Type Synthesis

CIS352 — Fall 2022
Kris Micinski

Type Synthesis

Useful in practice and very interesting!

- If your program typechecks, it is “type correct”

- No need to write annotations everywhere, that’s a pain

- How “really correct” type correctness is depends on the expressivity
of the type system:
- In STLGC, it just tells you you get something of the right “shape”
- In higher-order logics, you can do full verification

Question

Last lecture: Curry-Howard Isomorphism

Curry-Howard tells us that every type system is a logic: does that mean
type synthesis is a kind of proof synthesis?

Answer: kind of, the term is not being synthesized directly, but a proof
of the existence of the term is—assuming the type synthesis is sound

What is the correct type?

(lambda (f) (lambda (x) (1f (i1f-zero? (f x)) 1 0)))

|

(@) = int->int, x = int

(b) t = bool->int, x = bool

(c) = (int->int)->int, x = int->int

What is the correct type?

(lambda (f) (lambda (x) (1f (i1f-zero? (f x)) 1 0)))

s It:

(@) = int->int, x = int

(b) t = bool->int, x = bool

(c) = (int->int)->int, x = int->int
(d) All of the above

Type Variables

(lambda (f) (lambda (x) (1f (i1f-zero? (f x)) 1 0)))

Lesson:

We can't pick just one type. Instead, we need to
be able to instantiate f and x whenever a
suitable type may be found.

For example, what if we let-bind the lambda
and use it in two different ways!?

(let ([g (lambda (f) (lambda (x) (1f (if-zero? (£ x)) 1 0)))1])
(+ ((g (lambda (x) x)) 0) ((g (lambda (x) 1)) #£f))

This usage requires f = nat->nat and x = nat This usage requires f = bool->nat and x = bool

6

Generalizations

(lambda (f) (lambda (x) (1f (i1f-zero? (f x)) 1 0)))

Instead, we can keep a generalized type by using a type
variable, allowing a good type inference system to derive (for
this example, using type var T):

Typeotf = T -> int

Typeotx = T

Notice that this system demands we must be able to compare T
for equality! This is actually nontrivial when we add
polymorphism, but is simple in STLC (structural equality)

Constraint-Based Typing

The crucial trick to implementing type inference is to use a
constraint-based approach. In this setting, we walk over each
subterm in the program and generate a constraint

Unannotated lambdas generate new type variables, which are
later constrained by their usages

Later, we will solve these constraints by using a process named unification

(define (build-constraints env e)
(match e
+» Literals
[(? integer? 1) (cons (,1 : int) (set))]
[(? boolean? b) (cons " (,b : bool) (set))]
;; Look up a type variable in an environment
[(? symbol? x) (cons (,Xx : ,(hash-ref env x)) (set))]
+» Lambda w/o annotation
[(lambda (,x) ,e)
;; Generate a new type variable using gensym
;7 gensym creates a unique symbol
(define T1 (fresh-tyvar))
(match (build-constraints (hash-set env x Tl) e)
[(cons ~(,et+ : ,T2) S)
(cons " ((lambda (,x : ,T1) ,e+) : (,Tl1 -> ,T2)) S)1)]
;; Application: constrain input matches, return output
[(,el ,e2)
(match (build-constraints env el)
[(cons ~(,el+ : ,Tl) C1l)
(match (build-constraints env e2)
[(cons ~(,e2+ : ,T2) C2)
(define X (fresh-tyvar))
(cons (((,el+ : ,T1) (,e2+ : ,T2)) : ,X)
(set-union Cl1 C2 (set (= ,Tl1 (,T2 -> ,X)))))1D)1)]
;; Type stipulation against t--constrain
[(,e : ,t)
(match (build-constraints env e)
[(cons " (,et+ : ,T) C)
(define X (fresh-tyvar))
(cons ((,et : ,T) : ,X) (set-add (set-add C " (= ,X ,T)) (= ,X ,t)))1)]
;3 If: the guard must evaluate to bool, branches must be
;7 of equal type.
[(1f ,el ,e2 ,e3)
(match-define (cons (,el+ : ,Tl) Cl) (build-constraints env el))
(match-define (cons " (,e2+ : ,T2) C2) (build-constraints env e2))
(match-define (cons " (,e3+ : ,T3) C3) (build-constraints env e3))
(cons ((if (,el+ : ,T1) (,e2+ : ,T2) (,e3+ : ,T3)) : ,T2)
(set-union C1 C2 C3 (set (= ,T1 bool) (= ,T2 ,T3))))1))

