
Racket Forms
and Callsites
CIS352
Kris Micinski

Forms
• A form is a recognized syntax in the language

• (if …), (and …) are forms

• But +, list refer to functions

• Core forms defined by the language (if/and/define/…)

• You can define new forms too! More on this later…

• Scheme prefers to give a small number of general forms.

2

Forms
• The tag just after the open-paren determines the form:

• (define foo value) — Define a variable

• (define (foo a0 a1 …) body) — Define a function

• (if guard e-true e-false), (or e0 e1 …), etc

• By default, otherwise, (e0 e1 …) is a function call

3

Value and Expressions
• Every language has a set of values

• Primitive objects representable at runtime

• Expressions evaluate to values

• Numbers, strings, but also functions (closures)

• An expression is any syntax that evaluates to a value

• Very important term to know!

4

Exercise

Which of the following are expressions:
• (define x 23)
• x
• (+ x 3)
• (define (foo x) (+ x 1))
• (if x (foo x) (bar x))

5

Exercise

Which of the following are expressions:
• (define x 23) — Doesn’t evaluate to a value
• x
• (+ x 3)
• (define (foo x) (+ x 1)) — Doesn’t eval to value
• (if x (foo x) (bar x))

6

Exercise

7

Define a function that takes an argument, x, and
returns:
• x times 2, if x is greater than 0
• x times -2, otherwise

Exercise

8

(define (f x)
 (if (< x 0)
 (* 2 x)
 (* -2 x)))

Exercise

9

Define a function that takes an argument, x, and
returns:
• x divided by 2, if x is even
• x times 3 plus 1, if x is odd

Hint: use = and modulo to check if x is even/odd

Exercise

10

(define (collatz x)
 (if (= 0 (modulo x 2))
 (/ x 2)
 (+ 1 (* 3 x))))

Cond
• (cond [clause0 body0] … [else body-else])

• Each clause is evaluated in order

• Evaluates body of first matching clause

• Else may be

11

Definitions and
the Environment
CIS352
Kris Micinski

Definitions
• The form define is used to define variables

• Define comes in two forms

• (define id expr) — Define variable id as expr

• (define (f a0 …) body …+)

• Define a function f with arguments a0, …

• At least one body (typically only one)

13

Exercise

14

• Define a variable named x to be 42
• Define a function foo, which behaves as the
identity function

The Environment
• The environment at some point in the program includes the

set of variables in scope (accessible) at that point

• Every syntactic point has a (potentially) unique environment

15

(define x 23)
(+ x 1) ;; x is 23
(define y 24)
(+ x y) ;; x & y defined

Environments Nest
• Note that environments are hierarchical

• Definitions inside a function do not escape the function

• This relates to lexical scope which we will define soon

16

(define y 5)
(define (foo)
 (displayln y) ;; 5
 (define y 4)
 y) ;; 4
(foo) ;; 4
y ;; 5

Exercise

What does the following function return:

(define (foo)
 (define + 1)
 (define / (* 2 +))
 (- + /))

17

Exercise

What does the following function return:
 -1
Upshot: “built-in” functions are not special

(define (foo)
 (define + 1)
 (define / (* 2 +))
 (- + /))

18

Let
• Definitions with define are not expressions

• (let ([var e]) e-body)

• Expression: evaluates e-body with var defined as e

• Can have more than one var

19

(let ([x 2])
 (+ x 3)) ;; 5

(let ([x 2]
 [y 3])
 (+ x y)) ;; 5

Let
• Let does not allow simultaneous bindings to see each other

• I think of it as “parallel let”

20

(let ([x 2]
 [y x]) ;; bad
 (+ x y)) ;; 5

Let*
• Let* lets you define a sequence of variables

• I think of it as “sequential let”

21

(let* ([x 2]
 [y x]) ;; good
 (+ x y)) ;; 5

