
Type Synthesis
CIS352 — Fall 2022
Kris Micinski

2

Type Synthesis

Useful in practice and very interesting!

- If your program typechecks, it is “type correct”

- No need to write annotations everywhere, that’s a pain

- How “really correct” type correctness is depends on the expressivity

of the type system:

- In STLC, it just tells you you get something of the right “shape”

- In higher-order logics, you can do full verification

3

Question

Last lecture: Curry-Howard Isomorphism

Curry-Howard tells us that every type system is a logic: does that mean
type synthesis is a kind of proof synthesis?

Answer: kind of, the term is not being synthesized directly, but a proof
of the existence of the term is—assuming the type synthesis is sound

4

What is the correct type?
(lambda (f) (lambda (x) (if (if-zero? (f x)) 1 0)))

Is it:
(a) f = int->int, x = int
(b) f = bool->int, x = bool
(c) f = (int->int)->int, x = int->int

5

What is the correct type?
(lambda (f) (lambda (x) (if (if-zero? (f x)) 1 0)))

Is it:
(a) f = int->int, x = int
(b) f = bool->int, x = bool
(c) f = (int->int)->int, x = int->int
(d) All of the above

6

Type Variables
(lambda (f) (lambda (x) (if (if-zero? (f x)) 1 0)))

Lesson:
We can’t pick just one type. Instead, we need to
be able to instantiate f and x whenever a
suitable type may be found.
For example, what if we let-bind the lambda
and use it in two different ways!?

(let ([g (lambda (f) (lambda (x) (if (if-zero? (f x)) 1 0)))])
 (+ ((g (lambda (x) x)) 0) ((g (lambda (x) 1)) #f))

This usage requires f = nat->nat and x = nat This usage requires f = bool->nat and x = bool

7

Generalizations
(lambda (f) (lambda (x) (if (if-zero? (f x)) 1 0)))

Instead, we can keep a generalized type by using a type
variable, allowing a good type inference system to derive (for
this example, using type var T):
 Type of f = T -> int
 Type of x = T
 
Notice that this system demands we must be able to compare T
for equality! This is actually nontrivial when we add
polymorphism, but is simple in STLC (structural equality)

8

Constraint-Based Typing

The crucial trick to implementing type inference is to use a
constraint-based approach. In this setting, we walk over each
subterm in the program and generate a constraint

Later, we will solve these constraints by using a process named unification

Unannotated lambdas generate new type variables, which are
later constrained by their usages

9

(define (build-constraints env e)
 (match e
 ;; Literals
 [(? integer? i) (cons `(,i : int) (set))]
 [(? boolean? b) (cons `(,b : bool) (set))]
 ;; Look up a type variable in an environment
 [(? symbol? x) (cons `(,x : ,(hash-ref env x)) (set))]
 ;; Lambda w/o annotation
 [`(lambda (,x) ,e)
 ;; Generate a new type variable using gensym
 ;; gensym creates a unique symbol
 (define T1 (fresh-tyvar))
 (match (build-constraints (hash-set env x T1) e)
 [(cons `(,e+ : ,T2) S)
 (cons `((lambda (,x : ,T1) ,e+) : (,T1 -> ,T2)) S)])]
 ;; Application: constrain input matches, return output
 [`(,e1 ,e2)
 (match (build-constraints env e1)
 [(cons `(,e1+ : ,T1) C1)
 (match (build-constraints env e2)
 [(cons `(,e2+ : ,T2) C2)
 (define X (fresh-tyvar))
 (cons `(((,e1+ : ,T1) (,e2+ : ,T2)) : ,X)
 (set-union C1 C2 (set `(= ,T1 (,T2 -> ,X)))))])])]
 ;; Type stipulation against t--constrain
 [`(,e : ,t)
 (match (build-constraints env e)
 [(cons `(,e+ : ,T) C)
 (define X (fresh-tyvar))
 (cons `((,e+ : ,T) : ,X) (set-add (set-add C `(= ,X ,T)) `(= ,X ,t)))])]
 ;; If: the guard must evaluate to bool, branches must be
 ;; of equal type.
 [`(if ,e1 ,e2 ,e3)
 (match-define (cons `(,e1+ : ,T1) C1) (build-constraints env e1))
 (match-define (cons `(,e2+ : ,T2) C2) (build-constraints env e2))
 (match-define (cons `(,e3+ : ,T3) C3) (build-constraints env e3))
 (cons `((if (,e1+ : ,T1) (,e2+ : ,T2) (,e3+ : ,T3)) : ,T2)
 (set-union C1 C2 C3 (set `(= ,T1 bool) `(= ,T2 ,T3))))]))