9

Building Constraints

Unification

At the end of constraint-building, we have a ton of equality
constraints between base types and type variables

tv0 = 1nt

tyl = tv0 -> tv2

tv2 = tv3 (lambda (x : tyl) ..)
tv3d = tv4

In this example, what is ty17?

Answer: think about constraints and equalities: tyl must be int->int

10

73 within the constraint constr, substitute S for T
(define (ty-subst ty X T)
(match ty
[(? ty-var? Y) #:when (equal? X Y) T]
[(? ty-var? Y) Y]
[' bool 'bool]
["int 'int]
[>(,TO -=> ,Tl) ~(,(ty-subst TO X T) -> ,(ty-subst Tl X T))]))

(define (unify constraints)
+» Substitute into a constraint
(define (constr-subst constr S T)

N [| H
e S Unification
[>(= ,CO0 ,Cl) (= ,(ty-subst CO S T) ,(ty-subst C1 S T))]))

;7 Is t an arrow type?
(define (arrow? t)
(matCh t [\(I_ -> I_) #t] [_ #f]))
+» Walk over constraints one at a time
(define (for-each constraints)
(match constraints
['() (hash)]
[((= ,5 ,T) . ,rest)
(cond [(equal? S T)
(for-each rest)]
[(and (ty-var? S) (not (set-member? (free-type-vars T) S)))
(hash-set (unify (map (lambda (constr) (constr-subst constr S T)) rest)) S T)]
[(and (ty-var? T) (not (set-member? (free-type-vars S) T)))
(hash-set (unify (map (lambda (constr) (constr-subst constr T S)) rest)) T S)]
[(and (arrow? S) (arrow? T))
(match-define " (,S1 -> ,S2) S)
(match-define " (,Tl1 -> ,T2) T)
(unify (cons (= ,S1 ,Tl) (cons (= ,S2 ,T2) rest)))]
[else (error "type failure")])]))

11

Why Type Theory?
Why is type synthesis / checking useful?

- Can write fully-verified programs.
- Cons: type systems are esoteric, complicated, academic, etc...
- Popular languages (Swift, Rust, etc...) are tending towards more
elaborate type systems as they evolve

- Type synthesis offers me “proofs for free:”
- “If my program type checks it works” — not true in C/C++/...

- Less mental burden, like CoPilot (etc... tools), type systems can
integrate into IDEs to use synthesis information in guiding
programming
- In some ways, this reflects the logical statements underlying the

type system’s design (Curry Howard)

12

PL Research @ SU

Our group: build the world’s fastest fixpoint solvers

Slog: data-parallel deductive logic (Horn-SAT)
- Scaled control-flow analysis up to 1000 cores of the Theta
supercomputer

Ascent:

- Programming with lattices, parallelization of declarative analytics on large
unified-memory machines

- Macro-embedded language in Rust
- Parallelization using Rayon

13

Fast Horn-SAT

Lots of applications use restricted finite-domain propositional logic:
- Transitive closure, triangle counting, k-clique, ...

