarily-expressive
language features! But it is way too slow for a real
implementation, so we use it as ground truth that is simple
to understand. Then we refine to make it fast!

Case Splitting and
Lists Intro
CIS352 — Spring 2021
Kris Micinski

31

Cond
• Cond allows multiple guards to be checked

• (cond [guard0 body0]
 [guard1 body1]
 …
 [else bodyelse]) ;; optional

• Checks each guard sequentially, evaluates first body

32

(define (foo x)
 (cond [(= x 42) 1]
 [(> x 0) 2]
 [else 3]))

Exercise

The absolute value of a number x is:
• x is x is greater than 0
• 0 if x = 0
• -x if x is less than 0

Translate this definition into a function using cond

33

Exercise

The absolute value of a number x is:
• x is x is greater than 0
• 0 if x = 0
• -x if x is less than 0

Translate this definition into a function using cond

(define (abs x)
 (cond [(> x 0) x]
 [(= x 0) 0]
 [(< x 0) (- x)]))

34

Exercise

35

Say we have the following:
(cond [g0 b0]
 [g1 b1]
 …
 [else belse])

How can we rewrite the above to use only if?

Exercise
Say we have the following:
(cond [g0 b0]
 [g1 b1]
 …
 [else belse])

How can we rewrite the above to use only if?

36

(if g0 b0
 (if g1 b1
 …
 (if gn-1 bn-1 belse) …))

Example
((λ(x) (x x))

(λ(x) (x x)))

37

(cons 0 1)

0

1

The function cons builds a cons cell / pair

Example
((λ(x) (x x))

(λ(x) (x x)))

38

(cons 0 1)

0

1

The function car gets the left element

(car) is 0

Example
((λ(x) (x x))

(λ(x) (x x)))

39

(cons 0 1)

0

1

The function cdr gets the right element

(cdr) is 1

Example
((λ(x) (x x))

(λ(x) (x x)))

40

(cons 0 1)

0

1

(cdr) is 1

The names car and cdr come from the
original implementation of LISP on the
IBM 704

Lists
• Racket has lists—sequences of cons cells ending w/ ‘()

• The empty list (or “null") is special, ‘()

• Many ways to build them

• (list 1 2 3) ;; Variadic function

• ‘(1 2 3) ;; Datum representation

• There are three operations on lists

• empty? / null?

• first / car

• rest / cdr

41

Lists continued…
• Using empty?, car, and cdr, we can write many utilities

• All definable ourselves, also in Racket by default

• (length l) — Length of l

• (list-ref l i) — Get ith element of list (0-indexed)

• (append l0 l1) — Append l1 to the end of l0

• (reverse l) — Reverse the list

• (member l x) — Check if x is in l

42

Exercise

Using cond, write a function that takes a list l and an
index x and returns…

• The first element if x = 0
• The second element if x = 1
• The third element if x = 2
• Otherwise return ‘unknown

43

Case Splitting and
Lists Intro
CIS352 — Spring 2021
Kris Micinski

44