Building Constraints

10

Unification

At the end of constraint-building, we have a ton of equality
constraints between base types and type variables

In this example, what is ty1?

tv0 = int
ty1 = tv0 -> tv2
tv2 = tv3
tv3 = tv4

(lambda (x : ty1) …)

Answer: think about constraints and equalities: ty1 must be int->int

11

;; within the constraint constr, substitute S for T
(define (ty-subst ty X T)
 (match ty
 [(? ty-var? Y) #:when (equal? X Y) T]
 [(? ty-var? Y) Y]
 ['bool 'bool]
 ['int 'int]
 [`(,T0 -> ,T1) `(,(ty-subst T0 X T) -> ,(ty-subst T1 X T))]))

(define (unify constraints)
 ;; Substitute into a constraint
 (define (constr-subst constr S T)
 (match constr
 [`(= ,C0 ,C1) `(= ,(ty-subst C0 S T) ,(ty-subst C1 S T))]))
 ;; Is t an arrow type?
 (define (arrow? t)
 (match t [`(,_ -> ,_) #t] [_ #f]))
 ;; Walk over constraints one at a time
 (define (for-each constraints)
 (match constraints
 ['() (hash)]
 [`((= ,S ,T) . ,rest)
 (cond [(equal? S T)
 (for-each rest)]
 [(and (ty-var? S) (not (set-member? (free-type-vars T) S)))
 (hash-set (unify (map (lambda (constr) (constr-subst constr S T)) rest)) S T)]
 [(and (ty-var? T) (not (set-member? (free-type-vars S) T)))
 (hash-set (unify (map (lambda (constr) (constr-subst constr T S)) rest)) T S)]
 [(and (arrow? S) (arrow? T))
 (match-define `(,S1 -> ,S2) S)
 (match-define `(,T1 -> ,T2) T)
 (unify (cons `(= ,S1 ,T1) (cons `(= ,S2 ,T2) rest)))]
 [else (error "type failure")])]))

Unification

12

Why Type Theory?
Why is type synthesis / checking useful?

- Can write fully-verified programs.

- Cons: type systems are esoteric, complicated, academic, etc…

- Popular languages (Swift, Rust, etc…) are tending towards more

elaborate type systems as they evolve 

- Type synthesis offers me “proofs for free:”

- “If my program type checks it works” — not true in C/C++/… 

- Less mental burden, like CoPilot (etc… tools), type systems can
integrate into IDEs to use synthesis information in guiding
programming

- In some ways, this reflects the logical statements underlying the

type system’s design (Curry Howard)

13

PL Research @ SU

Our group: build the world’s fastest fixpoint solvers

Slog: data-parallel deductive logic (Horn-SAT)

- Scaled control-flow analysis up to 1000 cores of the Theta

supercomputer

Ascent:

 - Programming with lattices, parallelization of declarative analytics on large
unified-memory machines

 - Macro-embedded language in Rust
 - Parallelization using Rayon

14

Fast Horn-SAT

Lots of applications use restricted finite-domain propositional logic:

- Transitive closure, triangle counting, k-clique, …

[(path x y) <— (edge x y)] ;; Initial step
[(path x z) <— (path x y) (edge y z)] ;; # Inductive rule

- We can do programs like these at the highest scale currently known
- Transitive closure: thousands of cores on Theta, graphs w/ billions of

edges

Also forms the basis for program analysis: on-the-fly reachability of a
program’s control-flow graph:

- Scalable

15

Fast transitive closure at scale

16

Data-Parallel Structured Deduction

New language extending Datalog to S-expressions:

- All structures are deduplicated via a hash value

- Distributed through a cluster via that hash

- Data efficiently indexed to support operations on structures

Allows rich programming in a style that looks much closer to natural
deduction

All programs compile to data-parallel relational algebra kernels
implemented via all-to-all communication on top of MPI

Allows scaling structured logic programming up to hundreds/thousands of
threads

17

Examples in Slog

18

Control-Flow Analysis of
the λ-calculus in Slog

19

CFA of λ-calculus vs. Souffle

20

Strong Scaling on Theta

21

 coursefeedback.syr.edu

http://coursefeedback.syr.edu/

