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Type Synthesis

Useful in practice and very interesting!

- If your program typechecks, it is “type correct”

- No need to write annotations everywhere, that’s a pain

- How “really correct” type correctness is depends on the expressivity 

of the type system:

- In STLC, it just tells you you get something of the right “shape”

- In higher-order logics, you can do full verification
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Question

Last lecture: Curry-Howard Isomorphism 


Curry-Howard tells us that every type system is a logic: does that mean 
type synthesis is a kind of proof synthesis?


Answer: kind of, the term is not being synthesized directly, but a proof 
of the existence of the term is—assuming the type synthesis is sound
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What is the correct type?
(lambda (f) (lambda (x) (if (if-zero? (f x)) 1 0)))

Is it: 
(a) f = int->int, x = int 
(b) f = bool->int, x = bool 
(c) f = (int->int)->int, x = int->int 
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What is the correct type?
(lambda (f) (lambda (x) (if (if-zero? (f x)) 1 0)))

Is it: 
(a) f = int->int, x = int 
(b) f = bool->int, x = bool 
(c) f = (int->int)->int, x = int->int 
(d) All of the above
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Type Variables
(lambda (f) (lambda (x) (if (if-zero? (f x)) 1 0)))

Lesson: 
We can’t pick just one type. Instead, we need to 
be able to instantiate f and x whenever a 
suitable type may be found. 
For example, what if we let-bind the lambda 
and use it in two different ways!?

(let ([g (lambda (f) (lambda (x) (if (if-zero? (f x)) 1 0)))])
  (+ ((g (lambda (x) x)) 0) ((g (lambda (x) 1)) #f))

This usage requires f = nat->nat and x = nat This usage requires f = bool->nat and x = bool
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Generalizations
(lambda (f) (lambda (x) (if (if-zero? (f x)) 1 0)))

Instead, we can keep a generalized type by using a type 
variable, allowing a good type inference system to derive (for 
this example, using type var T): 
  Type of f = T -> int
  Type of x = T
 
Notice that this system demands we must be able to compare T 
for equality! This is actually nontrivial when we add 
polymorphism, but is simple in STLC (structural equality)
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Constraint-Based Typing

The crucial trick to implementing type inference is to use a 
constraint-based approach. In this setting, we walk over each 
subterm in the program and generate a constraint

Later, we will solve these constraints by using a process named unification

Unannotated lambdas generate new type variables, which are 
later constrained by their usages
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(define (build-constraints env e)
  (match e
    ;; Literals
    [(? integer? i) (cons `(,i : int) (set))]
    [(? boolean? b) (cons `(,b : bool) (set))]
    ;; Look up a type variable in an environment
    [(? symbol? x) (cons `(,x : ,(hash-ref env x)) (set))]
    ;; Lambda w/o annotation
    [`(lambda (,x) ,e)
     ;; Generate a new type variable using gensym
     ;; gensym creates a unique symbol
     (define T1 (fresh-tyvar))
     (match (build-constraints (hash-set env x T1) e)
       [(cons `(,e+ : ,T2) S)
        (cons `((lambda (,x : ,T1) ,e+) : (,T1 -> ,T2)) S)])]
    ;; Application: constrain input matches, return output
    [`(,e1 ,e2)
     (match (build-constraints env e1)
       [(cons `(,e1+ : ,T1) C1)
        (match (build-constraints env e2)
          [(cons `(,e2+ : ,T2) C2)
           (define X (fresh-tyvar))
           (cons `(((,e1+ : ,T1) (,e2+ : ,T2)) : ,X)
                 (set-union C1 C2 (set `(= ,T1 (,T2 -> ,X)))))])])]
    ;; Type stipulation against t--constrain
    [`(,e : ,t)
     (match (build-constraints env e)
       [(cons `(,e+ : ,T) C)
        (define X (fresh-tyvar))
        (cons `((,e+ : ,T) : ,X) (set-add (set-add C `(= ,X ,T)) `(= ,X ,t)))])]
    ;; If: the guard must evaluate to bool, branches must be
    ;; of equal type.
    [`(if ,e1 ,e2 ,e3)
     (match-define (cons `(,e1+ : ,T1) C1) (build-constraints env e1))
     (match-define (cons `(,e2+ : ,T2) C2) (build-constraints env e2))
     (match-define (cons `(,e3+ : ,T3) C3) (build-constraints env e3))
     (cons `((if (,e1+ : ,T1) (,e2+ : ,T2) (,e3+ : ,T3)) : ,T2)
           (set-union C1 C2 C3 (set `(= ,T1 bool) `(= ,T2 ,T3))))]))