[(path X y) <— (edge x y)] ;; Initial step
[(path X z) <— (path x y) (edge vy z)] ;; # Inductive rule

- We can do programs like these at the highest scale currently known
- Transitive closure: thousands of cores on Theta, graphs w/ billions of
edges

Also forms the basis for program analysis: on-the-fly reachabillity of a

program’s control-flow graph:
- Scalable

14

Fast transitive closure at scale

Graph Properties Time (s) at Process Count
Name Edges I'TC| System 15 30 60 120
Sroc 62 40 21 18
FB-MEDIA 206k 96,652,228 Soufflé 35 33 34 37
Radlog 254 295 340 164
SLroc 363 218 177 115
RING10000 10k 100,020,001 Soufflé 149 143 140 141
Radlog 464 646 852 1292
SLoc - 1,593 908 671
SUITESPARSE 412k 3,354,219,810 | Soufflé 1,417 1,349 1,306 1,282
Radlog - - - -

15

Data-Parallel Structured Deduction

New language extending Datalog to S-expressions:
- All structures are deduplicated via a hash value
- Distributed through a cluster via that hash
- Data efficiently indexed to support operations on structures

Allows rich programming in a style that looks much closer to natural
deduction

All programs compile to data-parallel relational algebra kernels
implemented via all-to-all communication on top of MPI

Allows scaling structured logic programming up to hundreds/thousands of
threads

16

Examples in Slog

+ ref + ref
(interp ?(clo (ref x) env) (interp ?(clo (ref x) env)

{interp {env-map env x}}) {env-map env x})
+ Lam + Lam
(interp ?(clo (lam x Eb) env) (interp ?(clo (lam x Eb) env)

(clo (lam x Eb) env)) (clo (lam x Eb) env))
; app ; app
[(interp !(clo Ef env) [(interp !(clo Ef env)

(clo (lam x Eb) env')) (clo (lam x Eb) env'))

(= env'' (ext-env env' x (clo Ea env))) (interp !(clo Ea env) Eav)
(interp !(clo Eb env'') v) (interp !(clo Eb (ext-env env' x Eav)) v)
--> -->
(interp ?(clo (app Ef Ea) env) v)] (interp ?(clo (app Ef Ea) env) v)]

Fig. 5. Two CE (closure-creating) interpreters in SLoG; for CBN eval. (left) and CBV eval. (right).

17

+» Eval states

[(eval (ref x) k c)

-=>

(ret {store (addr x c)} k)]

[(eval (lam x body) k c)

-=>

(ret (clo (lam x body) c) k)]

[(eval (app ef ea) k c)

-=>

(eval ef (ar-k ea (app ef ea) c k) c)l]

s Ret states
[(ret vf (ar-k ea call c¢ k))

-=>

Control-Flow Analysis of &y
the A-calculus in Slog

(apply call vf va k c)]

[(ret v (kaddr e c))

(store (kaddr e c) k)

-=>

(ret v k)]

»» Apply states

[(apply call (clo (lam x Eb) _) va k c)

-=>

(eval Eb (kaddr Eb ¢') c¢')

(store (kaddr Eb c') k)

(store (addr x c') va)

(= ¢' {tick !'(do-tick call c)})]

s Propagate free vars

[(free y (lam x body))

(apply call (clo (lam x body) clam) _ _ c)

-=>

(store (addr y {tick !(do-tick call c)})
{store (addr y clam)})]

18

CFA of A-calculus vs. Souffle

8 Processes

64 Processes

Term Sz. Iters Cf. Pts Sto. Sz. Slog | Soufflé H Slog ‘ Soufflé

3 1,193 98,114 23,413 00:01 01:07 0:02 00:15

< 9 1,312 371,010 79,861 00:02 14:47 0:03 02:56

E“) 10 1,431 1,441,090 291,317 00:06 0:05 45:49
-.S;: 11 1,550 5,678,402 1,107,957 00:27 0:16
o 12 1,669 22,541,634 4,315,125 02:14 1:07
13 1,788 89,822,530 17,022,965 12:17 5:08

19

Strong Scaling on Theta

1000
} DVH 110-7 DVH 110-8
900
800
— 700
£ 600
o
(&
@ 500
Q
g 400
= 300 '
200 '
100 n B
0
O ©® © © O € © ® & & & &
S e N e R R M R

Process Count

20

coursefeedback.syr.edu

http://coursefeedback.syr.edu/