Building Constraints
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Unification

At the end of constraint-building, we have a ton of equality 
constraints between base types and type variables

In this example, what is ty1?

tv0 = int
ty1 = tv0 -> tv2
tv2 = tv3
tv3 = tv4

(lambda (x : ty1) …)

Answer: think about constraints and equalities: ty1 must be int->int
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;; within the constraint constr, substitute S for T
(define (ty-subst ty X T)
  (match ty
    [(? ty-var? Y) #:when (equal? X Y) T]
    [(? ty-var? Y) Y]
    ['bool 'bool]
    ['int 'int]
    [`(,T0 -> ,T1) `(,(ty-subst T0 X T) -> ,(ty-subst T1 X T))]))

(define (unify constraints)
  ;; Substitute into a constraint
  (define (constr-subst constr S T)
    (match constr
      [`(= ,C0 ,C1) `(= ,(ty-subst C0 S T) ,(ty-subst C1 S T))]))
  ;; Is t an arrow type?
  (define (arrow? t)
    (match t [`(,_ -> ,_) #t] [_ #f]))
  ;; Walk over constraints one at a time
  (define (for-each constraints)
    (match constraints
      ['() (hash)]
      [`((= ,S ,T) . ,rest)
       (cond [(equal? S T)
              (for-each rest)]
             [(and (ty-var? S) (not (set-member? (free-type-vars T) S)))
              (hash-set (unify (map (lambda (constr) (constr-subst constr S T)) rest)) S T)]
             [(and (ty-var? T) (not (set-member? (free-type-vars S) T)))
              (hash-set (unify (map (lambda (constr) (constr-subst constr T S)) rest)) T S)]
             [(and (arrow? S) (arrow? T))
              (match-define `(,S1 -> ,S2) S)
              (match-define `(,T1 -> ,T2) T)
              (unify (cons `(= ,S1 ,T1) (cons `(= ,S2 ,T2) rest)))]
             [else (error "type failure")])]))

Unification
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Why Type Theory?
Why is type synthesis / checking useful?


- Can write fully-verified programs.

- Cons: type systems are esoteric, complicated, academic, etc…

- Popular languages (Swift, Rust, etc…) are tending towards more 

elaborate type systems as they evolve 

- Type synthesis offers me “proofs for free:”

- “If my program type checks it works” — not true in C/C++/… 

- Less mental burden, like CoPilot (etc… tools), type systems can 
integrate into IDEs to use synthesis information in guiding 
programming

- In some ways, this reflects the logical statements underlying the 

type system’s design (Curry Howard)
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PL Research @ SU

Our group: build the world’s fastest fixpoint solvers


Slog: data-parallel deductive logic (Horn-SAT)

- Scaled control-flow analysis up to 1000 cores of the Theta 

supercomputer


Ascent:

 - Programming with lattices, parallelization of declarative analytics on large 
unified-memory machines

 - Macro-embedded language in Rust 
 - Parallelization using Rayon
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Fast Horn-SAT

Lots of applications use restricted finite-domain propositional logic:

- Transitive closure, triangle counting, k-clique, …


[(path x y) <— (edge x y)] ;; Initial step
[(path x z) <— (path x y) (edge y z)] ;; # Inductive rule

- We can do programs like these at the highest scale currently known 
- Transitive closure: thousands of cores on Theta, graphs w/ billions of 

edges


Also forms the basis for program analysis: on-the-fly reachability of a 
program’s control-flow graph:

- Scalable 
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Fast transitive closure at scale
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Data-Parallel Structured Deduction

New language extending Datalog to S-expressions:

- All structures are deduplicated via a hash value

- Distributed through a cluster via that hash

- Data efficiently indexed to support operations on structures


Allows rich programming in a style that looks much closer to natural 
deduction


All programs compile to data-parallel relational algebra kernels 
implemented via all-to-all communication on top of MPI


Allows scaling structured logic programming up to hundreds/thousands of 
threads
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Examples in Slog
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Control-Flow Analysis of 
the λ-calculus in Slog
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CFA of λ-calculus vs. Souffle
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Strong Scaling on Theta
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